
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 9, SEPTEMBER 2001 1401

Verification of Infinite-State Dynamic Systems Using
Approximate Quotient Transition Systems

Alongkrit Chutinan and Bruce H. Krogh, Fellow, IEEE

Abstract—This paper concerns computational methods for ver-
ifying properties of labeled infinite-state transition systems (e.g.,
hybrid systems) using quotient transition system (QTS). A QTS is a
conservative approximation to the infinite-state transition system
based on a finite partition of the infinite state space. For universal
specifications, positive verification for a QTS implies the specifi-
cation is true for the infinite-state transition system. Since in most
applications exact reachability mappings required to compute the
QTS cannot be represented or computed, we introduce theapprox-
imate quotient transition system (AQTS). The AQTS is an approx-
imation to the QTS obtained from a conservative approximation
to the reachability mapping. The paper presents a sufficient condi-
tion for an AQTS to be a bisimulationof the infinite state transition
system. An AQTS bisimulation is essentially equivalent to the infi-
nite-state system for the purposes of verification. It is well known,
however, that finite-state bisimulations do not exist for most hybrid
systems of practical interest. Therefore, the use of the AQTS for
verification of universal specifications is proposed and illustrated
with an example. This approach has been implemented in a tool for
computer-aided verification of a general class of hybrid systems.

Index Terms—Bisimulation, hybrid systems, reachability, tem-
poral logic, verification.

I. INTRODUCTION

M ANY complex dynamic systems can be described as
transition systems, where the system dynamics are inter-

preted as atransition relationon the state space. This approach
has been used, for example, to analyzehybrid systems[1]–[3].
This paper concerns formal verification of the infinite-state tran-
sition system resulting from such an interpretation, orseman-
tics, for a dynamic system. The general verification problem can
be stated as follows: Given a desired property, called aspecifica-
tion, we would like to guarantee that all of the system behaviors
satisfy the specification. This is a very important problem in the
validation of the system design, especially for safety-critical ap-
plications [4], [5].

Previous work on formal verification dealt mainly with fi-
nite-state systems [6]–[8]. The system under consideration is
typically described as a finite graph with nodes representing the
system states and arcs representing possible state transitions.
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Specifications are written using formalisms such ascomputa-
tion tree logic(CTL) [6], [8].

CTL uses the notion of thecomputation tree, which is the in-
finite tree obtained by unfolding the state transition graph along
all possible state-transition sequences starting from a designated
initial state. A CTL specification describes the system evolution
along paths in the computation tree and can be verified through
symbolic reachability analysis of the state transition graph. Ver-
ification of finite-state systems using this approach has enjoyed
considerable success [6].

The CTL formalism can be extended to infinite-state transi-
tion systems. Conceptually, the computation trees, which in gen-
eral contain an uncountable number of paths and an uncount-
able number of states along each path, can be obtained in the
same manner and the same reachability analysis can be applied
to verify a CTL formula. The cardinality of the state spaces of
such transition systems makes direct reachability analysis im-
possible, however. A standard approach to verifying proper-
ties of an infinite-state transition system is to find abisimula-
tion, which is a finite-state transition system that is equivalent
to the original transition system with respect to the verification
problem. To find a bisimulation, a so-calledquotient transition
system (QTS)is constructed from a partition of the state space of
the original transition system. The QTS is then checked to see
if it is a bisimulation of the original transition system. If not, the
state space partition is refined, a new QTS is constructed, and
the procedure is repeated until a bisimulation is found [9].

This paper addresses two principal difficulties with the
bisimulation approach to verification of hybrid dynamic
systems. First, finite-state bisimulations exist for only very
limited classes of hybrid systems [9]–[12]. Consequently, one
cannot guarantee the procedure for computing a bisimulation
will terminate for most hybrid systems of practical interest.
We avoid this problem by performing the verification on the
QTS in each iteration of the bisimulation procedure, rather
than waiting for the bisimulation procedure to terminate.
Certain specifications can be verified on a QTS, which is
a conservative approximation of the infinite-state transition
system. By “conservative approximation” we mean that in
addition to representing all valid transition sequences for the
original infinite-state transition system, the QTS may admit
some additional transition sequences that are not valid for the
infinite-state transition system. A conservative approximation
is called asimulation in the transition system literature. As
the verification may be inconclusive due to the coarseness of
the approximation, the QTS can be refined to yield a more
accurate approximation. Although it cannot be guaranteed that
the verification question can be resolved using QTSs, there
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are cases where verification can be accomplished with this
approach even when a finite-state bisimulation does not exist
[13]–[15].

