~ UCC Bulletin

relatingtothe

| Uniform
February 2001 West Group . Commercial Code

INTHISISSUE . ..

Part One of a Multi-Part Article on the “Embedded Software” Problemccccco e, 1
MATTERS OF MAJOR INTEREST

Failure of Essential Purpose by a Limitation of Liability Clauseccccoccooeiiniiiiininnn. 6
No Preemption of UCC Filing Requirements by Lanham ACtccccccoiiiiimininneecnin, 6
Refiling Requirement for Shipped Goods Tolled by Bankruptcy Petitionccccvveeeennn. 6
OTHER MATTERS OF INTEREST

Concerning Articles 2, 2A, Revised 3, 4A, Revised 8and 9............cccccvvviiinnnnincinnenn, 7

)

THE PROBLEM OF
EMBEDDED SOFTWARE IN UCITA AND

DRAFTS OF REVISED ARTICLE 2

Philip Koopman, Ph.D., Associate Professor,
Electrical & Computer Engineering Department,
Carnegie Mellon University; and Cem Kaner, J.D.,
Ph.D., Professor, Department of Computer
Sciences, Florida Institute of Technology

[This is the first part of a multipart article. The first
two parts focus primarily on UCITA; the rest will focus
more on Article 2. All references to UCITA are to the
amended, commented draft dated July 28—-August 4
2000, available at www.law.upenn.edu/bll/uilc/ucita/
ucita1200.htm.—Ed.]

1. Introduction

If one of the key purposes of commercial law
is to facilitate commerce, we should listen carefully
to the repeated pleas from business advocates
(such as many Chambers of Commerce) to simplify

' Copyright 2001 Philip Koopman and Cem Kaner;
permission to reproduce in UCCSEARCH™ granted.

the law and avoid needless regulation. Regulations
should serve a societal purpose whose value
outweighs the cost of compliance. The treatment
of software embedded in goods in UCITA and
proposed revisions to Article 2 does not serve this
purpose.

UCITA and some recent drafts of Article 2
attempt to make distinctions between embedded
and non-embedded software. This issue was
discussed repeatedly in the Article 2B/UCITA
drafting committee meetings (Kaner attended 15
of the 16 meetings). The drafters and most of the
observers repeatedly agreed that embedded
software, such as the software that controls the
fuel injectors in your car, should be governed under
Article 2 rather than UCITA. Recent meetings of
the Article 2 drafting committee and the 1999
annual meeting of the American Law Institute
considered proposals to take non-embedded
software (such as financial application software
on mainframes or office productivity software on
desktop PCs) outside of the scope of Article 2.

We believe that these distinctions are

WEST GROUP

Bancroft-Whitney « Clark Boardman Callaghan
™ Lawyers Cooperative Publishing s WESTLAWS= West Publishing

Customer Service: 1-800-328-4880
Fax: 1-800-340-9378

Vol. 43, Release 1

Copyright 2001, West Group. All rights reserved. No part
of this work may be copied or reproduced in any form
without the written permission of the copyright owner.

UCC BULLETIN

fundamentally flawed. They are based on an
outdated view of embedded software, from a time
when computer processors and memory were
expensive, energy consumption of computer
components was high, and the computational
power of inexpensive processors was very limited.
To complicate the problem further, the proposals
treat software that is embedded in a computer (or
in a computer peripheral) as non-embedded. This
exception (software embedded in a computer or
peripheral) swallows the rule (embedded software
should be treated differently).

It is increasingly difficult to distinguish between
embedded and non-embedded software as
embedded systems and desktop computing merge
into a more integrated computing environment. The
simplest approach is to make the distinction a
matter of contract. If the software and the
associated goods are sold together, under the
same contract, treat the software as embedded in
the goods. Alternatively, if the software is sold or
licensed under a separate contract, treat the
software as being separate and non-embedded.
(We've been told repeatedly that this is essentially
the distinction made by the United States military
when it acquires hardware and software.)

We’re not fond of this distinction because it
says that a vendor can bring any software within
or out of UCITA simply by choosing to use one
contract or two. However, this rule has two
important advantages:

e It is absolutely clear. Both parties to the
contract and the court will be able to quickly
decide whether software sold (or licensed) with
goods is to be treated as part of the goods.

e The rule doesn’t drive companies into making
artificial engineering design trade—offs in order
to bring a product within (or out of) UCITA.

Based on those advantages, Kaner has repeatedly
proposed, at meetings of the Article 2B/UCITA
drafting committee, the Article 2 drafting committee
and at the 1999 ALI annual meeting, that this be
the distinction made within UCITA and Article 2.
The proposal was repeatedly rejected.

We are not advocating this simple distinction
in this article. Instead, we are raising it here as a
baseline for comparison.

Suppose that Criterion X is proposed as a
distinction between embedded and non-embedded
software, such that software is considered non-
embedded (and is thus governed by UCITA) if it
meets Criterion X and is considered embedded
(Article 2) if it fails Criterion X. One way to evaluate

the merit of Criterion X is to ask how hard it would
be for a designer of a product to make the product
meet or fail Criterion X intentionally. For example,
how hard would it be for a car manufacturer to
make its fuel injector software satisfy Criterion X?
If the manufacturer can pick its governing law by
making relatively simple engineering choices, then
the law is equivalent to the rule that the software
is embedded if it is sold with the hardware, and
non-embedded if it is the subject of a separate
contract. For a manufacturer in this situation,
Criterion X is merely a regulation and the cost of
bringing the software within UCITA is merely the
cost of complying with the regulation. Such a
regulation has social value only if the actions
required to achieve compliance create some value,
such as by making the product safer or more
reliable, or by bringing income to the state.

1.1 Three Questions to Evaluate Criteria for
Distinguishing Embedded from
Non-Embedded Software

The drafting committees keep entertaining new
proposals for criteria that purport to distinguish
between embedded and non-embedded software.
We’ll consider some of them in this paper, but we
can’t anticipate all the new variations that will be
proposed. We suggest that when you see a
proposed criterion, you ask three questions:

e Does this distinction go to the heart of the
difference between embedded and non-
embedded software or does it merely reflect a
difference in how these types of software are
(as far as you or the drafters know) commonly
implemented today?

e What would it take for a manufacturer to
redesign its product in a way that brings the
embedded software under UCITA? Are there
examples already on the market that most
people would consider to be embedded
products that would fall under UCITA without
such modifications?

e Suppose that a manufacturer made the least-
cost design changes that bring its embedded
software under UCITA. What are the expected
impacts of the changes? For example, do we
expect the resulting product to be safer? Easier
to set up and use? Less likely to need repairs?

