
MODEL CHECKING OF ROBOTIC CONTROL SYSTEMS

S. Scherer(1), F. Lerda(2), and E. M. Clarke(2)

(1)The Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, U.S.A.
(2)Computer Science Department, Carnegie Mellon University,5000 Forbes Avenue, Pittsburgh, PA 15213, U.S.A.

{basti, lerda, emc}@cs.cmu.edu

ABSTRACT

Reliable software is important for robotic applications.
We propose a new method for the verification of con-
trol software based on Java PathFinder, a discrete model
checker developed at NASA Ames Research Center. Our
extension of Java PathFinder supports modeling of a real-
time scheduler and a physical system, defined in terms
of differential equations. This approach not only is able
to detect programming errors, like null-pointer derefer-
ences, but also enables the verification of control software
whose correctness depends on the physical, real-time en-
vironment. We applied this method to the control soft-
ware of a line-following robot. The verified source code,
written in Java, can be executed without any modifica-
tions on the microcontroller of the actual robot. Perfor-
mance evaluation and bug finding are demonstrated on
this example.

Key words: Model Checking; Verification; Control Sys-
tems; Software Testing; Java.

1. INTRODUCTION

Reliability of software is key to successful robot and
space missions [1]. Control software is at the foundation
of complex robotic systems and higher level software re-
lies on its correct implementation. Although logical er-
rors in an abstract design may occur, programming bugs
in the implementation of an abstract design are frequently
the reason for software crashes [2].

Conceptually, there are two distinct types of methods to
validate control systems:generative methodsanddirect
methods. Generative methods [3] take an abstract repre-
sentation of the system, e.g. a block diagram, and gener-
ate source code that implements the control strategy. The
source code is then integrated with the control computer
source code. Unless the generated code can be used un-
modified and the generator of source code itself is proven
correct, this method is not able to guarantee a correct im-
plementation. Direct methods, instead, prove the correct-
ness of the control systems itself, regardless of how it has
been developed, and therefore they do not depend on the
correctness of the development tools.

We chose a direct method based on software model
checking [4], a verification technique that performs an

Proc. ‘ISAIRAS 2005 Conference’, Munich, Germany,
5-8 September 2005 (ESA SP-603, September 2005)

Fig. 1. A line-following robot on a white line in the initial
configuration.

exhaustive and systematic search of the reachable states
of a model. Model checking can uncover subtle bugs in
software and provides a trace of the execution steps that
lead to a violation.

One of the biggest impediments in applying model check-
ing to robotic systems is that most tools are not designed
to handle the software’s interaction with the physical en-
vironment. Specifically, our method explictly models the
interactions with the environment, allowing the verifica-
tion of more complex properties about the robotic control
system. We have developed an extended version of the
model checker Java PathFinder [5] that verifies models
with these additional constraints.

With our method control system designers can express
the controller naturally: differential equations are usedto
express the physical system and source code is used to
describe the software. This more detailed model allows
our method to verify safeness and liveness properties that
refer to the controlled system as well as implicit correct-
ness properties of the software, e.g. null-pointer derefer-
ences, assertion violations, and deadlocks. Exploiting the
exhaustiveness of the model checker, it is also possible
to check the software under different scheduling choices
and introduce errors on the sensors and actuators. The
additional capabilities come at the price of higher com-
putational complexity, which is well justified for mission



critical components.

We have applied our method to the source code of a line-
following robot (Fig. 1) that won the “Mobot” race, a
robot design competition at Carnegie Mellon. The robot
has to follow a white line along a course in the least time
possible. Two separate tasks control velocity and streer-
ing. The microcontroller of the robot executes Java code,
therefore we chose Java PathFinder for our implementa-
tion. We use this robot as a case study to evaluate the
effectiveness of our verification method.

The paper is organized as follows: in Section 2 we dis-
cuss some related work; Section 3 introduces our algo-
rithm; Section 4 presents the case study in detail and the
results of the verification; lastly, Section 5 provides some
conclusions and directions for future work.

2. RELATED WORK

The use of model checking in the context of robotic ap-
plications is not new. For instance, model checking has
been applied to a robot arm in [6] and a servo loop con-
troller in [7]. However, in these cases, the goal of veri-
fication was to uncover violations of safety and liveness
properties in the design and the actual software imple-
mentation had been abstracted. These approaches fail to
capture the software implementation in enough detail to
guarantee the absence of errors and require considerable
manual effort in developing a suitable abstraction of the
software.

