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Verification of Infinite-State Dynamic Systems Using
Approximate Quotient Transition Systems

Alongkrit Chutinan and Bruce H. Kroglrellow, IEEE

Abstract—This paper concerns computational methods for ver-
ifying properties of labeled infinite-state transition systems (e.g.,
hybrid systemsusing quotient transition system (QTSA QTS is a
conservative approximation to the infinite-state transition system
based on a finite partition of the infinite state space. For universal
specifications, positive verification for a QTS implies the specifi-
cation is true for the infinite-state transition system. Since in most
applications exact reachability mappings required to compute the
QTS cannot be represented or computed, we introduce thapprox-
imate quotient transition system (AQTSThe AQTS is an approx-
imation to the QTS obtained from a conservative approximation
to the reachability mapping. The paper presents a sufficient condi-
tion for an AQTS to be abisimulation of the infinite state transition
system. An AQTS bisimulation is essentially equivalent to the infi-
nite-state system for the purposes of verification. It is well known,
however, that finite-state bisimulations do not exist for most hybrid
systems of practical interest. Therefore, the use of the AQTS for
verification of universal specifications is proposed and illustrated
with an example. This approach has been implemented in a tool for
computer-aided verification of a general class of hybrid systems.

Index Terms—Bisimulation, hybrid systems, reachability, tem-
poral logic, verification.

. INTRODUCTION

Specifications are written using formalisms suchcamputa-
tion tree logic(CTL) [6], [8].

CTL uses the notion of theomputation tregwhich is the in-
finite tree obtained by unfolding the state transition graph along
all possible state-transition sequences starting from a designated
initial state. A CTL specification describes the system evolution
along paths in the computation tree and can be verified through
symbolic reachability analysis of the state transition graph. Ver-
ification of finite-state systems using this approach has enjoyed
considerable success [6].

The CTL formalism can be extended to infinite-state transi-
tion systems. Conceptually, the computation trees, which in gen-
eral contain an uncountable number of paths and an uncount-
able number of states along each path, can be obtained in the
same manner and the same reachability analysis can be applied
to verify a CTL formula. The cardinality of the state spaces of
such transition systems makes direct reachability analysis im-
possible, however. A standard approach to verifying proper-
ties of an infinite-state transition system is to findbigimula-
tion, which is a finite-state transition system that is equivalent
to the original transition system with respect to the verification
problem. To find a bisimulation, a so-callgdotient transition

ANY complex dynamic systems can be described &gstem (QTS} constructed from a partition of the state space of
transition systemsvhere the system dynamics are interthe original transition system. The QTS is then checked to see
preted as &ransition relationon the state space. This approacifit is a bisimulation of the original transition system. If not, the

has been used, for example, to analjgbrid system§l]—{[3].

state space patrtition is refined, a new QTS is constructed, and

This paper concerns formal verification of the infinite-state tramhe procedure is repeated until a bisimulation is found [9].

sition system resulting from such an interpretationseman-

This paper addresses two principal difficulties with the

tics, for a dynamic system. The general verification problem cajisimulation approach to verification of hybrid dynamic

be stated as follows: Given a desired property, callgpeifica- systems. First, finite-state bisimulations exist for only very
tion, we would like to guarantee that all of the system behaViOﬁﬁ]ited classes of hybnd systems [9]_[]_2] Consequenﬂy, one
satisfy the specification. This is a very important problem in théannot guarantee the procedure for computing a bisimulation
validation of the system design, especially for safety-critical agill terminate for most hybrid systems of practical interest.
plications [4], [S]. We avoid this problem by performing the verification on the
Previous work on formal verification dealt mainly with fi- QTS in each iteration of the bisimulation procedure, rather
nite-state systems [6]-[8]. The system under considerationtfign waiting for the bisimulation procedure to terminate.
typically described as a finite graph with nodes representing tiertain specifications can be verified on a QTS, which is
system states and arcs representing possible state transitigngonservative approximation of the infinite-state transition
system. By “conservative approximation” we mean that in
addition to representing all valid transition sequences for the
Manuscript received October 20, 1999; revised October 6, 2000, NovemlglarriginaI infinite-state transition system, the QTS may admit
24, 2000, and February 6, 2001. Recommended by Associate Editor K. Ru@@me additional transition sequences that are not valid for the
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are cases where verification can be accomplished with tlead thepost-conditionof P, denotedPost(P), is defined as

approach even when a finite-state bisimulation does not exidtst(P) = {¢ € @ | Ip € P,p — q}.