Second, any procedure for computing a bisimulation requires
the computation ofreachable setswhich are used to define tran-
sitions for the QTS. This may not be possible to implement in
a computer since finite representations may not exist for arbi-
trary uncountable sets of states. One may consider using ap-
proximations to the reachable sets in the QTS computations.
Introducing reachability approximations leads toapproximate
quotient transition systems (AQTSs). We discuss the implication
of using AQTSs in the bisimulation procedure as well as in our
verification procedure.

This paper is organized as follows. Section II introduces the
concepts of transition systems, quotient transition systems, and
bisimulation. Section III discusses the verification of transition
systems against a CTL specification using bisimulation and
compares the method to our approach which uses QTSs.
Section IV discusses the issues that arise when reachability
approximation is incorporated into the quotient system veri-
fication procedure. The use of the AQTS for verification of
hybrid systems is illustrated with an example in Section V.
The concluding section summarizes the contributions of this
paper and points to a realization of the proposed approach to
verification for a class of hybrid systems in a MATLAB-based
tool calledCheckMate.

II. PRELIMINARIES

This section introduces labeled transition systems and sum-
marizes the theory of bisimulation using quotient transition sys-
tems for verification of labeled transition systems. The material
in this section is adapted from [9], [16]. In our development,
eventlabels are dropped from the transition system definition
and the simulation relation definition is extended from a single
marking to a more general labeling function.

A. Labeled Transition Systems and Bisimulations

Definition 1: A labeled transition system is a tuple
where is the setstates, is the

set of transitions, is the set ofinitial states, is a
countable set oflabels, and is thelabeling function.

Given and , the notation indicates that
. We assume that the transition relationis total,

that is, for every state there exists a state such
that . This assumption allows us to consider only the in-
finite paths in the labeled transition system. The notations
and denote the sets of strings of elements inthat are finite
(but arbitrary) length and infinite length, respectively.

Definition 2: Given a labeled transition system
, a sequence of states is

called apathof if for all . A path is called
a run of if .

Definition 3: Given a labeled transition system
, and a set , thepre-conditionof , denoted

, is defined as ,

and thepost-conditionof , denoted , is defined as
.

Given two labeled transitions systems and with the
same set of labels, is said tosimulate if for every path
of , there is a corresponding path in. This concept of sim-
ulation is formalized in the following definition.

Definition 4 [16]: Let and
be labeled transition systems. Asimula-

tion relationof by is a binary relation such
that:

i) for every , there exists such that
;

ii) if and , then there exists such
that and ;

iii) if , then ;
iv) if , then .

We say simulates by , denoted , if is a
simulation relation of by . is also called a -simula-
tion of . Although Condition iii) may be viewed as a special
case of labeling where some states are labeled as “initial states,”
we choose to keep a separate definition for the initial states to
emphasize the fact that a run of the transition system must orig-
inate from one of these states. Given a relation

, we write
to denote the inverse relation of.

Definition 5: Let and
be labeled transition systems. Abisim-

ulation relationbetween and is a binary relation
such that and .

We say the transition systemsand bisimulate each other
by , denoted , if is a bisimulation relation between

and .
Example: The definitions above are illustrated by the three

labeled transition systems in Fig. 1,, , and , with labels
from assigned to each state. States ofare as-
sociated with states of and through relations and ,
respectively, as indicated in the figure. It can be verified that

: the two transitions from (the only state asso-
ciated with ) are to states associated with, and for each
state in associated with there is a transition to either an-
other state associated with (corresponding to the transition

in ) or a transition to (corresponding to the tran-
sition in ). The relation is not a bisimulation re-
lation, however, because transition systemdoes not simulate

under the relation . This is demonstrated by the pair of
states : although there is a transition
in , there is no transition from to in . On the other
hand, , since it can be shown easily that
and .

The following definition will be used in the discussion of
computational procedures for generating finite-state simulations
of a given infinite-state transition system.