We respectfully suggest that a distinction that
doesn’t go to the heart of the difference between
embedded and non-embedded software, that can
be worked around easily and whose likely
workarounds won’t improve the product, is a bad

UCC BULLETIN

distinction, in effect a regulation of the kind that is
reviled by businesses because it imposes a cost
on the business for no good purpose.

2.Why Does This Difference Matter?

An argument that surfaced repeatedly in the
Article 2 meeting in St. Louis (November 18—-19,
2000; Kaner attended the meeting) was that the
distinction is not very important. It was suggested
that the Article 2 rules are not so different from
common law or UCITA rules that it would be
worthwhile to intentionally bias the design of a
product in order to bring it within one law instead
of another.

However, at the same meeting it was
repeatedly suggested that Article 2 might fail due
to industry opposition if we did not exclude
software from its scope. Evidently, the distinction
between Article 2, UCITA, and common law rules
is material to some influential people.

Let us suppose that a manufacturer is
designing a product that includes software and can
bias the design in a way that brings the software
under Article 2 or under UCITA. Here are just a
few of the advantages that the manufacturer would
gain by selecting UCITA. (Note: for detailed
references, please see Cem Kaner, Software
Engineering & UCITA, 18 J. Comp. & Info. Law
435 (Winter, 1999; available online at
www.badsoftware.com/engr2000.htm.)

s For non-mass-market products, there is no
perfect tender rule.

s The clickwrap/shrinkwrap contract formation
model is explicitly adopted in UCITA but not
in current Article 2 and not so completely
embraced in recent drafts of revised Article 2.

e The implied warranty of merchantability in
UCITA is more vendor-friendly than the one in
Article 2.

¢ Under UCITA, a disclaimer of implied warranty
can meet a requirement of conspicuousness
even if it is unavailable for inspection by the
customer prior to the sale.

e Under UCITA, it is easier to argue that some
feature or aspect of performance that
appeared in a product demonstration does not
give rise to an express warranty than under
Article 2.

e UCITA defines material breach differently from
the common law (Restatement of Contracts,
Second, Section 241), and the definition is

more favorable to the vendor.

o UCITA allows the vendor to place significant
use restrictions on the product, restricting how,
when, where, how often and for what purpose
the customer can use the product. Such
restrictions are unusual in a sale of goods and
not explicitly authorized in Article 2.

e UCITA allows the vendor to place transfer
restrictions on the product, blocking the
customer from reselling the used product.
Such restrictions on alienation are foreign to
a sale of goods and have historically been
unenforceable in mass-market sales of
intellectual property-based products such as
books and records. UCITA has been sharply
criticized because it “circumvents copyright’s
first sale doctrine.” Committee on Copyright
and Literary Property of the Association of the
Bar of the City of New York (cosponsored by
the Communications and Media Law
Committee and the Entertainment Law
Committee), Report on a proposal of the
National Conference of Commissioners on
Uniform State Laws to adopt a proposed
Uniform Computer Information Transactions
Act (June 21, 1999 at 18), available online at
www.2bguide.com/
docs/Copy.Comm1.pdf.

We think that some manufacturers will
consider these differences significant enough to
be willing to spend some design and
implementation money in order to bring their
products under UCITA.

Here’s an example. The modern automobile
often has over a million lines of embedded code.
Software controls the feel and effectiveness of the
brakes, the smoothness of the ride, the feel of the
suspension, the feel of the steering, the fuel
efficiency and responsiveness of the car, security
features, many aspects of the maintainability of
the car and so on. These all play significant roles
in buyers’ decisions between car models, and so
they are arguably material to the transaction.

Imagine the consequences of bringing a car’s
embedded software within UCITA. Apart from the
liability issues, just think of the transfer issue. The
car manufacturer would be able to say that when
you buy your new car, you cannot transfer the car’s
software to another person without paying a
substantial transfer fee to the manufacturer. You
or your customer would either have to pay the fee
or buy (at substantial expense) replacement
software for dozens of computers scattered

UCC BULLETIN

throughout the car. This will drive up the price of
used cars, making them less competitive with new
cars.

Additionally, note that under UCITA section 104,
if the embedded software is governed by UCITA
and if access to that software is a material part of
the transaction, then the vendor can also bring
the rest of the transaction within UCITA. If the
software in your car is material to the transaction,
the manufacturer can bring the whole car sale
within UCITA.

We believe that this capability alone (the
ability to require customers to get the
manufacturer’s permission and pay a fee in order
to resell a used product) would be a significant
incentive to many manufacturers.

3. UCITA’s Treatment of Embedded Software

UCITA purports to apply only to what might be
called “general purpose” computers and their
peripherals. To a casual computer user, this brings
to mind visions of a Windows™ PC or a
Macintosh™, keyboards, mice and printers.
However, the actual wording in the UCITA
documents is vague and inconsistent and actually
includes a wide variety of everyday items used by
ordinary people, professionals and businesses. The
official comments do not remedy this situation and,
in fact, contain substantial technical inaccuracies
and apparent contradictions on the point of
embedded systems.

We cannot walk through a detailed analysis
of the comments in the space available in this
paper. The comments are not law, they were not
reviewed in the drafting committee meetings and
so we believe that judges will rely much more
heavily on the black letter of UCITA than on the
comments. However, we invite the interested reader
to review Philip Koopman’s analysis of the
comments in his paper, “Why UCITA Falls Short
for Embedded Systems” available online at
www.ices.cmu.edu/koopman/ucita/

embedded ucita.pdf.
3.1 The Exclusion of Embedded Software

UCITA defines its scope (and thus includes or
excludes embedded software and associated
goods) in Sections 103 and 104. Here are the most
relevant parts:

103(b)(1) If a transaction includes
computer information and goods, this [Act]
applies to the part of the transaction
involving computer information,
informational rights in it and creation or

modification of it. However, if a copy of a
computer program is contained in and sold
or leased as part of goods, this [Act]
applies to the copy and the computer
program only if:

103(b)(1)(A) the goods are a computer or
computer peripheral; or

103(b)(1)(B) giving the buyer or lessee of
the goods access to or use of the program
is ordinarily a material purpose of
transactions in goods of the type sold or
leased.

