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In model predictive control (MPC), also called receding
horizon control, the control input is obtained by solv-
ing a discrete-time optimal control problem over a
given horizon, producing an optimal open-loop con-
trol input sequence. The first control in that sequence
is applied. At the next sampling instant, a new optimal

control problem is formulated and solved based on the new
measurements. The theory of MPC is well developed; nearly
all aspects, such as stability, nonlinearity, and robustness,
have been discussed in the literature (see, e.g., [1]-[4]). MPC
is very popular in the process control industry because the
actual control objectives and operating constraints can be
represented explicitly in the optimization problem that is
solved at each control instant. Many successful MPC appli-
cations have been reported in the last two decades [2], [4].

Typically, MPC is implemented in a centralized fashion.
The complete system is modeled, and all the control inputs

are computed in one optimization problem. In large-scale
applications, such as power systems, water distribution
systems, traffic systems, manufacturing systems, and eco-
nomic systems, it is useful (sometimes necessary) to have
distributed or decentralized control schemes, where local
control inputs are computed using local measurements and
reduced-order models of the local dynamics [5], [6]. The
goal of the research described here is to realize the attrac-
tive features of MPC (meaningful objective functions and
constraints) in a decentralized implementation.

Previous work on distributed MPC is reported in [7]-[14].
In some applications, multiple low-level controllers are sim-
ply implemented using MPC, just as one might use propor-
tional-integral-derivative (PID) controllers to close local
feedback loops [13]. For water distribution systems,
full-scale centralized MPC computations have been decom-
posed for decentralized computation, using standard coordi-
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nation techniques (e.g., augmented Lagrangian) or estimation
and prediction schemes to obtain solutions at each control in-
stant [10]-[12], [14]. Decentralized team strategies for lin-
ear-quadratic problems were considered in [8] and [9]. This
method is suitable for linear time-invariant systems. If the opti-
mal control problem is a linear quadratic Gaussian (LQG)
problem, an analytical solution can be found. Some research-
ers [9] suggest using a neural network to approximate station-
ary controllers for nonlinear systems, but this approach is not
suitable for large systems.

In this article, we consider situations
where the distributed controllers, or agents,
can exchange information. The objective is
to achieve some degree of coordination
among agents that are solving MPC problems
with locally relevant variables, costs, and
constraints, but without solving a centralized
MPC problem. Such coordination schemes
are useful when the local optimization prob-
lems are much smaller than a centralized
problem, as in network control applications
where the number of local state and control variables for each
agent and the number of variables shared with other agents
are a small fraction of the total number of variables in the sys-
tem. These schemes are also useful in applications where a
centralized controller is not appropriate or feasible because,
although some degree of coordination is desired, the agents
cannot divulge all the information about their local models
and objectives. This is the case, for example, in the newly de-
regulated power markets in the United States.

In distributed control, the type of coordination that can be
realized is determined by the information structure; that is, the
connectivity and capacity of the interagent communication
network. Here we assume that the connectivity of the commu-
nication network is sufficient for the agents to obtain informa-
tion regarding all the variables that appear in their local
problems. Regarding the network capacity, we consider two
different situations. First, we consider situations where it is
possible for the agents to exchange information several times
while they are solving their local optimization problems at
each control instant. In this case, we are interested in identify-
ing conditions under which the agents can perform multiple it-
erations to find solutions to their local optimization problems
that are consistent in the sense that all shared variables con-
verge to the same values for all the agents. We also show that
when convergence is achieved using this type of coordination,
the solutions to the local problems collectively solve an equiv-
alent, global, multiobjective optimization problem. In other
words, the coordinated distributed computations solve an
equivalent centralized MPC problem. This means that proper-
ties that can be proved for the equivalent centralized MPC
problem (e.g., stability) are enjoyed by the solution obtained
using the coordinated distributed MPC implementation.

We then consider a situation where the capacity of the
communication network does not allow the agents to ex-

change information while they are solving their local opti-
mization problems. In particular, we consider the case
when the agents can exchange information only once after
each local MPC optimization problem is solved, while the
current, local control actions are being applied to the sys-
tem. Consequently, there is a one-step delay in the informa-
tion available from the other agents when an agent
formulates and solves its local MPC optimization problem
at each step. For this new situation, we focus on the funda-

mental issue of stability since sufficient conditions from
the literature for centralized MPC do not apply. For a class
of linear time-invariant systems, we develop an extension
of the stability-constraint method in [17] and [21] to the
distributed MPC problem with one-step communication
delays. We present sufficient conditions for guaranteeing
stability of the closed-loop system and illustrate the ap-
proach by an example of load-frequency control in a
two-area power system.