[13]-[15]. Given two labeled transitions systeri#s andZ; with the
Second, any procedure for computing a bisimulation requiregsme set of labeld], is said tosimulateZ; if for every path

the computation ofeachable sete/hich are used to define tran-of 11, there is a corresponding path4a. This concept of sim-

sitions for the QTS. This may not be possible to implement kiation is formalized in the following definition.

a computer since finite representations may not exist for arbi-Definition 4 [16]: Let7} = (Q1, —1,Qo1, £, L1) andly =

trary uncountable sets of states. One may consider using &gz, —2, Qo2, £, L2) be labeled transition systems.skmula-

proximations to the reachable sets in the QTS computatiotin relationof 7 by 7> is a binary relation) C Q1 x Q> such

Introducing reachability approximations leadsapproximate that:

guotient transition systems (AQTS8)e discuss the implication i) for every 1 € @i, there existsz, € Q. such that

of using AQTSs in the bisimulation procedure as wellasinour (g, ) € %;

verification procedure. i) if (q1,92) € ¥ andgs —1 ¢}, then there existg), such
This paper is organized as follows. Section Il introduces the thatg: —2 g5 and(q¢},db) € v;

concepts of transition systems, quotient transition systems, andii) if (¢;,g2) € 1, theng; € Qo1 <= @2 € Qo;

bisimulation. Section Ill discusses the verification of transition iv) if (q1,q2) € ¥, thenL;(q1) = La(g2).

systems against a CTL specification using bisimulation andy, sayT, simulatesT; by v, denotedl; <., Ty, if ¢ is a
’ — 1

compares the method to our approach which uses QTS8nyjation relation off; by T». T is also called aj-simula-
Section IV discusses the issues that arise when reachabifiy, of 7, . Although Condition iii) may be viewed as a special
approximation is incorporated into the quotient system Velinge of labeling where some states are labeled as “initial states,”
fication procedure. The use of the AQTS for verification Ofye choose to keep a separate definition for the initial states to
hybrid systems is illustrated with an example in Section ¥mphasize the fact that a run of the transition system must orig-
The concluding section summarizes the contributions of thig;te from one of these states. Given a relatios {(q1, 2) |
paper and points to a realization of the proposed approach{o 4,y € Q; x Q,}, we writey = = {(q2, 1) | (g1, q2) € 9}
verification for a class of hybrid systems in a MATLAB-baseg, genote the inverse relation of
tool calledCheckMate Definition 5: Let 7, = (Q1,—1,Qo1, L, Ly) and Ty =
(Q2,—2,Qo02, L, L) be labeled transition systems. Asim-
ulation relation between?; and?5; is a binary relation) C
[l. PRELIMINARIES Q1 x Q2 such thatly =, T> andTy =1 T1.
We say the transition systerii§ and?5; bisimulate each other
This section introduces labeled transition systems and suby-), denotedy =,, 13, if % is a bisimulation relation between
marizes the theory of bisimulation using quotient transition sy$; and75.
tems for verification of labeled transition systems. The material Example: The definitions above are illustrated by the three
in this section is adapted from [9], [16]. In our developmentabeled transition systems in Fig. T, 11, and1%, with labels
eventlabels are dropped from the transition system definitioifom £ = {A, B} assigned to each state. States/oare as-
and the simulation relation definition is extended from a singkpciated with states @, and75 through relationgs; and/.,
marking to a more general labeling function. respectively, as indicated in the figure. It can be verified that
T =y, 11: the two transitions fromy, (the only state asso-
ciated with /) are to states associated with, and for each
state in@} associated withP; there is a transition to either an-
Definition 1: A labeled transition syste is a tupleZ’ = other state associated wifj (corresponding to the transition
(Q,—,Qo, L, L) whereQ is the sestates —C @ x Q isthe P, — P, in1}) or atransition tay (corresponding to the tran-
set oftransitions Qo C @ is the set ofinitial states £ is a sition Py — Fp in 11). The relatiory); is not a bisimulation re-
countable set dhbels andL : @ — £ is thelabeling function lation, however, because transition systérdoes not simulate
Giveng and¢’ € @, the notationg — ¢ indicates that 7} under the relation);*. This is demonstrated by the pair of
(¢,¢) €—. We assume that the transition relatienis total, states(Pi, ¢4) € ;' although there is a transitiaf, — P,
that is, for every state € Q there exists a stai¢ € @ such in 11, there is no transition from, to gy in Z". On the other
thatg — ¢’. This assumption allows us to consider only the irhand,T” =,,, 1%, since it can be shown easily that=<,,, 7%
finite paths in the labeled transition system. The notatighs and7> =<1 7.
andQ* denote the sets of strings of elementsjiithat are finite  The folléwing definition will be used in the discussion of
(but arbitrary) length and infinite length, respectively. computational procedures for generating finite-state simulations
Definition 2: Given a labeled transition systeéfh= (2, — of a given infinite-state transition system.
,Qo, L, L), a sequence of states= qoq; --- € Q* U Q¥ is Definition 6: If 71 =, 1>, the relationy is said to be atrict
called apathof 7" if ¢; — ¢, forall > 0. A pathn is called simulation relationof 77 by 7%, denotedl; <., 1%, if ¢ is not
arunof T if gg € Q. a bisimulation relation betweeh, and7s.
Definition 3: Given a labeled transition systefh= (Q}, — For completeness we include the following two lemmas con-
,Qo, L,L), and a sef” C ), thepre-conditionof P, denoted cerning properties of simulations and bisimulations of transition
Pre(P), is defined asPre(P) = {¢ € @ | 3p € P,q — p}, Systems.