Java PathFinder itself, the model checker we extended,
has been used to verify the software of a Mars rover [2].
However, the focus of that study was to uncover common
fatal program errors like data races and deadlocks, which
do not depend on the environment the software is exe-
cuted in. Our method, an extension of Java PathFinder,
is still able to find these errors, but it adds the capabil-
ity of checking more complex properties that involve an
interaction with the environment.

Modeling techniques for systems that include both con-
tinuous and discrete components exist. In particular, hy-
brid automata [8] can represent the type of systems that
we consider in this paper. Moreover, model checking
techniques for hybrid automata have been proposed and
model checking tools like HyTech [9] have been used to
verify robotic systems, such as arm control systems [10],
mobile robot systems [11], and highway traffic control
systems [12]. These techniques focus, however, on the
continuous components of the controlled system and a
coarse abstraction of the software is usually considered.
Our method, instead, focuses on the software and applies
directly to the source code of the controller.

3. METHOD

3.1. Modeling the System

We aim to verify control software. Typical examples are
controllers for robotic systems, where a program is run-
ning on an embedded microcontroller. However, in gen-
eral, it is not possible to examine the software in isolation.
The correctness of the control software often relies on

implicit assumptions about the system it controls. More-
over, properties are expressed in terms of the behavior of
the controlled systems, not in terms of the behavior of the
software itself.

In this section we present a model made of three compo-
nents:(i) the controlled physical system;(ii) the control
software; and(iii) the scheduler.

The Controlled Physical System.The physical system
is modeled as a continuous or discrete time dynamical
system. In the following, we assume that the system can
be modeled using linear time-invariant ordinary differ-
ential equations. Specifically, we consider the dynam-
ics of the physical system in state space form[13], i.e.
ẋ = Ax + Bu, wherex is a vector of state variables
andu is a vector of inputs. The inputsu are the quan-
tities that the software controls via the actuators. Lety
to be the vector of outputs, determined by the equation
y = Cx + Du. The outputsy are the quantities that can
be observed by the software via the sensors. The values
of A andB determine the dynamics of the system. The
values ofC andD determine which parts of the state are
accessible by the software.

The Control Software. The software consists of a set
of tasks, implemented on top of a real-time scheduling
component. Each task is a concurrent thread of execu-
tion. The body of a task is a fragment of code written in
a programming language. The body is executed period-
ically with a fixed period. The controller communicates
with the controlled physical system by means of sensors
and actuators. The sensors measure some physical quan-
tity of the controlled system while the actuators change
some physical quantity. The sensors and the actuators
define the interface between the controller and the con-
trolled system.

The Scheduler.The execution of the code is constrained
by the scheduler which executes each task at the proper
time. The main reason for including the scheduler in our
model is that the behavior of the controller usually de-
pends on the timing of the different tasks. Therefore, we
maintain some of this information in order to verify the
correctness of the software. Moreover, the introduction
of a scheduler may even make the verification easier: by
constraining the execution of the different threads, a re-
duced set of interleavings needs to be explored, which
yields a smaller number of reachable states.

3.2. Verification Algorithm

The algorithm we propose is based on the depth-first
search model checking algorithm implemented in Java
PathFinder. The depth-first search looks for a violation of
the properties by visiting all reachable states of the sys-
tem. At each step the next state is generated; if the state
has been visited before, the algorithm backtracks; oth-
erwise, the search continues with the newly discovered
state. The procedure continues until all reachable states
have been visited.

Our algorithm (Fig 2) needs to keep track of the discrete
variables present in the program as well as the continuous
variables which define the state of the physical environ-



ment. Moreover, a new state is generated either by a dis-
crete transition (the execution of a program statement) or
by a continuous transition (the evolution of the physical
system over a given amount of time).

var visited: set= {};
procedureHybridMC(P, S, E, ds, cs);
begin

visited= visited∪ {(ds, approx(cs))};
foreach ds’ in DiscreteSuccs(P, S, ds, cs) do
begin

cs’ = ContinuousSucc(E, delta(S), ds’, cs);
if (ds’, approx(cs’)) 6∈ visitedthen

HybridMC(P, next(S), E, ds’, cs’);
end;

end;
function DiscreteSuccs(P, S, ds, cs): set;
var succs: set= ;

procedureDFS(ds);
begin

visited= visited∪ {(ds, approx(cs))};
if no tasksare running(ds) then

succs:= succs∪ {ds};
else

foreach ds’ in ProgramSuccs(P, S, ds, cs) do
begin

if (ds’, approx(cs)) 6∈ visitedthen
DFS(ds’);

end;
end;

begin
DFS(ds);
return succs;

end;

Fig. 2. Pseudo-code of the main algorithm.