Model Predictive Control
In MPC, control decisions u k( ) are made at discrete time
instants k = 0 1 2, , ,..., which usually represent equally
spaced time intervals. At decision instant k, the control-
ler samples the state of the system x k( ) and then solves
an optimization problem of the following form to find the
control action:

min ( ( ), ( ))
( ), ( )X k U k

J X k U k

where

{ }X k x k k x k N k( ) ( | ),..., ( | )= + +1

{ }U k u k k u k N k( ) ( | ),..., ( | )= + −1

s.t.

x k i k F x k i k u k i k i N( | ) ( ( | ), ( | )) ( ,..., )+ + = + + = −1 0 1

G X k U k( ( ), ( )) ≤ 0

x k k x k( | ) ( )= .
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In the preceding formulation, the performance index repre-
sents the measure of the difference between the predicted be-
havior and the desired future behavior: the lower the value,
the better the performance. The variables x k i k( | )+ and
u k i k( | )+ are, respectively, the predicted state and the pre-
dicted control at time k i+ based on the information at time k.
Predictions are based on the system model x k F x( ) (+ =1
( ), ( ))k u k . The constraints represent physical limits in the sys-
tem and can also be other constraints to ensure the stability or
robustness of the system. The optimization produces an
open-loop optimal control sequence in which the first control
value is applied to the system; that is,u k u k k( ) ( | )= . Then, the
controller waits until the next control instant and repeats this
process to find the next control action.

Distributed Model
Predictive Control Problem
The standard MPC formulation in the previous section can
be summarized as a series of static optimization problems,
{ | , , ,...}SP kk = 0 1 2 , each of the form:

SP J S

G S

H S

k
S

: min ( )

( )

( ) ,

s.t. ≤
=

0

0

where S is the vector of the decision variables, including
state variables X and control variablesU , over the prediction
horizon. The equality constraint in the problem includes the
prediction model and other equality operation constraints.

Distributed MPC is a decomposition of SPk into a set of M
subproblems, { | , ,..., }SP i Mki =1 2 , and each subproblem is as-
signed to a different agent. The goals of the decomposition
are twofold: first, to ensure that each subproblem is much
smaller than the overall problem (that is, to ensure that SPki

has far fewer decision variables and constraints than SPk),
and second, to ensure that SPki is coupled to only a few other
subproblems (that is, SPki shares variables with only a few
other subproblems).

To be more specific, consider the ith subproblem and the
corresponding agent. From the ith agent’s point of view, the
goals of the decomposition are to partition the set of vari-
ables S into three subsets: S S S Si i i= ∪ ∪nei rem, where Si,
called local variables, is the set of decision variables allo-
cated to the ith agent; Si

nei, called neighbor variables, is the
set of decision variables allocated to agent i’s neighbors
(the agents with which agent i can cooperate—exchange
data); and Si

rem, called remote variables, is the set of all other
decision variables in the system. Problem SPki can then be
formulated as follows:

( )
( )
( )

SP J S S

G S S

H S S

ki S i i i
nei

i i i
nei

i i i
nei

i

: min ,

,

, ,

s.t. ≤

=

0

0

where Gi and Hi are components of G and H related to
agent i, and the performance index J i represents the inter-
ests of agent i.

We assume that the network of interactions between
the subsystems is sparse, which meansdim( ) dim( )S Si i+ nei

<< dim( )S , and require that some agent handles each deci-
sion variable and constraint, i.e., ∪ i iS S= , ∪ i iG G= ,
∪ i iH H= . Either the objective functions sum to a given
global objective function, ΣJ Ji = , or the global problem can
be thought of as a multiobjective optimization problem with
the vector objective function, [ ]J J JM

T= 1 ,..., . We believe
that it is possible to develop systematic procedures for per-
forming the above decomposition for many, if not all, com-
plex networks.

Cooperative Iteration
In this section we consider the case when the communication
network allows the agents to exchange information while
they solve their local optimization problems. In particular, we
consider a scheme in which each agent computes a solution
to its local problem assuming values for the variables of its
neighbors. The agent then broadcasts the values of its own
variables to its neighbors and resolves its optimization prob-
lem with the updated values for the shared variables. The ob-
jective of the coordination is to achieve convergence in the
values of the variables shared by multiple agents.