A. Labeled Transition Systems and Bisimulations
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(a) Labeled transition system T with states Q = {go,...,q4}. (b) Labeled transition system Ty with states @1 = {Po, P, }.
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(c) Labeled transition system T with states Q2 = {R1, Rz, R3}.
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Fig. 1. Transition systems (d), (b) Ty, (¢) T2. T =, Ty andT =, T3, where relationg),, ¢, are defined by the partitions ¢f indicated in (b) and (c),
respectively.

Lemma 1:Let 1} = (Q1,—1,Q01,L£,L;) and Definition 8 (Quotient Transition System) [9], [10]Given
T, = (Q2,—2,Q02,L, Ly) be labeled transition sys-a labeled transition systeffi = (Q, —, Q, £, L) and a con-
temsand) C @1 x Qq. If T1 <, To, thenforall(q, ¢’) € v, if  sistent partitioriP of @, the quotient transition systemf 7" is
T = qoq1 - - - IS @ path ofl} with ¢ = o, then there exists a pathdefined asl'/P = (P, —»,Qo/P, L, Lp), where

™ = qoqy - .. of Ty with ¢’ = g such tha(g;, ¢;) € ¢, Vi > 0. i) for all PP € P, P —p P iff there existg € P
Proof: Straightforward by induction on the length of the andq € P’ such thaty — ¢, or equivalentlyP —p
pathz. u P «— Post(P)NP #0 < PnPre(P)#0;
Lemma 2:Let T3 = (Q1,—1,Q01,£L,L1) and i) Qo/P={Pe€P|PCQo};
I, = (Q2,—2,Qo,£L, Lz) be labeled transition sys- i) forall P € P, Lp(P) = L(q) for someg € P.
tems and) C Q1 x Q2. If 11 =, T, thenforall(g,¢') € ¥, |nwords, the a partition state in the QTS can make a transition
the following conditions hold: to another partition state if one of its element state can make a

i) if 7 =qoq1...Iis apath off} with ¢ = ¢, there exists a transition to another element state in the destination partition
pathn’ = ¢{q} ... of T> with ¢ = ¢} such tha{q;,q}) € state.
¥, Vi > 0; It is easy to see th&l <, T/P, wherey = {(q, P) € @ x
i) if #° = gql...is a path ofly with ¢ = ¢, there P |q¢ € P}.Sincewe will refer to the relatiof{g, P) € @xP |
exists a pathr = goqy ... of 71 with ¢ = go such that ¢ € P} quite often, we denote it with a special notatién » =
(i, q)) € 9, Vi > 0. {(¢,P) € Q@ x P | q € P}. The following proposition gives a
Proof: Follows from Lemma 1. m hecessary and sufficient condition 6y to be a bisimulation
of 7" with the relationl’ ».
) . Proposition 1: Given a labeled transition systeéfn= (@, —
B. Quotient Transition Systems , Qo, L, L) and a consistent partitioR of Q, T =r, ,, T/P, if
An approach to finding a bisimulation of a labeled transitiognd only if the partitior/ satisfies
system uses QTSs. A QTS is constructed from a partition of
the state space of the underlying transition system. The partition

must be consistent with the labeling function and set of initial forall P, P’ € P, either N Pre(P') =0

states in the following sense. or PN Pre(P') =P. Q)
Definition 7: Given a labeled transition systefh= (@, —

,Qo, L, L), a partition? of @ is said to beconsistentf and Proof: This is a standard result regarding the construction

only if for all P € P and for allg,¢’ € P, L(q) = L(q') and of bisimulations of basic transition systems (see, e.g., [1@®).

g€ Qy < ¢ € Q. In words, (1) states that all states in ea€he P behave

In words, all states in the same set in the partition must haugiformly: given anothe’ € P, either all states or no state
the same labels, including the special “initial state” labels. in P can reach some state i{ in one transition. Condition (1)
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leads to the general procedure, BP, for computing a bisimulation Bisimulation Precedure (BP) [9],[10]:
of a transition system using QTSs shown in Fig. 2. set P=P .
Procedure BP uses the notion of partition refinement, defined v{;’hiclzeg'];tg,mé";t':u"cIf"tl‘;'tt'gn PO Pre(P) £ P {
below, to generate a sequence of QTSs that are increasingly o, pa’mtion refinement
less conservative approximations to the behavior of the original split P into P, = PN Pre(P') and Py = P\ Pre(P")
system. set P = (P\{PHU{P, P}
Definition 9: Given two partitionsP; , P, of @, P is said to }
be arefinemenbf P, if and only if for all P, € P5, there exists
P, € P, suchthat?, C P,. Fig. 2. Bisimulation procedure.
Note that the termination condition of BP in Fig. 2 is pre- ) _
cisely condition (1) of Proposition 1. In each iteration of BP, theividual values are either true or false to each state in the tran-
partition refinement scheme uses the information obtained frottion System. Thus, we consider a labeled transition system of

Pre(P') to split P into the part that can read® and the part the form7" = (@, —, Qo, 247, L) whereL : Q — 24 is the
that cannot. Also note that there(-) operation in BP is with labeling function which assigns to each stat&ia set of atomic

respect to the transition relation of 7, not the transition rela- propositions which are true for that state. In the CTL literature,
tion —p of the QTST/P. the labeled transition system is often callelrpke structure