The global variablevisited keeps track of the states
that have already been explored.

The outer procedure,HybridMC, takes as arguments a
programP, a schedulerS, an environmentE, a discrete
stateds, and a continuous statecs. HybridMC gener-
ates all states reachable from the state〈ds, cs〉. It alter-
nates discrete steps (DiscreteSuccs) and continuous
steps (ContinuousSucc). The value ofdelta(S)
is the amount of time that needs to pass before another
task is scheduled. If a state that is already in the visited
set is generated, the procedure backtracks. Otherwise,
the search continues in a depth-first fashion from the new
state〈ds’, cs’〉 with an updated schedulernext(S).

The procedureDiscreteSuccs computes the set of
states that satisfy the following three conditions:(i) that
are reachable from the given state〈ds, cs〉 by means
of discrete transitions;(ii) that do not have any outgoing
discrete transition; and(iii) in which all the tasks are idle,
waiting for the next period. The procedure uses depth-
first search to enumerate the states. This is similar to
the way a model checker generates the reachable states.
Properties are checked within this procedure as well, but
this has been left out of the pseudocode for readability.

The procedureProgramSuccs computes the succes-
sors of a state that are obtained by executing a single

10ms

10ms

Task2

Task1
Task1

Fig. 3. A scheduler for tasksTask1 and Task2 with
periods10ms and20ms.

discrete transition of the programP. The set of discrete
transitions considered may be constrained by the sched-
ulerS.

The procedureContinuousSucc updates the contin-
uous state using the differential equations given by the
environmentE and the time intervaldelta.

The schedulerS can be represented as a finite state ma-
chine where each node is labeled by a set of tasks that
are allowed to execute and each edge is labeled by the
amount of time that needs to pass before the next set of
tasks can execute. For instance, a scheduler for tasks
Task1 andTask2with periods10ms and20ms respec-
tively is depicted in Fig. 3.

The algorithm makes the simplifying assumption that the
time to execute each task is zero, or very small compared
to the tasks’ periods. As a consequence, all inputs are
read and all the controls are set at the beginning of a task’s
execution. This is an approximation of how the real sys-
tem behaves, but it is an acceptable approximation as our
case study demonstrates. In future work, we would like
to explore more sophisticated ways of approximating the
execution time of the code, such as use worst case execu-
tion time analysis [14].

The continuous variables can assume an infinite number
of values. However, we desire a representation of the
state that is finite. Since continuous variables are part of
the state, we need a finite representation of the continuous
variables. Such conversion is performed in the algorithm
by the functionapprox. In the next section we give a
possible implementation of theapprox function which
performs an approximation on the values of the continu-
ous variables in order to reduce the set of reachable states.

3.3. Implementation

Java PathFinder [5] is an explicit state model checker that
takes as input Java code. The model checker exhaus-
tively explores all the reachable states of a given program.
States are generated by a depth-first search. Computa-
tion of the successors of a state is performed by a custom
Java Virtual Machine (the Java PathFinder Virtual Ma-
chine). Java PathFinder itself is written in Java, therefore,
its code is executed by a standard Java Virtual Machine
(or Host Virtual Machine).

One of the features of Java PathFinder that we exploited
in our extension is the so-called Model Java Interface (or
MJI). MJI allows the users to specify code to execute
when a particular method is called, instead of the code
associated with the method itself. Among the reasons
for this facility are the need to specify code for native
methods (methods of a Java class provided as native bi-
nary code by the runtime) as well as the need to define



B

R

x1

x2

A

Fig. 4. Two trajectories rooted at points A and B belong-
ing to the same approximated state. The trajectory rooted
at A reaches region R, while the one rooted at B does not.

a more efficient implementation for some critical meth-
ods. Methods implemented using MJI are more efficient
because their code is executed by the Host Virtual Ma-
chine instead of the Java PathFinder Virtual Machine. As
a consequence, intermediate states within an MJI method
are not stored by the model checker and their instructions
are not interleaved with the instructions of other threads.