For i M=1,..., , let s s ski ki ki
0 1 2, , ,...be the resulting sequence of

the iterative search at time k for a solution to subproblem
SPki. Two important questions are:

• Under what conditions will these iterations converge
to a solution of SPki?

• Under what conditions will the solutions of
SP SP SPk k kM1 2, ,..., compose a solution of the overall
problem SPk?

The following theorem provides answers to these two
questions.

Theorem 1 [15]: If, for all i:
1) ΣJ Ji = when J is a scalar, or ΣJ W Ji

T= when J is a
multiobjective vector, where W is a vector of
nonnegative weights;

2) J i and Gi are convex;
3) Hi is linear;
4) The agents within each neighborhood work sequentially;
5) The equality constraints can be relaxed without emp-

tying the feasible region of SPk . In other words, there
exists a positive number δ such that

{ }sG s H s( ) , ( )< < ≠ ∅0 δ ;

6) J i is bounded from below in the feasible region;
7) The starting point is in the interior of the feasible region;
8) Each agent cooperates with its neighbors in that it

broadcasts its latest iteration to these neighbors;
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9) Each agent uses the same interior-point method (bar-
rier method) with the same Lagrange multipliers to
generate its iterations.

Then: a) in the case where J is a single objective, SPk has a
unique solution and{ , , ,...}∪ s lki

l = 0 1 2 will converge to this so-
lution; b) in the case where J is a multiobjective vector,
{ , , ,...}∪ s lki

l = 0 1 2 will converge to a point on the Pareto sur-
face of SPk . (When there are multiple, conflicting objectives,
the Pareto surface is the set of the best possible tradeoffs
among these objectives.)

In essence, this theorem indicates when computational
advantages can be obtained by tackling a network of
subproblems with a network of agents that has the same
structure. To be more specific, consider two sparse graphs:
Γ, whose nodes represent subproblems and whose arcs rep-
resent couplings between (or variables shared by) these
subproblems; and ′Γ , whose nodes represent agents and
whose arcs represent communication channels between
these agents. If a large optimization problem can be decom-
posed into a network of much smaller subproblems repre-
sented by Γ, and if conditions 1 through 9 are met, then
solving the subproblems with agents arranged so that ′ =Γ Γ
provides the following advantages: locally optimal solutions
(those found by the agents) are coincident with the globally
optimal solution; each agent needs to cooperate (exchange
data) only with its neighbors (adjacent nodes in ′Γ ); and
agents not in the same neighborhood may work in parallel.

Conditions 2 and 3, however, are unrealistic (real prob-
lems are often nonconvex and have nonlinear equality con-
straints), and condition 4 is overly constraining (we would
like the agents to be able to work asynchronously: all in par-
allel, each at its own speed).

Experiments on a number of small but prototypical net-
works [15], [16] indicate that conditions 2 and 3 are not nec-
essary and can often be relaxed to allow for nonconvex
problems with nonlinear equality constraints. This suggests
that when distributed controls are to be designed for a real
network, experiments should be conducted to see if the net-
work would allow conditions 2 and 3 to be relaxed.

We do not, as yet, have a procedure for relaxing condition
4 to allow for at least some periods of asynchronous work.
The next section suggests some promising directions.

Heuristics for Asynchronous Work
Consider the formulation of SPki, the subproblem to be
solved by the ith agent. Two classes of heuristics for tack-
ling this subproblem asynchronously are:

• Using models to predict the reactions of agent i’s
neighbors, so agent i does not have to wait to be in-
formed of these reactions, but rather can proceed
with its iterations on the basis of predictions of Si

nei.
These models can either be developed from first prin-
ciples or learned from historical records of Si

nei.
• Tightening the constraints on some agents so they

leave some maneuvering room for other agents.

Both classes show promise. For instance, the inequality
constraints can be tightened as follows:

( )G S S Ri i i i, nei ≤ − ,

where the resource margin, Ri > 0, can either be fixed, a pri-
ori, or adjusted dynamically.