104 The parties may agree that this [Act],
including contract-formation rules, governs
the transaction, in whole or part, ... if a
material part of the subject matter to which
the agreement applies is computer
information or informational rights in it that
are within the scope of this [Act], or is
subject matter within this [Act] under
Section 103(b) However, any
agreement to do so is subject to the
following rules:

104(a)(4) A copy of a computer program
contained in and sold or leased as part of
goods and which is excluded from this
[Act] by Section 103(b)(1) cannot provide
the basis for an agreement under this
section that this [Act] governs the
transaction.

Section 103(b)(1) appears to exclude
embedded software, but the exception to the
exclusion (software that is embedded in a
computer or computer peripheral) swallows the
rule.

3.2 Defining a “Computer”

UCITA Section 102(a)(9) defines “computer” as
an electronic device that accepts
information in digital or similar form and
manipulates it for a result based on a
sequence of instructions.

This definition encompasses virtually all digital
computers, embedded or otherwise.

The Institute for Electrical & Electronics
Engineers Standard Glossary of Computer
Hardware Terminology, IEEE 610.10—-1994 defines
computer as:

a device that consists of one or more
processing units and peripheral units, that
is controlled by internally stored programs,
and that can perform substantial

UCC BULLETIN

computations, including numerous
arithmetic operations, or logic operations,
without human intervention during a run.
Note: may stand alone, or may consist of
several interconnected units.

This definition is generally comparable to the
UCITA definition in scope. It is worth noting that
IEEE 610.10-1994 sees fit to identify an
“embedded computer” as a subset of the class of
all computers:

a computer system that is part of a larger
system and which performs some of the
requirements of that system; for example
a computer system used in an aircraft or
rapid transit system.

Thus, using either the UCITA definition of
“computer” or the |EEE definition of “computer,”
the concept of a computer means all computers,
not just desktop computers.

Here are some examples of devices that are
computers within UCITA’s definition.

FUEL INJECTION CONTROL FOR AN AUTO

Essentially all future automobile engine
controllers will have reprogrammable memory
(e.g., flash memory) to reduce the potential cost
of recalls in the event of a software defect being
discovered, and it is common to have it even today.
Currently flash memory is being used by cell
phones, hard drives, network hubs, and most
automotive engine controllers. (Source: http://
www.bizjournals.com/sanjose/stories/1996/09/23/
story6.html, September 20, 1996 article on flash
memory usage and our discussions with
automotive engineers.)

Itis possible on newer vehicles to reprogram
engine operation by updating an existing flash
memory chip with a new software version, much
as one updates the “BIOS” software in a desktop
or laptop computer. On older cars, the equivalent
operation can be accomplished by replacing either
the memory chip itself or the entire engine control
computer (both hardware and software). The
Crossfire upgrade kit is an example of a combined
software/hardware upgrade to an old vehicle’s fuel
injection control:

Our Turbo City Corvette ‘82—'84 Crossfire
Upgrade Kit gives you: a 90’s computer
to make the Crossfire Fuel Injection react
more quickly and more accurately. The
package includes the 90’s Crossfire
upgrade computer with Eprom, crimping
pliers, connectors and instructions to
change-out the ‘82-'84 ECM. This will
improve low and midrange performance,

and fuel and spark delivery. The ECM will
have our custom stock Crossfire chip.
Once your upgrade computer is installed,
we can provide special programming for
replacement chips that will compensate for
almost any type of performance
modification or added power accessory.
Any number of custom performance or
special requirement chips will be made for
your request, for only $129.00 + S&H per
chip. (Turbo City Performance
Headquarters, Hey There Corvette
Crossfire Owners! www.turbocity.com/
CorvetteCrossfileECMUpgrade.htm.)

This is being sold by a third party, not by the
makers of the Corvette. Other discussions on the
site make it clear that the software comes with a
license. Note that this chip is an EPROM (erasable
programmable read only memory). Further updates
can be made by bringing the car to a service center
to have the chip reprogrammed or by simply
purchasing a new EPROM and throwing the old
one away as one would do with a disk or CD for an
out-of-date piece of desktop software.

The Crossfire fuel injection software comes on
a computer chip. This chip is not sold as part of
any other goods—you use it by installing it in your
car, but that’s not how you buy it. You buy software
that is contained in a good (the Crossfire
replacement computer) in a manner no different
than buying a video game cartridge or software on
CD-ROM for a desktop computer. Note also that
the primary purpose of the transaction is to give
the buyer use of a computer program (the one that
will change the performance characteristics of the
car). Thus, the software also falls within UCITA
under Section 103(b)(1)(B).

This software transaction is clearly within UCITA
when you buy it from Turbo City.

e What if you bought a used Corvette and this
chip was already installed in the car when you
bought the car? The software is still contained
in the Crossfire computer. Shouldn’t UCITA still
cover the transaction?

e What if you signed two contracts when you
bought the used car? One contract covers the
car in general, but not the Crossfire computer.
The other is a transferred license to the
Crossfire computer and its software. Now the
software is contained in a Crossfire computer
that has been sold separately to you. How
could UCITA notcover this transaction?

What if General Motors wanted to bring its

UCC BULL

original equipment fuel injectors within UCITA?
Let us consider this possibility in terms of the
three questions of part 1.1 above:

e Does the distinction go to the heart of
embedded software? The distinction between
a fuel injector control chip supplied by General
Motors as original equipment and an equivalent
chip supplied by a third party cannot go to the
heart of the difference between embedded and
non-embedded software. Both chips are
plugged into the same machine, and they do
essentially the same things in the same ways.

e What would it take to bring the product within
UCITA? If we accept that the Turbo City chip
is covered within UCITA, then GM could
achieve the same result for its own chips by
selling its fuel injector chips and software as
options. For example, the Corvette dealer
could offer customers three different choices:
one would optimize the car for fuel efficiency,
the other could optimize the car for responsive
handling and the third could be the Turbo City
chip. On making the choice, the customer
would sign a separate contract, write a
separate check and receive a separate license
and warranty page that is specific to the chip.

o Whatis the benefit of changes made to bring
the product within UCITA? The consumer
benefits gained from GM’s offering a selection
of fuel injector chips might outweigh the
additional costs in design, testing,
manufacturing, inventory management and
support—or they might not.

[Next month: More examples of “computers”
as defined by UCITA.—Ed.]