Condition (1) involves only the precondition sets. Using thed]-

post-condition sets, the following proposition gives a sufficient BY Selecting a state in the labeled transition system as the
condition for7/P to be a bisimulation of” with the relation initial state and unfolding the state transition graph of the tran-
Top. sition system, we obtain an infinite tree, called@mputation

Proposition 2: Given a labeled transition systéfn= (, —  tre& with the selected initial state at the root [6]. A CTL formula
,Qo, £, L) and a consistent partitioR of Q, T =r,, , T/Pif SPecifies the system evolutions in terms of the atomic proposi-
the partition satisfies ' tions along some or all paths in the computation tree of the la-

beled transition system.
forall P, P’ € P, eitherPost(P) N P’ =0 In this paper, we consider a class of CTL formulae called
;o ACTL [7], which allows only universal assertions, i.e., the as-
or Post(P) N P =Post(F). (2) sertions that must hold fail paths in the computation tree. An
ACTL formula consists ofemporal operatorsind theuniversal
path quantifierA.. Temporal operators specify the system evo-
lution along a single path of the computation tree. There are
four basic temporal operatorX, F, G, andU. The operator
X (“next time”) asserts that a property holds in the next state
in the path. The operatd® (“in the future”) asserts that a prop-
u erty holds some future state along the path (including the cur-

Example: The transition systems in Fig. 1 illustrate the def'?ent state). The operat@ (“globally”) asserts that a property

nitions and propositions above regarding quotient transition S¥lds globally, i.e., at every state along the path. The opetator
tems. ldentifying the states of transition systefpgndT?, with é.h e o

b indi din the fi def .. (“until") involves two properties: the assertighU g requires
subsets of?, as indicated in the figure, defines two partition atg holds as some state in the path (including the current state)
of @, P = {Pw,Pc} andR = {Reo,Rc,R5}. Thus, 71 =

2 . ) and thatf holds at every state along the path prior to the oc-
T/P andl; =T}/ R Moreover, p.artlatlor‘R ISa ref|nement.of currence of. The universal path quantifiek specifies that the
P that can_pe obtal_ned by ap_p_lymg pr(_)cv_edure BHthtI_so, 't_ path assertion holds alord) paths in the computation tree. The
can be y_erlfled easily that pa_mtltldﬁ satisfies the conditions in syntax of an ACTL formulaf, in positive normal fornis given
Propositions 1 and 2, implying =r,, ,, T/R.

- ) ) \ e by the grammar

Bisimulation relations are important for verification because
for labeled transition systems related by a bisimulation relatign— qp |~ap | fVFIfAf|AXf| AFf| AGf | AfUY.
all properties for the labeled behaviors are identical. Therefore,
verification results for the two systems will be identical. This i#hereap denotes an atomic proposition. We wrifeq |= f to
particularly significant for infinite-state transition systems begnean that the ACTL formulg holds at state in 7". 7" is usually
cause, if a finite-state bisimulation exists, procedure BP wiiropped from this notation when the labeled transition system
terminate with a finite-state transition system that can be usédclear from the context.
to verify properties of the infinite-state transition system using An ACTL formula for a labeled transition system corresponds

Proof: Since
i) Post(PYNP' =0 = Pn Pre(P') =0
i) Post(P)N P = Post(P) = Post(P) C P'= P C
Pre(P')y = Pn Pre(P") = P, the proposition follows
from Proposition 1.

standard model checking tools. to a region (a set of states) in the state space of the transition
system for which the ACTL formula holds. It has been shown
IIl. V ERIFICATION OF L ABELED TRANSITION SYSTEMS that the region corresponding to an ACTL formula can be com-
, . puted using fixed-pointiterations in [6]. For a finite-state labeled

A. Computation Tree Logic transition system, these fixed-point computations are guaran-

CTL is a well established specification formalism for finiteteed to terminate. The labeled transition system satisfies the
state transition systems [5], [6]. The specification is formulate®CTL specification if all initial states are included in the re-
by attaching a finite set cditomic propositionsd P whose in- gion corresponding to the ACTL specification.
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ACTL formulas can be used to specify properties of the
system such as

» AG safe. The system is safe at all time;

* AG (AF reset). The system is reset infinitely often;

* AF (AG safe). The system will eventually reach a safe
region and stay in the region forever;

Using the CTL framework, theerification problemcan be
stated as follows. Given a labeled transition sys#eem (@, —
, Qo, L, L) and a CTL specificatiorf, determine whether or not

T,q = fforall ¢ € Qo.

B. Verification Using QTSs

In the bisimulation approach to transition system verification,
the procedure BP in Fig. 2 is applied to find a partition of the
state space that will give a finite-state bisimulation of the un-
derlying infinite-state transition system. In each iteration of BP,
a QTS is constructed from the current partition. BP tests if the
QTS is a bisimulation of the underlying transition system. If so,
BP stops, otherwise the partition is refined and BP repeats until
a bisimulation is found. The approach requires that a bisimula-
tion be found before the verification step can be performed. This
is illustrated in Fig. 3(a).