Fig. 1 presents some experimental results for a “forest of
pendulums.” This forest consists of an array of up to nine
frictionless pendulums [15], [16]. Each pendulum is con-
nected to its adjacent pendulums by linear springs and is
controlled by an agent that can exert two orthogonal and
horizontal forces on the pendulum. At the start of the exper-
iment, the pendulums are oscillating in synchronism. Subse-
quently, they are subjected to a set of random disturbances.
The objective is to return them to synchronism as soon as
possible while expending as little control energy as possible
[16]. The mechanical connections of the pendulums make
this optimization problem profoundly nonconvex with
equality constraints that are profoundly nonlinear. Never-
theless, asynchronous calculation schemes for the agents
produce convergence to solutions not very different from
the optimal solution, as shown in Fig. 1.

Coordination for Stability
The coordination scheme in the previous sections allows the
agents to compute a set of solutions to the local problems
that also solves a global optimization problem, thereby mak-
ing it possible to emulate centralized MPC through distrib-
uted computations. We now consider a second scenario in
which it is only possible for the agents to communicate the
solutions to their local problems once during each control in-
terval. In this case, the collection of local solutions is not
equivalent to the solution of a global problem because the
agents are using information from their neighbors that is de-
layed by one time step. Consequently, the stability results for
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Figure 1. Typical results of asynchronous iterations with a
resource-margin heuristic. The “C-Net Penalty” is the percentage
deviation from the optimal solution. The upper curve corresponds to
fixed and equal resource margins for all pendulums. The lower curve
was obtained with resource margins that were smaller for the
pendulums suffering the greatest deviations from the desired
behavior.
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the centralized MPC cannot be used here directly; new condi-
tions for stability are required. In this article, we study linear
systems without constraints as the first attempt in this direc-
tion for distributed MPC.

In the literature, to ensure stability, some constraints
or conditions are added to the MPC optimization prob-
lem. There are two kinds of schemes for applying stability
constraints [1], [3]. In the dominant scheme, stability
constraints are applied to the end state in the prediction.
The prediction horizon must then be set long enough so
that a feasible solution exists. This method is not suitable
for distributed MPC because it is unclear how long the
prediction horizon should be when only the local informa-
tion is used.

The second method is a recently proposed scheme by
Cheng and Krogh called stability-constrained model predic-
tive control (SC-MPC) [17]-[21]. In this approach, a contrac-
tive constraint computed online (rather than offline, as in
most previous schemes) is imposed on the first state in the
prediction. The selection of the prediction horizon does not
affect the stability of the system.

In this section, we apply the SC-MPC approach to our dis-
tributed MPC scheme. We present sufficient conditions for
closed-loop system stability using distributed MPC with con-
tractive stability constraints, called stability-constrained dis-
tributed model predictive control (SC-DMPC).

A distributed linear time-invariant system with each sub-
system controllable and coupling only in state variables can
be modeled as

x k

x k

A A

A AM

M

M MM

1 11 1

1

1

1

( )

( )

+

+

















=
⋅⋅ ⋅

⋅ ⋅ ⋅





� � � �


























+
















x k

x k

B

B

u k
M

M

1

1 1

( )

( )

( )

�

� �
u kM ( )

,














 (1)

where x Ri
ni∈ andu Ri

m i∈ are the state vector and the con-
trol vector of the ith subsystem, respectively. For a system
of this type, we propose the following scheme to achieve co-
ordination among agents. During each step, each agent only
broadcasts its solution of the local MPC problem after it ap-
plies its control action to the local subsystem. In the compu-
tation, agents use the information they get from neighbor
agents to estimate the effect from neighbor subsystems,
meaning that each agent uses the predictions of neighbor
agents at the previous step to estimate the effect from neigh-
bor subsystems. For the jth agent, we denote the informa-
tion from the other agents by the vector

[v k i k x k i k x k i k

x k i k

j
T

j
T

j
T

( | ) ( | ) ( | )

( |

+ = + − ⋅⋅⋅ + −

+

−

+

1 1

1

1 1

]− ⋅⋅⋅ + −1 1) ( | ) ,x k i kM
T T

where x k i ks( | )+ −1 is the state prediction by the agent s at
the control step k −1. The agent j uses the following model to
predict the future states of the local part:

x k i k A x k i k B u k i k

A x

j jj j j j

s
s j

M

js s

( | ) ( | ) ( | )+ + = + + +

+
=
≠

∑

1

1

( | )

( | ) ( | ) ( | ),

k i k

A x k i k B u k i k K v k i kjj j j j j j

+ −

= + + + + +

1

where K A A A Aj j j j j j jM= − +[ ], ,1 1 1� � . The SC-DMPC algorithm
is based on the following lemmas. Proofs of all the results in
this section can be found in [22].