In order to implement our algorithm in Java PathFinder,
we first extended the representation of the state to include
the continuous variables. Since the domain of the con-
tinuous variables is infinite, we need to provide a finite
representation for each continuous variable. Possible rep-
resentations include infinite precision rational and float-
point representations, but we choose a fixed-point repre-
sentation whose parameters, e.g. the precision, can be set
depending on the application. This choice was made be-
cause we wanted a represention as compact as possible
(to reduce the space required to store the states). A preci-
sion higher than the computational error can lead to two
equivalent states having different representations.

The functionapprox introduced above converts the val-
ues of the continuous variables into the appropriate fixed-
point representations. The result of this approximation
can be interpreted as performing an abstraction of the
continuous space which associates each approximated
value with an hyper-rectangle whose size depends on the
precision (Fig. 4). If two states differ only for the val-
ues of the continuous variables and these values fall in
the same hyper-rectangle, then the two states have the
same representation. For instance, points A and B in
Fig 4 have the same representation. Note that this ap-
proximation may lead to unsoundness if an error-state
(i.e. hyper-rectangle R in the figure) can be reached from
some points within an hyper-rectangle (point A) but not
from all (point B).

Another necessary modification to the core of Java
PathFinder was to extend the scheduler to take into ac-
count discrete and continuous transitions. In our proto-
type implementation, we only considered periodic tasks
with the same period. The scheduler will then execute the
body of each task until all tasks complete. At this point,
ContinuousSucc is executed, which updates the con-
tinuous state.

The Java PathFinder Virtual Machine is used to imple-
ment the procedureProgramSuccs: given the current
discrete state, it generates the next discrete state.

Motor

Motor

Encoder

Encoder

Li
gh

t S
en

so
rs

S
te

er
in

g

Wheel

Wheel

Wheel

Wheel

Fig. 5. Diagram of the robot showing the location of sen-
sors and actuators.

ContinuousSucc is implemented as an MJI proce-
dure. The body of this procedure is currently written
manually and corresponds to a numerical algorithm for
the set of differential equations that describe the physical
environment. Implementing the numerical integration as
a MJI procedure has the advantage of reducing the com-
putation time as well as the state space (cf. above).

4. CASE STUDY

Below we demonstrate the feasibility of our method by
applying it to the line-following robot shown in Fig. 1.
We first present the problem and then explain how our
robot is designed to traverse the course. After that, we
outline the steps involved in model checking the software
of the robot and the results we obtained. There are both
general and more specific techniques, such as abstraction
and system identification respectively, that enable us to
verify the software using the extended Java PathFinder.

4.1. Problem Statement

The goal of this case study is to verify the correctness of
the two control algorithms of the robot. These algorithms
are implemented in software, running and interacting on
the same microcontroller. This raises a number of issues
traditionally not considered in either the model check-
ing or control community. In the model checking con-
text correctness is defined by invariants, many of which
are implicitly defined by the environment. Moreover, the
quantization steps in sensors and actuators as well as de-
pendencies between the two control algorithms increase
complexity.

A slalom course laid out on the pavement in front of the
Computer Science Department at Carnegie Mellon de-
fines the challenge for the robot. A white line connects a
series of gates which the robot follows while controlling
the speed. Various weather and lighting conditions chal-
lenge sensing, computing, and locomotion. The robot
tries to complete the course as quickly as possible while
tracking the line.

4.2. Robot

A robot designed to meet the specification requires an ad-
equate physical platform with correct software. There-
fore, we first examine the hardware underlying the soft-
ware and then describe the tasks processing the sensor
data and executing the control algorithms.



Hardware. The robot is 41x27x12cm in size and utilizes
two battery packs with 7.2V and 12V to provide power
for processing and actuators independently.

Two geared 12V motors drive the back wheels as depicted
in Fig. 5. The microcontroller adjusts the pulsewidth of
the signal and effectively regulates the power supplied to
the motors. To actuate the rack-and-pinion steering, the
microcontroller sends pulsewidth commands to a servo.

Steering and velocity commands are determined using the
data read from the sensors. The robot has 12 sensors
(Fig. 5): ten brightness sensors measure the reflectivity
of the ground and two encoders measure the velocity and
distance travelled. The brightness sensors are mounted
on a line perpendicular to the direction of travel. The ap-
proximate offset from the center of the line is measured
using this sensor arrangement.