MATTERS OF MAJOR INTEREST

FAILURE OF ESSENTIAL PURPOSE BY A
LIMITATION OF LIABILITY CLAUSE

[See UCC Case Digest 12719.11(4)]

The limitation of liability clause in a licensing
agreement, under which the defendant was to
provide computer software to assist the plaintiff's
business, fails of its essential purpose. Judge
Lowell A. Reed Jr. writes the opinion for the United
States District Court for the Eastern District of
Pennsylvania. Under Pennsylvania UCC §2-719,
an exception to the limitation of liability clause in
a commercial contract arises, for example, where

A monthly newsletter
highlighting
and commenting
upon recent

noteworthy
developments
relating to the
Uniform
March 2001 West Group Commercial Code
IN THIS ISSUE . ..
The analysis of “Embedded Software” and UCITA begun last month continues 1
MATTERS OF MAJOR INTEREST
“Free from Defects for Stated Time” Extends to Future Performancecccceeeennne.. 6
Bank Not Wrong in Refusing to Honor Corporation’s Cashier’'s Checkccccccoeunee.. 7
Guarantor Is a “Debtor” with the Same Anti-Waiver Protectioncccoccoiiiiiiiiiinnnn. 7

OTHER MATTERS OF INTEREST

Concerning Articles 2, Old 3, Revised 3and 9

THE PROBLEM OF EMBEDDED
SOFTWARE IN UCITA' AND DRAFTS
OF REVISED ARTICLE 2°

Philip Koopman, Ph.D., Associate Professor,
Electrical & Computer Engineering Department,
Carnegie Mellon University; and Cem Kaner,
J.D., Ph.D., Professor, Department of Computer
Sciences, Florida Institute of Technology

[This is the second part of a multi-part article.
The first part and this part focus primarily on UCITA;
the rest will focus more on Article 2. The first part
ended in the middle of citing examples of what
qualifies as a “computer” under UCITA. This part
continues with more such examples.—Ed.]

' Allreferences to UCITA are to the amended, commented
draft dated July 28-August 4 2000, available at
www.law.upenn.edu/bll/ulc/ucita1200.htm. [Last month, all
numbered footnotes along with their references in the text
were inadvertently omitted during production. We regret
the error.—Ed.]

2 Copyright 2001 Philip Koopman and Cem Kaner;
permission to reproduce in UCCSEARCH™ granted.

LASER PRINTERS

A laser printer is an electronic device. It
accepts information in digital form. It stores the
information in memory (often two megabytes or
more). The printer processes the stored information
in a sequence, interpreting it as a series of
commands with associated data. The printer might
interpret the stored information using Hewlett-
Packard’s PCL (printer control language) or
Adobe’s PostScript language or some other
language. Whatever language is used, the
information is interpreted as a sequence of
instructions and the printer’s execution of those
instructions leads to printouts, displays or
messages on the printer’s control panel, or
messages back to the application that requested
printing services. Therefore, a laser printer is a
computer within UCITA's definition, section
102(a)(9).

The software that comes with the printer, for
example in the printer firmware, is a classic
example of embedded software. But UCITA will not
treat it as embedded because it is embedded in a

A
WEST GROUP

Bancroft-Whitney « Clark Boardman Callaghan
™ LawyersC 9+ WESTLAW® « West

Customer Service: 1-800-328-4880
Fax: 1-800-340-9378

Vol. 43, Release 2

Copyright 2001, West Group. All rights reserved. No part
of this work may be copied or reproduced in any form
without the written permission of the copyright owner.

UCC BULLETIN

computer (or in a computer peripheral).

HOME MEDICAL DEVICE: BLOOD GLUCOSE
TESTING

Consider Johnson & Johnson’s SureStep Blood
Glucose Monitoring System. (For current
information on this product line, go to
www.lifescan.com.) Initially this device had very
limited functionality. Prick your finger (to draw
blood). Wipe the blood on a test strip. Insert the
test strip into the LifeScan reader and the device
presents you with a reading of blood sugar level.
More recent versions of the device come with
diagnostics and store the last several readings.
Now, you can download software, get a cable, and
transfer data from the monitor to your personal
computer. One version of the device, which sells
for under $100, is available at many pharmacies
and does not require a prescription, stores up to
150 tests and automatically creates 14-day and
30-day test averages. An even newer model, the
Profile, can hold 250 tests, records additional
information about the user (such as insulin type
and dosage), and labels tests by events (such as
exercise), creating fairly detailed database records
that carry an activity code, a reading, a time stamp,
a date stamp, and probably other information. This
can all be downloaded to a computer.

This is an electronic device. Inputs to the
device are from the buttons (which are probably
encoded, like a keyboard, to send a digital signal
back to the central processor) and from a scanner
that analyzes the blood on a test strip. The scanner
output is probably digitally encoded and passed
to a central processing unit that further interprets,
stores, and transfers the resuits. The handling of
the button inputs, the display of information on
the device’s LCD screen, analysis of the blood,
and the transfer of results to another computer
are all done in accordance with a stored series of
instructions. Therefore, we believe, this device is
a computer within the definition of UCITA section
102(a)(9).

By the way, even if you don’t think of this device
as a computer, you should think of it as a
peripheral because it collects data that it can
transfer to a computer. Therefore, even though this
seems to be an obvious example of an embedded
computer running embedded software, the software
will be governed by UCITA.

Another consideration for this device, if you
don’t think of it as a computer, is to ask what would
be needed to make it a general enough purpose
computer to fit within your interpretation of UCITA
section 102(a)(9) (or some other appropriate

definition of a computer). For example, we could
add other inputs. Maybe it would take yourblood
pressure (computerized blood pressure
measurement tools are popular in the home
medical market). Or it could test you for
pregnancy. Check the potassium levels in your
blood. Check your children’s blood for evidence of
drug abuse. Check your blood alcohol levels before
you drive. Or it could connect to your family doctor
through a web connection (embedded web
controllers are available inexpensively, see below),
uploading data and perhaps browsing your medical
records for you. Perhaps you could use it to check
the status of your prescriptions at your
pharmacist’'s web site. These “enhancements” are
possible and at some point this device must fit
any reasonable definition of computer. However,
the functions all look like traditional embedded
hardware/software functions to us. We certainly
wouldn’t want such a device covered by UCITA,
and in terms of societal value, the more
functionality that you add to a device, the more
risk of error. A manufacturer might inflate the
feature count in order to bring the product under
UCITA but thereby achieve a less safe or less
reliable device as a result.

OTHER DEVICES THAT ACCEPT ANALOG
INPUTS

The Motorola 68020 is the central processing
chip that controlled the Macintosh Il series
computer, as well as the Sun Microsystems series
3 Workstation, both classic general purpose
desktop machines. As faster central processors
came to the market, the 68020 moved into laser
printers, becoming a workhorse for running Adobe
Postscript. Today, versions of this chip are still
used in many industrial applications, and in those
cases the chip and its software look like an
embedded computer and software.