Since QTSs are, in general, simulations of the underlying
transition system, one could attempt to perform verification on
the QTS in any iteration of BP rather than waiting for BP to
terminate. If the property is verified, there would be no need
to refine the QTS further. If not, another refinement iteration
can be executed and verification can be attempted on the new
QTS. Continuing this process, it is sometimes possible to con-
clude whether or not the underlying transition system satisfies
the desired property before a bisimulation is achieved or even if
a bisimulation does not exist [13]-[15]. Fig. 3(b) depicts this al-
ternative verification approach using QTSs. The restriction here
is that since QTSs are conservative approximations of the un-
derlying transition system, onlyniversalproperties can be ver-
ified. In the context of CTL, a universal property is a property

1405

construct
initial partition

y

BP
iterations

finite bisimulation

verification

stop: stop:
specification specification
is false is true

(a) bisimulation approach

construct
initial partition

finite quotient
system

refine
partition

yes
verification

test for
bisimulatio:

stop: stop:
specification specification
is false is true

(b) simulation approach

that can be specified as an ACTL formula. This is formalized #rig. 3. Verification approaches using quotient transition systems that are (a)

the following proposition.

Proposition 3: Let 77 = (Q,—1,Qo1,2*",L1) and
Ty = (Q2,—2,Q02,24" L) be labeled transition systems
and f be an ACTL formula. If77 =, 15, then for all
((Lq/) € wv(T%q/ ': f) = (Tlvq ': f)

Proof: We prove this by induction on the length of the
ACTL formula f.

Basis StepACTL formulas of the shortest length aug
and-ap whereap € AP. Since(q,q’) € v, we have that
Li(q) = L2(¢") by Condition iv) of Definition 4. Thus,
T5,¢ E ap <= T1,q |= ap and the proposition holds
for bothap and—ap.

Induction StepSuppose the proposition holds for all sub-
formulaeg and’, we show that the proposition also holds
for the formulaf produced by any production rules in the
ACTL grammar.

i) f=gVh. Supposethdl:,q | f. ThenTs, ¢ |E
g or Ty, ¢' |= h. By the inductive assumption, we

ii)

iv)

bisimulations and (b) simulations of the original system.

have thatl},q = ¢ or 71,q = h. Consequently,
Tla q ': f

f = g A h. This follows by a similar argument to
Case ).

For the rest of the production rules ffysuppose
that7, ¢ = f. For any pathyyqg; . . . of T3 starting
with g0 = ¢, there exists a pathq] ... in T»
starting withg, = ¢’ such thai(g;,¢}) € v, Vi > 0
by Lemma 1.

f = AgUh. Sincels, ¢, = f,there exists & > 0
such thatly, ¢;, |= h andTs,q; = gforall 0 <

j < k. By the inductive assumption, we have that
Ti,qx = handTi,g; =gforall0 < j < k. Thus,
Ti,9 F f.

f = AFyg. This follows becaus¢ = A true Ug
and, therefore, is a special case of iii).
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V) f = AGyg.Sincels, q) = f,wehavethaly, g, =  Quotient Transition System Procedure (QTSP):
g for all & > 0. By the inductive assumption, Mitialize N =0 and Py =P,

repeat for the partition Py
Ty,qc E gforallk > 0. Thus, I, qo = f. compute T'/Py (or approximate, see Section 1V)

vi) f = AXy. Sincels, ¢} = f,wehavethdls, ¢| = compute SPEC = {P € Py | P satisfies ACTL spec for T/Py}
g. By the inductive assumptiofl;, ¢; | g. Thus, if Qo/Pn~ C SPEC
Ty, E f. stop = 1 % specification is satisfied
else
™ compute REFINE = {Pe Pn I'EIP’ € Py such that (P, P')

It follows from Proposition 3 that givet’/P, if P |= f for " R‘g’?};‘c} Ebwzlzulatw"'termmatw"'c‘md’tw"}
all P € Qo/P, thenT’,q |= f forall ¢ € Qo. Thus, ifT/P stop =1 % bisimulation obtained and specification is false
satisfies the ACTL specificatiofi, we can conclude th&t also else
satisfies the ACTL specification. However, the converse is n compute
true unlesg’/P is a bisimulation off". " ngli: reach((Pn \ SPEC) N Qo/PN) N REFINE

Fig. 4 shows thguotient transition system procedure (QTSF stop = 1 % no state worth refining and spec is false
based on the approach in Fig. 3(b). The procedure is basicall else " e N
modified version of BP with the verification step moved insid: ;)tzp ==07f’ refine partition
each iteration of BP. The relocation of the verification step is n for vach p’\é TBR
the only change made to BP, however, as three other aspect split P using refinement_method into Py, P,
BP are also relaxed in QTSP. suchthat BLUP,=Pand PNP, =0

First, as noted in Section 1I-B, the termination condition (1 endfiert Prii = (Pua \{PHU{P1, P2}
serves to guarantee that the QTS is a bisimulation of the und N=N+1
lying transition system. In practice, it might not be convenient1 endif
test (1), for example, if the exact pre-condition sets are not co endif

. . . endif
putable. Thus, one may consider replacing (1) with some weal .o (stop == 1)

condition that also implies the QTS is a bisimulation but only
relies on the approximation of the pre-condition and the posy. 4. verification procedure using QTSs.
condition sets. (An example of such condition is given in Sec-

tion IV.) The generic condition which guarantees a bisimulation .
is referred to in QTSP as tHesimulation_termination_condi- (P\SPEC)NQo/Pn), the states that should be refined from
tion. B - the ACTL specification requirement.