The input/output (I/O) ports of the microcontroller are
connected to an analog-to-digital (A/D) converter, 25-
tick encoders, a servo, and an amplifier. Three tasks read
and write values via I/O ports and memory. The micro-
controller directly executes Java, which significantly sim-
plifies the verification using Java PathFinder. It imple-
ments Java 2 Micro Edition with the connected limited
device configuration, and it has multithreading and a pre-
emptible garbage collector. The software is written and
compiled on a host computer and then downloaded to the
flash memory of the microcontroller.

Software. The software implements two controllers,
which regulate the steering and the speed, as two sepa-
rate tasks. An additional task reads the reflectance values
from the brightness sensors. All computations do not in-
volve dynamic object creation or destruction and use only
integer arithmetic to improve performance. Depending
on the setup, different interleavings of tasks are possi-
ble but all tasks execute periodically with a frequency of
33Hz.

In particular, a periodic scheduler is implemented using
a piano roll timer [15]. In this configuration, the tasks
are executed in a round-robin fashion and execution of a
task starts exactly when a beat occurs, allowing accurate
timing of processes which need to satisfy hard real-time
constraints. Priorities determine the order in which tasks
are executed. The piano roll timer is configured with a
beat of 1ms and a duration of 80ms. Each task has zero
initial delay and a period of 10ms. The calculations of ini-
tial delays, periods, duration, beat, and priorities are not
difficult but errorprone, as we will demonstrate in Sec-
tion 4.3.

The A/D converter measures the voltage generated by
each light sensor. The microcontroller communicates via
a serial bus to read the values. Since commands are sent
at the fixed frequency of 33Hz, sensor values are read
at the same frequency. The two encoders are connected
directly to the microcontroller and provide speed and dis-
tance travelled using interrupts.

The cached brightness values are used by the controller
to calculate a steering command. After normalizing the
values, the algorithm finds the left and right edge of the
line. Proportional control is performed to try to keep the

Velocity
 response

f(u)

Steering Controller
(Task 2)

Steering
response

f(u)

Speed Controller
(Task 3)

RobotController Software

0
steeringmodel

speedmodel

Fig. 6. A block diagram representing the control soft-
ware and discrete time plant model of the robot. Inputs
and outputs are quantized since fixed-point arithmetic is
used. A dependency between the steering and speed con-
trol task is shown.

25 30 35
0

75

150

Time

V
el

oc
ity

 in
 e

nc
od

er
 ti

ck
s

Measured and simulated model output

28 30 32 34
−5

0

5

Time

S
te

er
in

g 
po

si
tio

n

Measured and simulated model output

Fig. 7. The identified system response for steering and
velocity data as a solid line on top of a validation dataset.

middle of the line centered underneath the sensors. If it is
ever detected that the line is out of bounds, the last known
good direction is used as the steering direction.

The speed of the robot is calculated from elapsed time
and registered encoder ticks. The desired goal speed is
determined from the the last steering command in order to
adapt to curvature. The difference between the two deter-
mines the pulsewidth command sent to the motor driver.

4.3. Verification

The hardware and software are used to define assertions
about the correctness. Similar to a control theoretic ap-
proach, we need an environment (”plant”) to control. The
system is depicted in a block diagram representation in
Fig. 6. The control software is on the left and the environ-
ment is on the right. The inputs and outputs of the con-
troller software are quantized since the implementation
of the software relies on fixed point integer arithmetic.



The dependency between the steering and speed control
tasks is indicated by a connection from the output of the
steering controller to the input of the speed controller.

Identify the Physical System.The environment can be
derived from first principles or automatically identified
using a technique known assystem identification[16].
Although the robot is simple, it is not trivial to derive
the physical model from first principles because many pa-
rameters are unknown and hard to measure. Therefore,
we derived the environment using system identification.
We recorded seven traces of the inputs and outputs of the
robot and searched for the best model fitting the relation-
ship between the inputs and outputs.

The encoder response to a pulsewidth command applied
to the motors is direct and therefore a first-order system
matches well. The position relative to the line depends on
the velocity of the robot and the steering angle. A fourth-
order system gives a good relationship between velocity,
steering pulsewidth, and position relative to the line.

We tested the response on a validation dataset to confirm
the validity of our models with the identified systems. In
Fig. 7 the prediction of the sensor output is plot on top of
a validation dataset.

The identified system model constrains the input into the
software. Since the interactions with the environment are
executed at a fixed frequency of 33Hz, we express the
system as a discrete state space systems with a sample
time of 0.03s. This eliminates the problem of potential
numerical integration errors.