The 68020 doesn’t interface directly with the
physical world, but an embedded version of that
same processor called the 68332 does. The 68332
is a 68020 processor with additional features,
including 16 digital Input/Output pins to interact
with the external world. (The fact that the pins are
digital does not prevent them from being used to
accept analog inputs and produce analog outputs
with appropriate support circuitry added external
to the processor chip.) Both chips can in general
execute the same software and use the same
engineering development tool set. In the last
decade, millions of 68332 chips have been used
as engine controllers in cars from General Motors
and Ford, among other uses. The newest version

UCC BULLETIN

of this processor family (now marketed as the
Coldfire processor by Motorola) also includes an
Ethernet network controller on the same chip as
the processor, and emphasizes the fact that it can
run the same general software as the 68020 as a
major selling point.

The 68332 is clearly “an electronic device that
accepts information in digital or similar form and
manipulates it for a result based on a sequence of
instructions.” The recently announced MCF5272
Coldfire chip can do not only that, but also run the
Linux operating system and communicate directly
with the Internet. Surely, these chips are no less
a computer simply because they can control a
car engine or a cash register. On this argument,
then, despite the definition of computerin UCITA
section 102(a)(9), an electronic device that
accepted information in analog form but
manipulated it in digital form for a result based on
a sequence of instructions should also be a
computer, and it certainly would be a computer
within the definition provided by the IEEE.

ELECTRONIC GAMES AND SEWING MACHINES

A product like the Nintendo Game Boy lets
you play computer games within the UCITA
definition of computer. The Game Boy is an
electronic device. It accepts inputs (such as
movements of a joypad) that are converted to
digital values, and responds to your inputs
according to a stored program. Additionally, the
Game Boy can run many different programs
(computer game cartridges contain programs) and
new games can be developed at any time that can
run on the Game Boy, without requiring any
modification of the Game Boy itself. Game Boys
can even be expanded with computer peripherals,
including a printer and a digital camera.

The Game Boy’s versatility as a computer
shows up in its use within Singer’s lzek sewing
system (www.singershop.com/whats new.html,
accessed 12/26/00). This system will automaticaily
sew stitch patterns, buttonholes, and lettering. The
system “includes a sewing machine, Game Boy,
connection wire and special cartridge that contains
stitch patterns and designs.” These programs are
not computer games. The Game Boy is therefore
capable of running applications of various types
(games, sewing, and therefore probably many
others).

One would normally consider the Game Boy
to be an embedded computer in a situation like
this. The programs to sew stitch patterns,
buttonholes, and lettering are focused on driving
the output device (the sewing machine) in a limited

number of ways. However, UCITA makes no
provision for a device that is sometimes a general
purpose computer and sometimes a narrow
embedded device. Therefore, the sewing machine
software should be, under UCITA, treated as if it
were non-embedded because it runs on a computer.

Products That Use Embedded Web Servers

A web server is normally a big machine.:
Recently, companies have been offering embedded
web servers—a full web server on a chip.

The world’s (allegedly) smallest web server is
featured at www-ccs.cs.umass.edu/~shri/iPic.
html. This device is smaller than a matchbox and
costs less than $1. The author suggests a wide
range of applications; for example:

The iPic chip can be embedded in every
appliance ... in the house. These devices and
appliances can all then be controlled from
your web-browser. ... Once this is all set up,
you do not need the computer to control the
appliances—they can communicate with each
other through the power wiring and coordinate
each other’s activities. For instance, your
alarm clock might tip off the rest of the house
that its alarm time-setting has changed.

As another example,

Many industrial computers and devices are
equipped with their own remote management
facilities. With technology like the iPic they
can be connected to common network
facilities, instead of using dedicated wires and
a dedicated control terminal, for each device
or equipment. All these devices, which may
include HVAC equipment, climate control in
offices and large buildings, lighting and power
management, security surveillance and
monitoring, process control equipment, and
many others can now all be controlled and
managed using a unified terminal and with
simplified procedures. This can lead to lower
costs, better management, and sometimes,
even increased safety.

Another small, inexpensive web server that
claims to be the smallest is the SitePlayer SP1
at www.siteplayer.com/products.htm, available in
quantity for $19.95 each. The SP1 is based on
the venerable 8051 embedded processor chip
design, which has been shipped in more than a
billion embedded systems to date. According to

3 For descriptions of inexpensive web servers, check

online at www.dell.com/us/en/bsd/products/
line servers.htm.

UCC BULLETIN

the SitePlayer manual:

The SitePlayer is “the first product in a family
of embedded web servers designed to enable
any microprocessor-based device to become
web enabled easily and inexpensively. In
approximately one square inch, SitePlayer
includes a web server, 10baseT Ethernet
controller, flash web page memory, graphical
object processor, and a serial device
interface.... Example applications include
audio equipment, appliance thermostats,
home automation, industrial control, process
control, test equipment, medical equipment,
automobiles, machine control, remote
monitoring, and cellular phones.... SitePlayer
is a web server coprocessor that handles web
protocols and Ethernet packets.... SitePlayer
can also be used in some applications in a
‘stand alone’ mode where simple I/0O can be
performed.”

These are electronic devices. They receive
digital input. They manipulate the input, following
some sophisticated programs. They are, under
UCITA’s definition, computers. Software that runs
on them is therefore not to be treated as if it were
embedded software. But these are classic
examples of embedded computers and embedded
software applications.

Other Examples

®* The Palm is an example of a personal
digital assistant (PDA). This type of
handheld device offers several simple
applications, such as managing address
books, calendars, and to-do lists. This is
a computer, under UCITA’s definition.

®* Windows CE (consumer electronics) is an
operating system that is used in hand-held
PCs for general purpose software such as
PowerPoint, but can also be used in
embedded systems. The main web site for
MS embedded systems is
WWwWw.microsoft.com/
windows/embedded/default.asp. Their end
user license agreement for embedded use
of the software is at www.microsoft.com/
windows/embedded/ce/licensing/
sampleeula.asp. It contains all the usual
disclaimers that we see for desktop
software. (It should be noted that all the
embedded operating system vendors we
have contacted have similar licensing
terms; this is not simply an issue with

Microsoft's approach.) Microsoft lists
companies that use Windows CE as
embedded software at http://
www.microsoft.com/
windows/embedded/ce/quide/
casestudies/default.asp. For example, at
www.microsoft.com/
windows/embedded/ce/guide/
casestudies/idexx.asp, Microsoft
describes a milk-quality testing device to
ensure that only wholesome milk is sold.
Anything powerful enough to run Windows
CE will easily meet the UCITA definition of
a computer.