Definition 6: If , the relation is said to be astrict
simulation relationof by , denoted , if is not
a bisimulation relation between and .

For completeness we include the following two lemmas con-
cerning properties of simulations and bisimulations of transition
systems.
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Fig. 1. Transition systems (a)T , (b)T , (c)T . T � T andT � T , where relations ,  are defined by the partitions ofQ indicated in (b) and (c),
respectively.

Lemma 1: Let and
be labeled transition sys-

tems and . If , then for all , if
is a path of with , then there exists a path
of with such that .

Proof: Straightforward by induction on the length of the
path .

Lemma 2: Let and
be labeled transition sys-

tems and . If , then for all ,
the following conditions hold:

i) if is a path of with , there exists a
path of with such that

;
ii) if is a path of with , there

exists a path of with such that
.

Proof: Follows from Lemma 1.

B. Quotient Transition Systems

An approach to finding a bisimulation of a labeled transition
system uses QTSs. A QTS is constructed from a partition of
the state space of the underlying transition system. The partition
must be consistent with the labeling function and set of initial
states in the following sense.

Definition 7: Given a labeled transition system
, a partition of is said to beconsistentif and

only if for all and for all , and
.

In words, all states in the same set in the partition must have
the same labels, including the special “initial state” labels.

Definition 8 (Quotient Transition System) [9], [10]:Given
a labeled transition system and a con-
sistent partition of , thequotient transition systemof is
defined as , where

i) for all , iff there exist
and such that , or equivalently

;
ii) ;
iii) for all , for some .
In words, the a partition state in the QTS can make a transition

to another partition state if one of its element state can make a
transition to another element state in the destination partition
state.

It is easy to see that , where
. Since we will refer to the relation

quite often, we denote it with a special notation
. The following proposition gives a

necessary and sufficient condition for to be a bisimulation
of with the relation .

Proposition 1: Given a labeled transition system
and a consistent partition of , , if

and only if the partition satisfies

for all either

or (1)

Proof: This is a standard result regarding the construction
of bisimulations of basic transition systems (see, e.g., [10]).

In words, (1) states that all states in each behave
uniformly: given another , either all states or no state
in can reach some state in in one transition. Condition (1)
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leads to the general procedure, BP, for computing a bisimulation
of a transition system using QTSs shown in Fig. 2.

Procedure BP uses the notion of partition refinement, defined
below, to generate a sequence of QTSs that are increasingly
less conservative approximations to the behavior of the original
system.

Definition 9: Given two partitions of , is said to
be arefinementof if and only if for all , there exists

such that .
Note that the termination condition of BP in Fig. 2 is pre-

cisely condition (1) of Proposition 1. In each iteration of BP, the
partition refinement scheme uses the information obtained from

to split into the part that can reach and the part
that cannot. Also note that the operation in BP is with
respect to the transition relation of , not the transition rela-
tion of the QTS .

Condition (1) involves only the precondition sets. Using the
post-condition sets, the following proposition gives a sufficient
condition for to be a bisimulation of with the relation

.
Proposition 2: Given a labeled transition system

and a consistent partition of , if
the partition satisfies

for all either

or (2)

Proof: Since

i) ;
ii)

, the proposition follows
from Proposition 1.

Example: The transition systems in Fig. 1 illustrate the defi-
nitions and propositions above regarding quotient transition sys-
tems. Identifying the states of transition systemsand with
subsets of , as indicated in the figure, defines two partitions
of , and . Thus,

and . Moreover, partiation is a refinement of
that can be obtained by applying procedure BP to. Also, it

can be verified easily that paritition satisfies the conditions in
Propositions 1 and 2, implying .

Bisimulation relations are important for verification because
for labeled transition systems related by a bisimulation relation
all properties for the labeled behaviors are identical. Therefore,
verification results for the two systems will be identical. This is
particularly significant for infinite-state transition systems be-
cause, if a finite-state bisimulation exists, procedure BP will
terminate with a finite-state transition system that can be used
to verify properties of the infinite-state transition system using
standard model checking tools.