Lemma 1: Consider a system in (1). Suppose ( , )A Bii i

( ,..., )i M=1 are controllable and Bi is of full rank. If the sys-
tem satisf ies the condition that rank ([B Ai i1�
A A A mi i i i iM i, , ])− + =1 1� , there exists a similarity transform
matrix P P P PM= diag( , ,..., )1 2 such that the system can be
represented in the controllable companion form given by

x k

x k

x k

x k
M

M
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1

1
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1
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1
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1
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∈ ∈
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Lemma 2: Consider a system in controllable companion
form (2). Suppose states are measurable. To each subsys-
tem, for any x ki( )and0 1< <β i , there existsu ki( )such that

x k x k x ki i i i( ) ( ) ( )+ ≤ −1 2 2 1 2
β . (3)

Moreover, if

u k

u k

u kM

( )

( )

( )

=
















1

� ,

where u ki( )satisfies (3) andβ = min( , , )β β1 ⋅ ⋅ ⋅ M ,
then

x k x k x k( ) ( ) ( )+ ≤1 2 2 1 2
β ,

where

x k

x k

x kM

1
1
1

1

( )

( )

( )

=
















� .

To ensure the stability of the system, each agent also
adds a contractive constraint into its local MPC problem.
For the jth agent, the algorithm is described as follows.

SC-DMPC Algorithm
Step 1. Communication: Send out its previous predictions

X kj( )−1 to other controllers and also get information
V k v k k v k N kj j j( ) { ( | ),..., ( | )}= + −1 from other controllers.

Step 2. Initialization: Given the measured x kj( ) and l kj( )
from the previous iteration (set l j( )0 to be an arbitrary num-
ber), and 0 1< ≤β j , define

{ }� ( ) max ( ), ( ) ( )l k l k x k x kj j j j j= −
2 1 2

β .

Set � ( | ) ( )x k k x kj j= .
Step 3. Optimization: Solve the following optimal control

problem.

min ( ( ), ( ))
( ), ( )X k U k j j j

j j

J X k U k

subject to

x k i k A x k i k B u k i k K v k i kj jj j j j j j( | ) ( | ) ( | ) ( | )+ + = + + + + +1 ,
i N= −0 1 1, ,...,

x k k l kj j( | ) � ( )+ ≤1
2

.

Step 4. Assignment: Let

u k u k kj j( ) ( | )= , l k x k kj j( ) ( | )+ = +1 1
2
.

Step 5. Implementation: Apply the control u k( ). Set
k k= +1 and return to step 1 at the next sample time.

Note that each controller does not need to communi-
cate with all the other controllers. Controllers i and j
would communicate with each other only if the subsys-

tems i and j have direct interaction with each other. If the
system is loosely coupled, the amount of communication
is not that great.

Lemma 2 shows that when the contractive constraint
x k k l kj j( | ) � ( )+ ≤1

2
is added, the feasible control set is

still nonempty. It also guarantees that at each step, the
collection of solutions for the local problems comprises
a feasible solution for the overall system. The following
theorem gives a sufficient condition for stability of the
closed-loop system.

Theorem 2: Consider a system in the controllable com-
panion form (2). The control is computed at each control in-
stant using SC-DMPC. The system is asymptotically stable if
the following matrix is stable:

~
A

A A

A A

A A

M

M

M M

=



















0

0

0

12
2

1
2

21
2

2
2

1
2

2
2

�
�

� � � �
�

.

A Power System Application
In a power system with two or more independently con-
trolled areas, the generation within each area must be con-
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Figure 2. A simplified description of a power system for studying
load frequency control (LFC).

In distributed control, the type of
coordination that can be realized is

determined by the information
structure; that is, the connectivity

and capacity of the interagent
communication network.
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trolled so as to maintain the system frequency and the
scheduled power exchange. This function is commonly re-
ferred to as load-frequency control (LFC), for which central-
ized control is not practical. Many decentralized control
schemes have been proposed for the LFC problem [23]-[25].
Here we handle the LFC problem by using the SC-DMPC
scheme. We assign MPC controllers to control the generator
power output directly. Thus, each area can be described as
one equivalent generator in series with impedance, as
shown in Fig. 2.