* Adigital telephone or a digital answering
machine is probably a computer under
UCITA.

* A digital camera is probably a computer.
We recently saw an advertisement for a
digital camcorder that can record digital
video, take single snapshots, display the
images you are about to tape or shoot on
a color LCD, and print color snapshots (on
a printer that is built into the camera). It
can also download data to a connected
computer or store data on memory sticks.

¢ Coauthor Kaner recently bought a Timex
alarm clock as a gift. It plays (digitized)
nature sounds and CDs. It has about 25
buttons. You can set several different
alarms, for different days. This is
electronic. It accepts what is probably
digital input from its buttons. It saves
settings in its memory, displays them on
its LCD screen, and then acts on them by
sounding an alarm or a piece of music. It
appears to be a computer (as defined in
UCITA). If you think it doesn’t quite meet
the criterion, ask yourself what would be
the cheapest enhancement to the clock
to make it meet the criterion. It would not
take much. Then ask, what social benefit
was created by that enhancement?

In conclusion, by saying that software that is

bundled with a computer is not to be treated as
embedded software is to say, because the definition
of computer is so broad, that an extremely wide
selection of embedded software will not be treated,
in UCITA, as embedded. We will review the Article
2 proposals in more detail in our next paper but
we will note here that this same problem applies
to them.

Additionally, if the software that is embedded

UCC BULLETIN

in the computer is legitimate UCITA subject matter
{(under Section 103(b)(1)), then under UCITA
Section 104, the vendor can specify that UCITA
will also cover the computer in which the software
is embedded. Looking back at the list of
examples, an enormous range of goods are being
putled out of Article 2 and put into UCITA.

3.3. Defining a “Computer Peripheral”

If the definition of “computer” was not broad
enough, UCITA section 103(b)(1){A) also specifies
that software is to be treated as non-embedded if
it is sold with goods that are a computer
peripheral. UCITA doesn’t define “peripheral.”

There are two possible ways to clarify the
meaning, both of which are too imperfect to be
practical: definition by listing items, and definition
by connectivity.

An attempt to list computer peripherals has
the advantage of superficial clarity. A nice tidy
list such as: “printer, scanner, keyboard, hard disk
drive, floppy disk drive, CD-ROM drive, DVD-ROM
drive, mouse, or trackball” is reasonably specific.
However, it suffers in that new peripherals are
continually being introduced (e.g., joystick,
parallel-port video camera, virtual reality glove).
Furthermore, even a seemingly obvious list and
complete list would be complicated by the issue
of dual-purpose items such as hard disk drives
that are used both in computers and embedded
systems.

The only plausible default definition of
“computer peripheral” other than a list of specific
items is “anything that is attached to a computer.”
IEEE standard 610.10-1994 defines a peripheral
as:

... adevice that operates in combination
or conjunction with the computer but is
not physically part of the computer and
is not essential to the basic operation
of the system; for example, printers,
keyboards, graphic digital converters,
disks, and tape drives.

This definition conveys the same general
sense and has the virtue of being internationally
standard technical terminology. But this approach
is fraught with problems.

Let us take the example of an ordinary laser
printer, which most people would agree is a
computer peripheral when placed in a normal office
setting. This printer could be connected via a cable
directly to a computer, making it a classical
peripheral device. Or it could be attached to a local
area network. Does being attached via a network

make a printer not a peripheral? Most would
probably say not, since it does not change the
inherent property of being a printer (especially
models that are factory configured to work both via
network or via dedicated peripheral cable right out
of the box). But, does that make anything
connected to a computer via a network or other
indirect connection a peripheral? If so, then very
soon a dizzying array of items could become
computer peripherals merely by adding a network
connection to an existing class of product that
most clearly is not a computer peripheral,
including: '

* Internet-enabled household appliances
(“smart” refrigerators, ovens, and so on,
which are now coming on the market)

®* gas and electric meters incorporating
modems to dial in meter readings (these
are already widely installed)

* digital television recording devices that use
a modem or cable modem to download new
programming information (these are already
established in the marketplace)

* sensors that use embedded web servers
to display status information (or perhaps
in that case a household thermostat would
really be a “computer” instead of a
“peripheral”™—it will be difficult to really know
until each and every such type of device is
dealt with by litigation)

If connectivity or the ability to send or receive
information to a general purpose computer is used
as the defining quality of being a computer
peripheral, then a number of devices that are usually
not considered to be peripherals would then be
transformed, by fiat, into computer peripherals.
These would include such software-bearing items
as:

®* Telephones (cordless, corded with
.electronics, cellular—essentially all
phones sold today), which are used as
computer input devices for phone menus,
whether input is touch-toned or spoken.
Similarly, voice mail systems are
implemented with general purpose
computers and use telephones as input/
output devices.

* Hotel doorknobs, which use magnetic
cards or other devices to send request for

entry into a general purpose computer in
the hotel office.

UCC BULLETIN

* Smoke detectors, fire alarms, and other
such safety critical devices in large
buildings, which are often monitored by a
general purpose computer.

* Laptop computer batteries that have
integrated monitoring chips to provide
charge level information to the laptop
computer. While part of a computer, they
are hardly what is normally thought of as
a “peripheral device.”

4. Conclusions

UCITA and Article 2 are attempting to
distinguish between embedded and non-embedded
software. Software that is embedded in goods will
be treated as part of the goods (under Article 2)
whereas software that is not embedded will be (it
is proposed) taken out of the scope of Article 2
and (in states that have adopted UCITA) left within
UCITA.

There are five fundamental problems with this
distinction:

* In general, it is almost impossible to
distinguish between embedded and non-
embedded software. We can think of
prototypic examples of embedded
software that are not being treated that
way under UCITA or draft Article 2.

* UCITA and Article 2 both treat software
that is embedded in a computer (used by
distinct embedded processors in its
keyboard, disk drives, monitor, and so on)
as if it were not embedded software.
Worse, the definition of “computer” is so
broad that a large portion of classically
embedded software will be arguably non-
embedded within UCITA.

® UCITA and some of the Article 2 proposals
treat software that is embedded in a
computer peripheral as if it were not
embedded software. This pulls even more
embedded software out of the scope of
Article 2.

¢ Non-embedded and embedded software
are converging. Complex collections of
functionality, such as web servers, are now
available as embedded software. Similarly,
complex operating systems (Windows CE
for example) and programming languages
(Java, Postscript) are being embedded in
devices. Distinguishing between embedded
and non-embedded software as they

become more similar will be increasingly
difficult.