III. V ERIFICATION OFLABELED TRANSITION SYSTEMS

A. Computation Tree Logic

CTL is a well established specification formalism for finite-
state transition systems [5], [6]. The specification is formulated
by attaching a finite set ofatomic propositions whose in-

Fig. 2. Bisimulation procedure.

dividual values are either true or false to each state in the tran-
sition system. Thus, we consider a labeled transition system of
the form where is the
labeling function which assigns to each state ina set of atomic
propositions which are true for that state. In the CTL literature,
the labeled transition system is often called aKripke structure
[5].

By selecting a state in the labeled transition system as the
initial state and unfolding the state transition graph of the tran-
sition system, we obtain an infinite tree, called acomputation
tree, with the selected initial state at the root [6]. A CTL formula
specifies the system evolutions in terms of the atomic proposi-
tions along some or all paths in the computation tree of the la-
beled transition system.

In this paper, we consider a class of CTL formulae called
ACTL [7], which allows only universal assertions, i.e., the as-
sertions that must hold forall paths in the computation tree. An
ACTL formula consists oftemporal operatorsand theuniversal
path quantifier . Temporal operators specify the system evo-
lution along a single path of the computation tree. There are
four basic temporal operators,, , , and . The operator

(“next time”) asserts that a property holds in the next state
in the path. The operator (“in the future”) asserts that a prop-
erty holds some future state along the path (including the cur-
rent state). The operator (“globally”) asserts that a property
holds globally, i.e., at every state along the path. The operator
(“until”) involves two properties: the assertion requires
that holds as some state in the path (including the current state)
and that holds at every state along the path prior to the oc-
currence of . The universal path quantifier specifies that the
path assertion holds alongall paths in the computation tree. The
syntax of an ACTL formula , in positive normal formis given
by the grammar

where denotes an atomic proposition. We write to
mean that the ACTL formula holds at state in . is usually
dropped from this notation when the labeled transition system
is clear from the context.

An ACTL formula for a labeled transition system corresponds
to a region (a set of states) in the state space of the transition
system for which the ACTL formula holds. It has been shown
that the region corresponding to an ACTL formula can be com-
puted using fixed-point iterations in [6]. For a finite-state labeled
transition system, these fixed-point computations are guaran-
teed to terminate. The labeled transition system satisfies the
ACTL specification if all initial states are included in the re-
gion corresponding to the ACTL specification.
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ACTL formulas can be used to specify properties of the
system such as

• safe. The system is safe at all time;
• ( reset). The system is reset infinitely often;
• ( safe). The system will eventually reach a safe

region and stay in the region forever;

Using the CTL framework, theverification problemcan be
stated as follows. Given a labeled transition system

and a CTL specification, determine whether or not
for all .

B. Verification Using QTSs

In the bisimulation approach to transition system verification,
the procedure BP in Fig. 2 is applied to find a partition of the
state space that will give a finite-state bisimulation of the un-
derlying infinite-state transition system. In each iteration of BP,
a QTS is constructed from the current partition. BP tests if the
QTS is a bisimulation of the underlying transition system. If so,
BP stops, otherwise the partition is refined and BP repeats until
a bisimulation is found. The approach requires that a bisimula-
tion be found before the verification step can be performed. This
is illustrated in Fig. 3(a).

Since QTSs are, in general, simulations of the underlying
transition system, one could attempt to perform verification on
the QTS in any iteration of BP rather than waiting for BP to
terminate. If the property is verified, there would be no need
to refine the QTS further. If not, another refinement iteration
can be executed and verification can be attempted on the new
QTS. Continuing this process, it is sometimes possible to con-
clude whether or not the underlying transition system satisfies
the desired property before a bisimulation is achieved or even if
a bisimulation does not exist [13]–[15]. Fig. 3(b) depicts this al-
ternative verification approach using QTSs. The restriction here
is that since QTSs are conservative approximations of the un-
derlying transition system, onlyuniversalproperties can be ver-
ified. In the context of CTL, a universal property is a property
that can be specified as an ACTL formula. This is formalized in
the following proposition.

Proposition 3: Let and
be labeled transition systems

and be an ACTL formula. If , then for all
.

Proof: We prove this by induction on the length of the
ACTL formula .