Second, we observe that any refinement method, referred tc-)rhe following lemma demonsrates that the refinement pro-

in QTSP generically as thefinement_methodan be used to cedure in BP always generates a QTS that is strictly less con-

refine the QTS. Different refinement methods may resultin gipervative than the previous QTS. This lemma uses notation for

ferent rates of convergence to a bisimulation (if a bisimulatio"jf‘l_re"'jltlon similar to the relatiofi . In particular, given par-

exists). The refinement method used in BP has the desira}%’ns P, andP, where; is a refinement o, we define
property that it produces a QTS that is strictly better than the p e7—’|i77’1 N {éPQS’ P1) € Py x P1 | heh ]% dth .
vious QTS. This result is stated and proved formally as Lemma "' a - UpposePy is a par'€|t|on/ of@ and there e)ﬂSt
3 at the end of this section. It may be difficult or even impo PP’ € Py such thal) # PN Pre(P) # P',lf Pri1 =
sible, however, to implement the BP refinement method as one” P UAR, o) where Py = P Pre(P) and Py =

g / =N - N
has to represent and manipulate arbitrary sets of infinite stat d! Pre(P ),'thenT/ ?A.+1 “Cpy Py T/Px.
Proof: SincePy4, is a refinement ofPy, we have that

Thus, it may be necessary to use a simpler alternative for 5(3/7) 2 T/Px. Thus, we only need to show that
+1 20wy ey N ,

fining the QTS when the verification fails. " . ) ' ,
Third, since the complexity of the QTS computation depentlgwﬂ,m is not a simulation relation of /Py by T/Pn+1.

largely on the size of the system itself, one should also try onqderthe paifP, 1) as de_fllned inthe lemma. The ;alssump—
limit the growth in the number of states resulting from the partfonS IMPIY that(P, 11) € I'p | p, andPl—>7>N P We
tion refinement in each iteration of the bisimulation procedurd'2Ke two observations. First, sineen Pre(P') = 0, we have
To slow down the state explosion resulting from the partition ré1 7 I Se/.\cond, smcé’/ Is not reﬂr;ed, thereisnf € Pyt
finement, we refine only the states in the current QTS that ag@erthanP such thAa(P P)e FPN+1:PN' These twvobser-
relevant to the ACTL specification. Recall that in the proces&tions imply is noP € Py4; such thathy —»,., P and

of an ACTL verification, one obtains the set of initial states ifP’, ) € Iz 5. =
the current QTS that satisfy the ACTL specification. Since the
specification holds for all computation paths, the verification

result cannot be improved by refining these states and their de-
scendants. Thus, one should only refine the initial states thafThe major obstacle toward applying the quotient transition
do not satisfy the ACTL specification and their descendantsystem procedure (QTSP) or the bisimulation procedure (BP)
In QTSP,TBRis the set of states “to be refined” in each iterto the transition system representing any real dynamic system is
ation. It consists of the s®EFINE, the states that should bethe lack of effective methods for computing and representing the
refined from the bisimulation requirement, and the imstich pre- and post-condition sets. This section concerns the problems

IV. APPROXIMATE QTSPs
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that arise when these sets can only be approximated. We vilbst™ (P) N P/ ;é ¢ and, consequently? —2 P’. Recalling

refer to any method/ used to compute and represent pre- antiat (P, q) € L'y <= ¢ € P, we have from the above

post-condition sets for a transition system asachability ap- results that Condmon (ii) of Definition 4 is violated that because

proximation methodand denote the pre- and post-condition setd, ¢) € T', 17> andP —& P’ butthereis n@’ suchthay — ¢

for a set of state$> computed using methad/ by Pre™ (P)  and(P’, q) ey S|m|lar argument follows fot 7/P. =

and Post™ (P), respectively. In words, the above lemma states that if a QIT/& is not a
Definition 10: A reachability approximation methat for bisimulation ofZ’, then neither is any conservative approxima-

a labeled transition systefli = (Q,—,Qo,£, L) is called tion of 7/P. This result makes intuitive sense because conser-

conservativeif for all P C Q, Pre(P) C Pre™(P) and vativeness generally leads to reduced approximation accuracy.