Design for Verification. While Java PathFinder can be
applied to any kind of software, designing the software
with verification in mind is very useful in making ver-
ification tractable. The source code of the robot, how-
ever, was not developed following this principle and some
modifications to the original source code had to be made
to be able to verify the software using our extended Java
PathFinder. In particular, there are two unbounded vari-
ables, time and distance, that increase monotonically.
This increase leads to an infinite state space: the model
checker will eventually run out of memory without com-
pleting the verification. In order to make the state space
finite, we abstracted the unbounded variables. If this is
not possible, one can provide bounds for the variables
and consider states outside the bounds to be equivalent.
Moreover, the source code may contain fragments that
are irrelevant for verification but increase the size of the
state space. In our case study, we removed parts of the
initialization code that calibrate the sensors and test the
actuators.

The initial configuration of the robot defines the initial
values of the state vector. Although it is possible to test
ranges of initial configurations, we focused on the initial
configuration depicted in Fig. 1. In this configuration the
robot steers to the right since it wants to reach back to
the center of the line. The robot is offset from the middle
of the line by 36mm, i.e. the middle of the line is under
the rightmost sensor. The robot starts with zero initial
velocity.

Identify Properties. The closed system with initial con-

ditions is fully specified and permits reasoning about the
properties that are necessary to ensure the correct oper-
ation of the robot. In this context properties of safety,
liveness, and correct implementation are important.

Safety properties state conditions that must hold for the
robot to be able to advance and not damage the hardware.
In particular, the line has to be visible by at least one light
sensor to ensure that a correct command is sent. This
is specified as a property which checks that the position
with respect to the line is within range. The speed also
has to be within a range to give the robot enough time to
process and react to the available data.

• 50 < speed < 150 (S1)

• 0 ≤ sensor position ≤ 9 (S2)

Liveness, in our context, states that the robot is always
able to make progress along the line and come closer to
the middle of the line as time progresses. In the case of
a straight line, we assert that the speed should be greater
than zero and the robot has to attain the middle of the line
after at most 3s.

• speed > 0 aftert > 3 (L1)

• 4 ≤ sensor position ≤ 6 aftert > 3 (L2)

• ∆t > 0 (L3)

It is not sufficient to define the correctness of the robot
software only in terms of safety and liveness because the
invariants assume a correct usage of the underlying sys-
tem. For this Java microcontroller in particular, it is dif-
ficult to use the periodic scheduler and the pulsewidth
module correctly because some sets of parameters are in-
valid andJava Exceptionsare not thrown in all cases.

The piano roll periodic scheduler executes tasks with dif-
ferent periods, initial delays, and priorities by arranging
them in a table with a priority mask defining which task
priority is runnable. We assume that the runtime of one
iteration in all tasks is always less than the period. For a
complete verification one can use an analysis as in [17]
and the longest time execution path to assert that the exe-
cution time is less than the period.

The piano roll timer has adurationand abeat. The im-
plementation of the piano roll scheduler generates an ar-
ray of sizes = duration

beat
. The array contains an entry

corresponding to each of the beats that occur in a sin-
gle duration. Each entry contains a set of bits corre-
sponding to the task priorities. Tasks in one priority are
scheduled in a round-robin fashion. A task with period
p and initial delayid starts at beats multiple ofp offset
by id. If a task with periodp, initial delay id, and pri-
ority x is added, bitx is enabled for the corresponding
entries in the array. This implementation does not corre-
spond to the intuition that one adds a task with a certain
period and it is executed periodically because tasks with
the same priority, initial delay, and period are executed in
a round-robin fashion. Consequently, instead of execut-
ing with a period ofp they execute with a period ofn · p
wheren is the number of tasks. We enforce the intuition
using properties derived and partly taken from [15]:

• 1 ≤ beat ≤ 65 hardware limitation (PR1)



Experiment Time Memory
Model without Noise 0:00:07 5 Mb
Noisy Encoder Values 0:45:41 106 Mb
Light Sensor Failure 1:12:55 159 Mb
Noisy Pulsewidth Commands 0:18:18 41 Mb

Fig. 8. Computation time and memory necessary for the
verification with and without different kinds of errors.