Basis Step:ACTL formulas of the shortest length are
and where . Since , we have that

by Condition iv) of Definition 4. Thus,
and the proposition holds

for both and .
Induction Step:Suppose the proposition holds for all sub-
formulae and , we show that the proposition also holds
for the formula produced by any production rules in the
ACTL grammar.

i) . Suppose that . Then
or . By the inductive assumption, we

Fig. 3. Verification approaches using quotient transition systems that are (a)
bisimulations and (b) simulations of the original system.

have that or . Consequently,
.

ii) . This follows by a similar argument to
Case i).

For the rest of the production rules for, suppose
that . For any path of starting
with , there exists a path in
starting with such that
by Lemma 1.

iii) . Since , there exists a
such that and for all

. By the inductive assumption, we have that
and for all . Thus,
.

iv) . This follows because true
and, therefore, is a special case of iii).
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v) . Since , we have that
for all . By the inductive assumption,

for all . Thus, .
vi) . Since , we have that

. By the inductive assumption, . Thus,
.

It follows from Proposition 3 that given , if for
all , then for all . Thus, if
satisfies the ACTL specification, we can conclude that also
satisfies the ACTL specification. However, the converse is not
true unless is a bisimulation of .

Fig. 4 shows thequotient transition system procedure (QTSP)
based on the approach in Fig. 3(b). The procedure is basically a
modified version of BP with the verification step moved inside
each iteration of BP. The relocation of the verification step is not
the only change made to BP, however, as three other aspects of
BP are also relaxed in QTSP.

First, as noted in Section II-B, the termination condition (1)
serves to guarantee that the QTS is a bisimulation of the under-
lying transition system. In practice, it might not be convenient to
test (1), for example, if the exact pre-condition sets are not com-
putable. Thus, one may consider replacing (1) with some weaker
condition that also implies the QTS is a bisimulation but only
relies on the approximation of the pre-condition and the post-
condition sets. (An example of such condition is given in Sec-
tion IV.) The generic condition which guarantees a bisimulation
is referred to in QTSP as thebisimulation_termination_condi-
tion.

Second, we observe that any refinement method, referred to
in QTSP generically as therefinement_method, can be used to
refine the QTS. Different refinement methods may result in dif-
ferent rates of convergence to a bisimulation (if a bisimulation
exists). The refinement method used in BP has the desirable
property that it produces a QTS that is strictly better than the pre-
vious QTS. This result is stated and proved formally as Lemma
3 at the end of this section. It may be difficult or even impos-
sible, however, to implement the BP refinement method as one
has to represent and manipulate arbitrary sets of infinite states.
Thus, it may be necessary to use a simpler alternative for re-
fining the QTS when the verification fails.

Third, since the complexity of the QTS computation depends
largely on the size of the system itself, one should also try to
limit the growth in the number of states resulting from the parti-
tion refinement in each iteration of the bisimulation procedure.
To slow down the state explosion resulting from the partition re-
finement, we refine only the states in the current QTS that are
relevant to the ACTL specification. Recall that in the process
of an ACTL verification, one obtains the set of initial states in
the current QTS that satisfy the ACTL specification. Since the
specification holds for all computation paths, the verification
result cannot be improved by refining these states and their de-
scendants. Thus, one should only refine the initial states that
do not satisfy the ACTL specification and their descendants.
In QTSP,TBR is the set of states “to be refined” in each iter-
ation. It consists of the setREFINE, the states that should be
refined from the bisimulation requirement, and the setreach

Fig. 4. Verification procedure using QTSs.

, the states that should be refined from
the ACTL specification requirement.

The following lemma demonstrates that the refinement pro-
cedure in BP always generates a QTS that is strictly less con-
servative than the previous QTS. This lemma uses notation for
a relation similar to the relation . In particular, given par-
titions and where is a refinement of , we define

.
Lemma 3: Suppose is a partition of and there exist

such that . If
where and

, then .
Proof: Since is a refinement of , we have that

. Thus, we only need to show that
is not a simulation relation of by .

Consider the pair as defined in the lemma. The assump-
tions imply that and . We
make two observations. First, since , we have

. Second, since is not refined, there is no
other than such that . These two obser-

vations imply is no such that and
.

IV. A PPROXIMATE QTSPs

The major obstacle toward applying the quotient transition
system procedure (QTSP) or the bisimulation procedure (BP)
to the transition system representing any real dynamic system is
the lack of effective methods for computing and representing the
pre- and post-condition sets. This section concerns the problems
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that arise when these sets can only be approximated. We will
refer to any method used to compute and represent pre- and
post-condition sets for a transition system as areachability ap-
proximation method, and denote the pre- and post-condition sets
for a set of states computed using method by
and , respectively.