* Finally, because the distinctions are so
fuzzy, it is often cheap and easy to adjust
some nonessential aspect of the product
in order to make a stronger argument that
the product belongs under UCITA or
outside of Article 2. Such changes will
rarely, if ever, achieve any benefit other
than the benefit to the vendor of having
pulled the product out of Article 2.

In the rest of this article [to appear in a future
issue—Ed.], we will look at distinctions that the
Article 2 drafting committee has been trying to
make. The same problems apply.

MATTERS OF MAJOR INTEREST

“FREE FROM DEFECTS FOR STATED TIME”
EXTENDS TO FUTURE PERFORMANCE

[See UCC Case Digest 112313.3(2), 2725.21(6),
2725.21(20)]

According to the Maryland Court of Appeals
(the state’s highest court), a warranty that goods
will have a certain quality or be free from defects
for a stated time explicitly extends to future
performance and is subject to the exception stated
in UCC §2-725(2). In relevant part, a mobile home
manufacturer warranted the home “to be free from
substantial defects of material and workmanship
under normal use and service for a period of twelve
(12) months from the date of delivery to the first
retail purchaser.” Thus, explains Judge Alan M.
Wilner (writing for the court), the four-year
limitations period did not begin to run until the
expiration of that one-year warranty term. While
the buyers thus had five years from delivery to file
their breach of warranty action, they took over nine
years to do so. For that reason, their action was
properly dismissed by the circuit court.

Maryland’s intermediate court, the Court of
Special Appeals, had previously affirmed the
dismissal, but on different grounds [40 UCC Rep
Serv 2d 937]. Relying on further contract language
limiting the manufacturer’s obligation to a duty “to
repair or replace ... any defective part or parts ...,
provided that written notice of the defect is received
from the purchaser ... within one (1) year and ten
(10) days from the date of delivery,” the Court of
Special Appeals decided that the warranty did not
extend to future performance because it was just
one to “repair or replace.” While agreeing that a

e UCC Bulletin

A monthly newsletter
highlighting
and commenting
upon recent

noteworthy
developments
relating to the
Uniform
April 2001 West Group Commercial Code
IN THIS ISSUE . ..
How “Embedded Software” is Treated by the Latest Draft of Revised Article 2 1

MATTERS OF MAJOR INTEREST

Payment Articles Revision Agenda (Respond thru the UCC E-mail Discussion Group) 6

Bank Not Required to Disclose Check Kiting Scheme to Other Bankcccccoean......... 10
Bank Lacks Duty to Non-Customer Who Requests Verification of Check 11
Bank’s Security Interest in Returned Checks Not a Preferential Transfer 11

OTHER MATTERS OF INTEREST
Several Cases Concerning Articles 1 and 2

THE PROBLEM OF EMBEDDED
SOFTWARE IN UCITA AND DRAFTS OF
REVISED ARTICLE 2

Philip Koopman, Ph.D., Associate Professor,
Electrical & Computer Engineering Department,
Carnegie Mellon University; and Cem Kaner,
J.D., Ph.D., Professor, Department of Computer
Sciences, Florida Institute of Technology

[This is the third part of an article begun in UCC
Bulletin, February, and continued in UCC Bulletin,
March. The first two parts (also available online as
“Part 17 at www.badsoftware.com/embedd1.htm)
focused primarily on UCITA; this one focuses more
on Article 2. All references to UCITA are to the
amended, commented draft dated July 28 through
August 4, 2000 and available online at
www.law.upenn.edu/bli/ulc/ucita/ucita1200.htm.
References to the latest scope proposal for Article 2
are to the February 2001 Draft 2—103 Scope available
at www.law.upenn.edu/bll/ulc/ucc2/scope0Q1.htm.—
Ed]

* Copyright 2001 Philip Koopman and Cem Kaner; permis-
sion to reproduce in UCCSEARCH™ granted.

1. Introduction

Having failed to develop a workable distinction
between embedded and non-embedded software,
the UCC Article 2 drafting committee now proposes
to throw the problem at judges and tell them to
make the distinction on a case-by-case basis. The
draft provides four factors to help the judge decide
when software is embedded. Unfortunately, as we
will show below, these factors will not be of much
help.

Why is this such a hard problem?

The Article 2B/UCITA drafting committee
worked long and hard on this issue. Its meetings
were attended by lawyers who had computer law
sophistication. Why did they ultimately fail to make
a meaningful distinction between embedded and
non-embedded software? (See UCC Bulletin,
February and March, for a detailed discussion of
the UCITA problems.)

The Article 2 drafting committee has made
substantial additional efforts to tackle this issue,
especially over the past year, but they haven’t had
any greater success. Why not?

In our view as computer scientists, the reason
nobody has succeeded is because they are

A
WEST GROUP

® ATHOMSON COMPANY

Customer Service: 1-800-328-4880
Fax: 1-800-340-9378

Vol. 43, Release 3

Copyright 2001, West Group. All rights reserved. No part
of this work may be copied or reproduced in any form
without the written permission of the copyright owner.

UCC BULLETIN

working on a problem that is fundamentally
impossible to solve. There is no principled
distinction between embedded and non-embedded
software, not even if you give “embedded software”
a new name, like “smart goods” or “integrated
software.”

2.Turing Equivalence and Article 2

The reason that there is no principled
distinction between embedded and non-embedded
software is that the decision to make a program
“embedded” (whatever “embedded” means) is
merely an implementation choice, subject to the
usual cost/benefit tradeoffs that influence
engineering design decisions. Change the costs
and benefits (for example, by changing the
regulatory structure associated with software) and
the engineer can replace one solution with an
equivalent alternative. From a Computer Science
viewpoint, two alternative programs and the
machines they run on can easily be equivalent even
if one appears to be “embedded” and the other
does not.

The concept of Turing Equivalence is based
on one of the early discoveries in Computer
Science (CS), the Church/Turing thesis (A.
Church, “An Unsolvable Problem of Elementary
Number Theory,” 58 Am. J. Mathematics 346,
1936; Alan M. Turing, “On Computable Numbers,
with an Application to the Entscheidungsprobiem,”
Series 2, 42 Proc. London Mathematical Soc. 230,
1936.) This is a basic result, studied by all CS
majors, typically in their sophomore or junior year.
For a detailed presentation, see Jack Copeland,
“The Church-Turing Thesis” at www.alanturing.net/
pages/Reference%20Articles/The%20Turing-
Church%20Thesis.html. For a gentler introduction,
see Steven Harnad, “Lecture Notes” at
www.cogsci.soton.ac.uk/~harnad/Hypermail/
Foundations.Cognitive.Science2000/0055.html.