Post(P) C Post™(P). Replacing the computation of the pre-condition sets, post-
The development of effective reachability approximatiogondition sets, and QTS in BP by their corresponding approx-

methods has been a major issue in recent hybrid systeimgtions in the method/, the bisimulation condition (1) be-

research [17]-[21]. Without exact pre- and post-condition setsmes

one can only approximate tH&/P for a partition P. The

approximate pre- and post-condition sets or their combinations ~ forall P, P’ € P, eitherP n Pre™ (P') ={)

can be used to define a variety of thpproximate quotient orPn PreM (P") =P. ()
transition systems (AQTSsYVe give two examples of the
AQTSs in the following definitions. Note that condition (3) does not imply that the padst-

Definition 11: For a reachability approximation methodQTS T /P is a bisimulation of I' relative to relation
M for a labeled transition systeffi = (Q,—,Qo, L, L), the I'gpr even whenM is conservative. To see this, consider
postM approximate quotient transition systefor 7" given a the following counter example for finite-state transition

consistent partitiorP of @ is defined as system. Let7 be a transition system witliy = {a,b,c}
" and —=  {(a,¢),(b,a),(b,b),(c,¢)}. Partition @ by

 _ <7; M Qo r LP> P = {P, P} where, = {q,b} and P, = {c}. Con-

P TP sequentlyf) £ P, N Pre(Ps) = {a,b} N{a,c} = {a} # Pi.

i . . Clearly, the partition” violates condition (1) and, therefore,
whereQo/P and Lp are defined as in Definition 8 aneb}/ T <r,, T/P. It then follows from Lemma 5 thaf™ /P
1S de]gned as follows: for allP P e P, P =3 P iff g not'a bisimulation off’ independent of any conservative
PostM(P)n P # 0. approximation method/.

Definition 12: For a reachability approximation method ¢ o approximation method/ possesses the property in the
M for a labeled transition systeffi = (@, —,Qo, £, L), the  {q)10wing proposition, it is possible to obtain a sufficient condi-
pre-M approximate quotient transition systefor 7' given & i, for the postd/ QTS to be a bisimulatioff.
consistent partitiofP of ¢ is defined as Proposition 4: Given a conservative reachability approxima-

M v Qo tion methodA/ for a _Iabeled transition systefli = (@, —
- = <77 L LP) ,Qo, L, L), the condition

P’P

/ H M /
whereQo/P and Lp are defined as in Definition 8 anes}/ forall P, P € P, eitherPost™ (P) N P =0
is defined as follows: for all’, P’ € P, P =¥ P'iff Pn or Post™ (P) N P' =Post™(P)
PreM(Py #£ 0. (4)
The following lemma is easily proved.
Lemma 4: Given a conservative reachability approximatiofior the partition® of @ implies? =r., ,, T /P.
methodM, T’ =r,, ,, T" /P andT =r,, V'T/P. Proof: SinceT’ =r,, T™ /P for the conservative ap-
The above lemma follows from the fact th&y? =r., proximation method/, it only remains to show that given con-
TM/P andT/P =rpp MT/P when M is conservative and dition (4), TM/’P -<r_1 T. Conditions i), iii), and iv) of Defi-
that? <r, , T'/P. Thus, when/ is conservative, we can usenition 4, follow from the fact thaf” is a partition of@ and that
e|therTM/77 or M1 /P to verify ACTL specifications as shown P consistent. We show that Condition ii) is satisfied as follows.
in Proposition 3. In this paper, however, we only consider using Suppose(P,q) € I';t op and P =¥ P'. Thus, we have
the postd/ AQTS. thatg € P and PostM(P) N P # 0. It then follows from
Lemma 5: Given a conservative reachability approximatioigd) that Post (P) N P = Post (P), which implies that
method M, if T <r,, T/P,thenT <r,, T"/P and Post™(P) C P'. ConsequentlyPost(P) C P’ Sinceq er
T <rg., MT/P. and— is total, there existg’ € P’ such thaty — ¢'. Thus, we
Proof: Sincel’/P is not a bisimulation of" with respect have the desired result that— ¢’ and(F’, ¢') € 1“‘ [
toI'g », condition (1) implies that there exist3 P’ € P such Proposition 4 suggests that we may replace (1) with
that® # Pre(P’)N P # P. We show for this case thﬂgfp is (4) and use the AQTS in BP or QTSP. Since approxima-
not a simulation relation d* /P by 7. FromPre(P')NP # tions are used, there may be cases where the procedure
P, we have that there exists € P such thaty ¢ Pre(P’), with the exact QTS terminates but the procedure with
i.e., thereis ng// € P’ such thaty — ¢. FromPre(P’) N the approximate QTS does not. This can be seen from
P £ 0, we have thatPost(P) N P* # @, which implies that the following example. LetlI’ be a transition system with
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A=} -1 0 0 [,A=[05 -1 0 T
-1 1 0 -1 1 0 "

Fig. 5. Example hybrid system.
Fig. 6. Initial partition.

Q = {avbvc} and —= {(a,b),(a,c),(b,a),(b,c),(c,c)}.
Let » = {P,P} whereP, = {a,b} and P, = {c}.
Since P, N Pre(P) = {a,b} N {a,b,e} = P, and
P, N Pre(Py) = {c} N {a,b} = 0, condition (1)

are special states introduced to indicate that the system remains
in the respective location indefinitely. The transitions relation

: - X r the transition system is defined by the mappings between
IS sgusﬁed ::_md therefore a procedure  with exact_ Q-If ates in) defined }éy the continuous i/rajectorieplsoth%t connect
terminates W'th . For JQQTS’ suppose the approximay, o system states from one discrete-state transition to the next
tion method yields Post™ (1) = {a,b.c}. We have o rota state transition. The transition system defined by the
W # Post™(P1) NIy = {a,b, c} N {c} = {c} # Post™ (I1).  gar0 space and transition relation described above is an example
Therefore, condition (4) is not satisfied and the procedure Wlﬁ?