The dynamic equation model of each area can be ex-
pressed as

∆ ∆

∆ ∆ ∆

� ( ) ( )

�( )
( ) ( )

δ πi i

i
i

P

P g

P

t f t

f t
f t

T

K P t

T

K

i

i i

i

=

= − + −

2

P

P

S i j
j N

P d

P

i

i

ij

i i

T

K t t
K P t

T

2π

δ δ× −








 −

∈
∑ [ ( ) ( )]

( )
∆ ∆

∆

i

,

where

∆δ i t( ): incremental phase angle deviation of the area bus
in rad;

∆f ti( ): incremental frequency deviation in Hz;

∆P tgi
( ): incremental change in the generator output in

p.u.;
∆P tdi

( ): load disturbance for the ith area in p.u.;
TPi

: system model time constant in s;
K Pi

: system gain;
KS ij

: synchronizing coefficient of the tie-line between ith
and jth areas.

The distributed MPC controllers coordinate the genera-
tor outputs by providing set points to the turbine control-
lers. Here, the dynamics of turbines will not be included.
The objective of LFC is to keep the frequency deviation of
the system at zero and to maintain the deviation of the
power flow through the tie-line at zero. The deviation of
power flow between areas is proportional to the difference
of phase angle deviation between areas. Thus, the local per-
formance index can be selected as
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In the simulation study, a two-area LFC scenario is con-
structed. Each controller is assumed to know the load distur-
bancein its localarea.Theparametersusedinthesimulationare:
area #1: TP1

25= s, K P1
1125= . , KS 12

0 5= . ; area #2: TP2
20= s,
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Figure 3. Response of the LFC system for SC-DMPC and decentralized MPC without stability constraints or information exchange
(simulation of the discrete-time model).
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K P2
120= , KS 21

0 5= . . Other parameters for optimization are
p p12 21 10= = ,q q1 2 100= = , and r r1 2 10= = . The constants for
stability constraints are β β1 2 0 8= = . . The load disturbance
is 0.01 p.u. load increment in each area at time 0. The control
interval is set to be 2.0 s. The prediction horizon is selected to
be unity to minimize the amount of computation and commu-
nication. By the Euler method, a discrete-time state-space
model of the system can be obtained. The model satisfies the
condition for stability in Theorem 2.

Fig. 3 shows the simulation results. The blue curves are
system behavior by the SC-DMPC algorithm. The fre-
quency variations go to zero, and each subsystem can pro-
vide enough power for its local load increment. The red
curves are system behavior by MPC in a decentralized
fashion, but there is no information exchange among the
controllers and no stability constraint either. The system is
unstable under the disturbance. Centralized MPC with sta-
bility constraints is also tried. The system performance is
not much better than that using SC-DMPC. They are nearly
the same. From the simulation we find that SC-DMPC can
work as well as centralized MPC for systems with canonical
structure. Although the model using the Euler method is
only a rough approximation of the real system, this exam-
ple provides some understanding about how the distrib-
uted MPC scheme performs.

Another notable point of this scheme is that, for intercon-
nected linear time-invariant systems satisfying the condi-
tions of Lemma 1 and Theorem 2, the scheme imposes no
constraint on the selection of prediction horizon, providing
more flexibility in selecting this value. Obviously, a short pre-
diction horizon would require a smaller amount of computa-
tion time, but a properly chosen longer prediction horizon
could improve the performance of the system. As shown in
Fig. 4(a), the average time for optimization increases expo-
nentially as the prediction horizon increases; but, as shown
in Fig. 4(b), the performance is improved as the prediction
horizon increases until it reaches six. We see that too long a
prediction horizon can degrade the performance because

the errors in the prediction are very
large. Thus, by applying this distrib-
uted MPC scheme, one can obtain a
compromise between the potential im-
provement in performance and the pre-
diction errors.

Conclusion
This article has presented new results
for distributed model predictive con-
trol, focusing on i) the coordination of
the optimization computations using
iterative exchange of information and
ii) the stability of the closed-loop sys-
tem when information is exchanged
only after each iteration. Current re-
search is focusing on general methods
for decomposing large-scale problems

for distributed MPC and methods for guaranteeing stability
when multiple agents are controlling systems subject to
abrupt changes.
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