• duration ≥ beat (PR2)

• beat ≤ p ≤ duration (PR3)

• (p = 0) mod beat (PR4)

• (duration = 0) mod p (PR4)

• 0 ≤ id (PR5)

• id < p (PR6)

• id + p ≤ duration (PR7)

• p = t.p ∀ t ∈ Tasks (PR8)

• 0 ≤ x ≤ 14 hardware limitation (PR9)

• if two tasks have the same period and same initial
delay thent1.x 6= t2.x (PR10)

• if two tasks are enabled in the same array entry
t1.x 6= t2.x (PR11)

Additionally, it is important to verify that the commands
for the pulsewidth module are valid in order to avoid an
error condition in the system.

• The Servo has lower and upper pulsewidth-bounds:
800µs < ts < 2200µs (PW1)

• 0 is not a valid command for the pulsewidth module
because the output is activated constantly. The com-
mand also has to be less than the duration of 10ms:
0µs < tm < 10000µs (PW2)

Implementation. The microcontroller has its own ap-
plication programming interface (API) to connect to the
input and output ports. Using MJI procedures (see Sec-
tion 3.3), the API is emulated by the model checker,
which simulates the behavior of the environment. For
example, a call tosetPulseWidthupdates the continuous
variables stored inside the model checker instead of send-
ing a value to the actuator. This separates the code imple-
menting the controller from the code handling I/O.

Once the commands have been received, the state is up-
dated in the environment and the model checker saves this
updated state. The state of the environment consists of
time, the state vectors, and last inputs. Two states are con-
sidered equal if, in addition to the discrete equivalence,
the countinuous state variables are approximately equal
up to a given fixed-point precision. We introduce nonde-
terminism in various parts of the system to model errors
in the commands, encoder readings, and light sensor val-
ues, in order to examine their impact on the behavior of
the robot.

4.4. Results

The goal of the case study was to demonstrate our ap-
proach to verifying robot control system software. The

0 1 2 3 4 5
0

5

10

O
ffs

et
 fr

om
 li

ne

0 1 2 3 4 5
0

50

100

150

Time in s

S
pe

ed
 in

 e
nc

. t
ic

ks

Fig. 9. Scatter plots demonstrate the range of possible
outcomes for added encoder inaccuracy. The plotted line
shows the result of an actual experiment.

problem was initially ill defined, because no model of the
environment or formal specification was available. Con-
siderable effort has been spent on bridging this gap.

All safety (S1, S2) and liveness properties (L1, L2, L3)
were verified in a short amount of time (Fig. 8). How-
ever, model checking robot control software, like soft-
ware development, is an iterative process. The environ-
ment model influences the safety and liveness properties
that can be checked. For this case study, we had to refine
the model of the environment multiple times.

The piano roll periodic scheduler, on the other hand, is
a typical model checking problem and the existing bugs
could be found within seconds. The most significant bug
was that all tasks used the same period, initial delay, and
priority (PR10, PR11). This configuration, as explained
in Section 4.3, causes a reduced frequency of task exe-
cution. During testing of the robot this bug was never
discovered because the system still behaved correctly.

In [1], a fatal type-conversion bug for the Ariane 5 rocket
is analyzed. In this incident, the conversion of a 64-bit
floating point value to a 16-bit signed integer caused an
overflow. This occurs only for specific trajectories, mak-
ing it a perfect candidate for model checking. We inves-
tigated if this type of bug could be discovered using our
technique. The source code of the robot was seeded with
an intermittent type-conversion bug on the number of en-
coder ticks per period. A signed byte, which ranges from
-127 to 128, records that value. Usually, less than 128
ticks occur within one period, but occasionally this value
is exceeded, e.g. when going down a hill. This bug is
hard to find if the inputs and outputs are not determined
using a model of the environment, but was detected using
our model checker as a violation of property (L1), which
asserts that the speed is always greater than zero.

In order to examine the effects of different kinds of sen-
sor and actuator inaccuracy, we added nondeterministic
behavior to parts of the model. Specifically, we explored
the influence of a±5 slip in encoder ticks, a random fail-
ure of two light sensors, and a±50µs error in the output
pulsewidth times. The runtime and memory usage for the
different runs are shown in Fig. 8. While modeling errors



requires additional resources, it provides a better cover-
age of the behavior of the system.

A typical run is shown in Fig. 9 which compares the cov-
erage of model checking to one actual trajectory. Encoder
inaccuracy causes a range of trajectories to be possible.
The match of the line position in the actual trajectory
is not perfect because the position is inferred indirectly
from the brightness sensors. In future work we want to
externally track the robot to improve the identified phys-
ical model and the line tracking accuracy. Speed, on the
other hand, is within the bounds of the explored state
space which corresponds to a good match.