. : ! adiscrete-trace transition systetiefined formally in [22] for
AQTS does not terminate wit® (the procedure will always olyhedral invariant hybrid systems.

terminate when every element in the state partition isasinglet}%n].he objective is to verify that the hybrid automaton even-

Zet fctJ)r Ollir flnlte-sta:el exettmple, Otf cotlrjlrstet)ﬁ D:smte;k;ﬁ ?botY%IIy enters and remains in the locatian indefinitely from
rawback, we can at least guarantee that the AQTS a any initial state. The ACTL expression for this specification is

we have is indeed a bisimylation ®fupon termination of the AF(AG (u == us)) whereu denotes the discrete state (the
procedu]r\?. Note that (4) simply states that each sftaté the location) of the hybrid system. We note that it is not possible to
AQTST™ /P has at most one successor state. apply procedure BP to this example because there are no compu-
tational tools available for computing or representing the exact
reachable sets required to construct QTSs for hybrid systems
This section demonstrates the AQTS computations for theéth linear continuous dynamics. In other words, only reacha-
verification of a simple hybrid system (aybrid automatoh bility approximation methods are available for such systems.
shown in Fig. 5. General hybrid automata are defined in [1] (seeThe AQTSs are constructed from the partitions of the
also [3]), and the particular class of hybrid automata from whigdwitching surfaces, the 3-D cubgs||.. = 7 and||z||.. = 10.
this example is taken, namelyplyhedral invariant hybrid sys- The initial partition is shown in Fig. 6. The state transitions
tems is defined in [22]. The definition of the hybrid automatorin the initial AQTS are computed using the reachability ap-
for this example can be explained informally by referring tproximations method called thilw pipe approximationgl5],
Fig. 5. The possible values for the discrete state of the hybf2B]. A transition to one of the stat@@Ll,quL2 is defined if the
automaton are represented by the circles labeled = 1,2, flow pipe converges to the equilibrium = 0 without going
often referred to afocationsin the hybrid systems literature.through any switching surfaces completely. This corresponds
The continuous state € R? evolves according to the linearto the situation where the flow pipe segment at a certain time
dynamic state equations in each location= A;x, ¢ = 1,2. can be contained in a Lyapunov stability ellipsoid which lies
A discrete-state transition occurs immediately when the coimside all the switching surfaces. It is clear that we can stop
tinuous state satisfies the condition (called theard on the the computation at this point since all future state trajectories
outgoing arc from the current location. In this case the guardgill remain inside the ellipsoid and will not trigger any future
labeledr,, v, are defined by simple inequalities on the comdiscrete transition.
ponents of the continuous state. The continuous state retains itgig. 6 shows the partial transitions in the initial AQTS. As
value when a discrete-state transition occurs. The initial contiseen in Fig. 6, the initial AQTS violates the specification as it
uous state is assumed to be selected from th&gef 2 and contains cycles, indicating the possibility of not entering the lo-
the initial discrete state ig; . cationus. The AQTS is then refined by bisecting every polytope
We are interested in the behavior of the system as it is charatthe partition that violates the specification by being a part of a
terized by the values of the discrete and continuous state whusale. After 3 refinements, we have the partition shown in Fig. 7
discrete state transitions occur. Therefore, the state <pdoe and the AQTS satisfies the specification since the AQTS even-
the associated transition system in this example is definedtaally reach the equilibrium statg from any initial state. For
Q=X,UXepuy U {q,j1 , un‘Z T, whereX ., is the set of con- example, all paths from state 2 eventually endg,iras shown
tinuous states on the boundaries of the guard set@ﬁnqu by the partial transitions in Fig. 7.

V. EXAMPLE
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(8]

(9]

[10]

[11]

(12]

(13]

Fig. 7. Partition after 3 refinements.

VI. DISCUSSION [14]

This paper suggests the use of quotient transition systems as
an alternative to bisimulations for verification of infinite-state *°
transition systems. This approach has been applied successfufly)
to some case studies bf/brid system$13]-[15], which may
be view as infinite-state transition systems, where finite-state
bisimulations clearly do not exist. The paper also addresses the
issues that arise when exact reachability computation is not pog-7]
sible for the computation of the QTSs and discusses the im-
plication of the reachability approximations in the verification [1g]
process. We obtain a sufficient condition for an approximate
guotient transition system to be a bisimulation of the underlying
transition system. The interested reader is referred to [15], [23]
for more information on the computation techniques for reach-
ability approximation for hybrid systems and their recent exten!
sions.

The verification approach and the theoretical results pref0]
sented in this paper serve as the foundationGbeckMate
a MATLAB-based verification tool for hybrid systems [24].
Information onCheckMatecan be found at the web site [25]. [21]
Implementations of the complete verification algorithms and
examples are also available at this web site. [22]
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