Definition 10: A reachability approximation method for
a labeled transition system is called
conservativeif for all , and

.
The development of effective reachability approximation

methods has been a major issue in recent hybrid systems
research [17]–[21]. Without exact pre- and post-condition sets,
one can only approximate the for a partition . The
approximate pre- and post-condition sets or their combinations
can be used to define a variety of theapproximate quotient
transition systems (AQTSs). We give two examples of the
AQTSs in the following definitions.

Definition 11: For a reachability approximation method
for a labeled transition system , the

post- approximate quotient transition systemfor given a
consistent partition of is defined as

where and are defined as in Definition 8 and
is defined as follows: for all , iff

.
Definition 12: For a reachability approximation method
for a labeled transition system , the

pre- approximate quotient transition systemfor given a
consistent partition of is defined as

where and are defined as in Definition 8 and
is defined as follows: for all , iff

.
The following lemma is easily proved.
Lemma 4: Given a conservative reachability approximation

method , and .
The above lemma follows from the fact that

and when is conservative and
that . Thus, when is conservative, we can use
either or to verify ACTL specifications as shown
in Proposition 3. In this paper, however, we only consider using
the post- AQTS.

Lemma 5: Given a conservative reachability approximation
method , if , then and

.
Proof: Since is not a bisimulation of with respect

to , condition (1) implies that there exists such
that . We show for this case that is
not a simulation relation of by . From

, we have that there exists such that ,
i.e., there is no such that . From

, we have that , which implies that

and, consequently, . Recalling
that , we have from the above
results that Condition (ii) of Definition 4 is violated that because

and but there is no such that
and . Similar argument follows for .

In words, the above lemma states that if a QTS is not a
bisimulation of , then neither is any conservative approxima-
tion of . This result makes intuitive sense because conser-
vativeness generally leads to reduced approximation accuracy.

Replacing the computation of the pre-condition sets, post-
condition sets, and QTS in BP by their corresponding approx-
imations in the method , the bisimulation condition (1) be-
comes

for all either

or (3)

Note that condition (3) does not imply that the post-
QTS is a bisimulation of relative to relation

even when is conservative. To see this, consider
the following counter example for finite-state transition
system. Let be a transition system with
and . Partition by

where and . Con-
sequently, .
Clearly, the partition violates condition (1) and, therefore,

. It then follows from Lemma 5 that
is not a bisimulation of independent of any conservative
approximation method .

If the approximation method possesses the property in the
following proposition, it is possible to obtain a sufficient condi-
tion for the post- QTS to be a bisimulation .

Proposition 4: Given a conservative reachability approxima-
tion method for a labeled transition system

, the condition

for all either

or

(4)

for the partition of implies .
Proof: Since for the conservative ap-

proximation method , it only remains to show that given con-
dition (4), . Conditions i), iii), and iv) of Defi-
nition 4, follow from the fact that is a partition of and that

consistent. We show that Condition ii) is satisfied as follows.
Suppose and . Thus, we have

that and . It then follows from
(4) that , which implies that

. Consequently, . Since
and is total, there exists such that . Thus, we
have the desired result that and .

Proposition 4 suggests that we may replace (1) with
(4) and use the AQTS in BP or QTSP. Since approxima-
tions are used, there may be cases where the procedure
with the exact QTS terminates but the procedure with
the approximate QTS does not. This can be seen from
the following example. Let be a transition system with
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Fig. 5. Example hybrid system.

and .
Let where and .
Since and

, condition (1)
is satisfied and therefore a procedure with exact QTS
terminates with . For AQTS, suppose the approxima-
tion method yields . We have

.
Therefore, condition (4) is not satisfied and the procedure with
AQTS does not terminate with (the procedure will always
terminate when every element in the state partition is a singleton
set for our finite-state example, of course). Despite the above
drawback, we can at least guarantee that the AQTS that
we have is indeed a bisimulation ofupon termination of the
procedure. Note that (4) simply states that each stateof the
AQTS has at most one successor state.