5. CONCLUSIONS AND FUTURE WORK

We presented a method, based on model checking, for
the verification of robotic control systems implemented in
software. This technique leverages the recent advances in
software model checking but extends its applicability to
systems that include a non-trivial physical component de-
scribed by differential equations. The approach is based
on the construction of a simulation model for the dynam-
ical system that is used in conjuction with the actual soft-
ware to perform an exhaustive state exploration.

We have studied the effectiveness of this approach by ap-
plying it to a line-following robot controller. The model
of the physical system has been derived by identification
and the actual code running of the robot has been checked
for both safety and liveness properties.

The presented approach proved sufficient to identify bugs
that depend on the interaction with the physical environ-
ment and the scheduler. It is, however, critical to have
a model of the environment in order to perform formal
verification. We believe that such model should be con-
structed together with the control software. When design-
ing a control system control engineers already use mod-
els based on differential equations: such models should
be integrated in a way that they can later be used for ver-
ification.

As for future work, we would like to extend our method to
be able to model more complex systems as well as check
more complex properties. Moreover, we intend to formal-
ize our approach in terms of hybrid automata. Our final
goal is to provide an integrated verification framework for
control software developers.

Acknowledgments
We would like to thank the Java PathFinder team
at NASA Ames Research Center for making Java
PathFinder available as open source software.

Sebastian Scherer would like to thank Sanjiv Singh for
his continuing support.

REFERENCES

1. Lions, J. ARIANE 5 flight 501 failure. World
Wide Web, July 1996. http://ravel.esrin.esa.it/docs/esa-
x-1819eng.pdf.

2. Brat, G., Drusinsky, D., Giannakopoulou, D., Goldberg,
A., Havelund, K., Lowry, M., Pasareanu, C., Venet, A.,
Washington, R., and Visser, W. Experimental evalua-
tion of verification and validation tools on martian rover
software. Formal Methods in Systems Design Journal,
25(2-3), September 2004.

3. Sharygina, N., Browne, J., Xie, F., Kurshan, R., and
Levin, V. Lessons learned from model checking a NASA
robot controller. Formal Methods in Systems Design
Journal, 25(2-3):241–270, 2004.

4. Clarke, E., Grumberg, O., and Peled, D.Model checking.
MIT Press, Cambridge, MA, USA, 1999.

5. Visser, W., Havelund, K., Brat, G., Park, S., and Lerda,
F. Model checking programs.Automated Software En-
gineering Journal, 10(2), April 2003.

6. Sharygina, N.Model checking of software control sys-
tems.PhD thesis, University of Texas at Austin, 2002.

7. Johnson, M. E. Model checking safety properties of
servo-loop control systems. InInternational Conference
on Dependable Systems and Networks, 2002.

8. Henzinger, T. The theory of hybrid automata. InPro-
ceedings of the 11th Annual Sysmposium on Locgic in
Computer Science, 1996.

9. Henzinger, T., Ho, P., and Wong-Toi, H. HyTech: a
model checker for hybrid systems.Software Tools for
Technology Transfer, 1:110–122, 1997.

10. Diethers, K., Fireley, T., Kröger, T., and Thomas, U. A
new framework for task oriented sensor based robot pro-
gramming and verification. InIEEE International Con-
ference on Advanced Robotics, pages 1208–1214, June
2003.

11. Ivancic, F. Report on verification of the MoBIES
vehicle-vehicle automotive OEP problem. Technical Re-
port MS-CIS-02-02, University of Pennsylvania, March
2002.

12. Lygeros, J., Godbole, D., and Sastry, S. A verified hy-
brid controller for automated vehicles.Special Issue on
Hybrid Systems of the IEEE Transactions on Automatic
Control, March 1996.

13. Bay, J. S.Fundamentals of linear state space systems.
WCB/McGraw-Hill, 1999.

14. Puschner, P. and Koza, C. Calculating the maximum ex-
ecution time of real-time programs.The Journal of Real-
Time Systems, 1(2):159–176, September 1989.

15. Søndergaard, H. Periodic threads on aJ-100].
World Wide Web, December 2004. http://it-
ingenior.vitusbering.dk/sw12801.asp.

16. Ljung, L. System identification: theory for the user.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1986.

17. Bernat, G., Burns, A., and Wellings, A. Portable worst
case execution time analysis using Java byte code. In
Proceedings of the 12th EUROMICRO Conference on
Real-time Systems, June 2000.