V. EXAMPLE

This section demonstrates the AQTS computations for the
verification of a simple hybrid system (ahybrid automaton)
shown in Fig. 5. General hybrid automata are defined in [1] (see
also [3]), and the particular class of hybrid automata from which
this example is taken, namely,polyhedral invariant hybrid sys-
tems, is defined in [22]. The definition of the hybrid automaton
for this example can be explained informally by referring to
Fig. 5. The possible values for the discrete state of the hybrid
automaton are represented by the circles labeled, ,
often referred to aslocationsin the hybrid systems literature.
The continuous state evolves according to the linear
dynamic state equations in each location, , .
A discrete-state transition occurs immediately when the con-
tinuous state satisfies the condition (called theguard) on the
outgoing arc from the current location. In this case the guards,
labeled , are defined by simple inequalities on the com-
ponents of the continuous state. The continuous state retains its
value when a discrete-state transition occurs. The initial contin-
uous state is assumed to be selected from the set and
the initial discrete state is .

We are interested in the behavior of the system as it is charac-
terized by the values of the discrete and continuous state when
discrete state transitions occur. Therefore, the state spacefor
the associated transition system in this example is defined as

, where is the set of con-
tinuous states on the boundaries of the guard sets and

Fig. 6. Initial partition.

are special states introduced to indicate that the system remains
in the respective location indefinitely. The transitions relation
for the transition system is defined by the mappings between
states in defined by the continuous trajectories that connect
the system states from one discrete-state transition to the next
discrete-state transition. The transition system defined by the
state space and transition relation described above is an example
of adiscrete-trace transition systemdefined formally in [22] for
polyhedral invariant hybrid systems.

The objective is to verify that the hybrid automaton even-
tually enters and remains in the location indefinitely from
any initial state. The ACTL expression for this specification is

where denotes the discrete state (the
location) of the hybrid system. We note that it is not possible to
apply procedure BP to this example because there are no compu-
tational tools available for computing or representing the exact
reachable sets required to construct QTSs for hybrid systems
with linear continuous dynamics. In other words, only reacha-
bility approximation methods are available for such systems.

The AQTSs are constructed from the partitions of the
switching surfaces, the 3-D cubes and .
The initial partition is shown in Fig. 6. The state transitions
in the initial AQTS are computed using the reachability ap-
proximations method called theflow pipe approximations[15],
[23]. A transition to one of the states is defined if the
flow pipe converges to the equilibrium without going
through any switching surfaces completely. This corresponds
to the situation where the flow pipe segment at a certain time
can be contained in a Lyapunov stability ellipsoid which lies
inside all the switching surfaces. It is clear that we can stop
the computation at this point since all future state trajectories
will remain inside the ellipsoid and will not trigger any future
discrete transition.

Fig. 6 shows the partial transitions in the initial AQTS. As
seen in Fig. 6, the initial AQTS violates the specification as it
contains cycles, indicating the possibility of not entering the lo-
cation . The AQTS is then refined by bisecting every polytope
in the partition that violates the specification by being a part of a
cycle. After 3 refinements, we have the partition shown in Fig. 7
and the AQTS satisfies the specification since the AQTS even-
tually reach the equilibrium state from any initial state. For
example, all paths from state 2 eventually ends inas shown
by the partial transitions in Fig. 7.
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Fig. 7. Partition after 3 refinements.

VI. DISCUSSION

This paper suggests the use of quotient transition systems as
an alternative to bisimulations for verification of infinite-state
transition systems. This approach has been applied successfully
to some case studies ofhybrid systems[13]–[15], which may
be view as infinite-state transition systems, where finite-state
bisimulations clearly do not exist. The paper also addresses the
issues that arise when exact reachability computation is not pos-
sible for the computation of the QTSs and discusses the im-
plication of the reachability approximations in the verification
process. We obtain a sufficient condition for an approximate
quotient transition system to be a bisimulation of the underlying
transition system. The interested reader is referred to [15], [23]
for more information on the computation techniques for reach-
ability approximation for hybrid systems and their recent exten-
sions.

The verification approach and the theoretical results pre-
sented in this paper serve as the foundation forCheckMate,
a MATLAB-based verification tool for hybrid systems [24].
Information onCheckMatecan be found at the web site [25].
Implementations of the complete verification algorithms and
examples are also available at this web site.
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