The Turing Equivalence principle holds that any
computer can perform the same computations as
any other computer, given that it has enough
memory and is given enough time. The general
argument to support this principle describes a very
simple computer called a “Turing Machine,” and
then demonstrates that it can compute the same
functions as more complicated machines. Thus,
all computers are said to be “Turing Equivalent.”

One implication of Turing Equivalence is that
a program written for one computer can be made
to run on any other reasonable computer. This can
be accomplished by recompiling the program, by
simulating the instruction set of the first machine
(such as PC emulation software running on a

Macintosh), or by writing the program for a so-
called virtual machine (such as the Java virtual
machine) that runs on any computer. The important
result of this is that there is no reason why a
program written for a desktop computer can’t be
used in an embedded system, and no reason why
a program written for use in an embedded system
can’t run on a desktop computer. And, indeed, we
now see things such as the Windows CE operating
system being used for both purposes, and desktop
PC designs used in embedded products to simplify
development efforts. (See Rebecca Buckman,
“Microsoft Renews Push to Develop Chips that Run
Embedded Systems, Wall Street Journal
(Interactive Edition), Feb. 6, 2001.)

Another implication of Turing Equivalence is
that any particular computer function can be
implemented in a wide variety of ways, and each
of these different programs is equivalent (except
for perhaps the amount of memory used and the
length of time to complete the computation). As a
simple example, if you want to multiply the
numbers 3 and 27, you can do it in hardware by
using a multiply instruction; by using a program
with a set of bit-shifting instructions that simulates
the way people do multiplication with pencil and
paper; by using only addition (adding the number
27 three times); by using a table of precomputed
products for single digits similar to the times tables
we all learned in grade school; or even by
combinations of these techniques. The
muitiplication program could be written in any of
dozens of programming languages, and compiled
to one specific computer, to a virtual computer
running on any computer, or simply interpreted
directly from the program at run time without ever
being compiled to a machine-executable language.
All these techniques can and have been widely
used for decades in software for both embedded
computers and desktop computers. The choice of
implementation technique is based on economics,
ease of development, and sometimes other factors
such as regulatory and legal constraints.
Additionally, if one has sufficient computing power,
it is always possible to replace software with
hardware, and special-purpose hardware with
software.

Thus, attempts to legislate distinctions
between embedded and desktop computing
applications based on the way software and/or
hardware are implemented must fail because they
attempt to deny the implications of the Turing
Equivalence principle. While such distinctions
might be useful in describing the way systems

UCC BULLETIN

are implemented in the absence of artificial
influences, they are merely the results of
engineering tradeoffs. They do not indicate
differences in terms of theory of computation. In
fact, if there were an incentive to change
implementations (such as protection from legal
liability or expanded intellectual property rights),
it would be a very simple matter to change one
implementation to another that receives the more
favorable treatment. Thus, any attempt to
distinguish which software should receive favorable
treatment that is based on implementation
approach is doomed to failure from the outset.

3.The New Article 2 Factors
Proposed Article 2 Section 103(b) provides:

“(b) If a transaction includes goods and a
copy of a computer program, the folowing
rules apply:

“(1) This article applies to the goods.

“(2) If appropriate, this article, including
provisions that by their terms are applicable
to ‘goods,” also applies to the product
consisting of the goods and the copy
considered as a whole. Factors that may be
considered in deciding whether it is appropriate
to apply this article to that product include
whether acquiring the copy is incidental to
acquiring the goods, the manner in which the
copy is associated with the goods, the nature
of and circumstances surrounding the
transaction, and whether the copy is subject
to a license.”

Let us consider these factors in turn.

3.1 Acquisition is incidental to acquiring the
goods

How should the judge decide “whether
acquiring the copy is incidental to acquiring the
goods?”

The handling of a modern car is heavily
influenced by the software that controls it. If you
buy the car because you love how it feels when
you drive it, you may be buying the car largely
because of its software.

If you pay substantial amounts of money to
get an Internet-enabled kitchen, is the software
incidental to the appliances? What about the
Electrolux “Screenfridge” (http://www.electrolux.
com/screenfridge/)? This beauty, reportedly due
to hit the market this year, can recognize food
that is past its expiration date, can suggest
recipes, order food over the Internet, etc. In these
cases, the software is not incidental; it is central
to the purchase.

A classic example of software being the
central driving force behind purchases is the
evolution of Japanese rice cooker appliances in
the past decade. Old-style rice cookers had no
software, and produced varying results depending
on the ingredients used. Then fuzzy logic rice
cookers were designed that used sophisticated
control software to adjust cooking cycles to
variations in water and rice. Japanese consumers
turned out in droves to replace their old, perfectly
usable, rice cookers with ones having this new
software technology. This stimulated a flurry of
“fuzzy logic” labels on products of all kinds, turning
the type of control software used into the most
important selling point on many consumer
products. More recently, neuro-fuzzy logic rice
cookers have appeared that use neural net
software to dynamically adapt fuzzy logic to
produce even better rice. And many people have
tossed out perfectly usable fuzzy logic cookers to
upgrade to cookers with neuro-fuzzy software.
Thus, the introduction of new control techniques
(software) has been a major distinguishing feature
in the rice cooker market for years.

Software can often replace functional hardware
at a lower cost of goods. More capabilities become
economically feasible as chips get cheaper. The
use of software to replace hardware is accelerating
with flash memory or equivalent solutions that look
to the customer like non-erasable, read-only
memory, but afford the manufacturer or a third party
the ability to upload new software as needed to
improve operation or correct product defects. Your
personal computer has flash memory for the
“BIOS” software. Your car probably has flash
memory in its engine controller, as do DVD players
and even some sewing machines. More capabilities
become feasible as sophisticated operating
systems (such as Windows) and the associated
software design tools become available as
inexpersive embedded software platforms. As
software plays an increasing role in your kitchen
appliances, your home heating system, your car,
your television, and your bed, the capabilities of
the software will play a significant role in your
choice and perception of the product. Furthermore,
a significant fraction of the engineering effort spent
on developing new products is often spent on
creating software, and this trend is accelerating
(Would manufacturers spend that much effort on
a mere incidental aspect of a product?). As we
understand the meaning of the word “incidental,”
over time, software will become less and less
“incidental” to the sale of many traditional

UCC BULLETIN

consumer goods. In fact, increasingly as in the
case of rice cookers, the market for goods is
fundamentally driven by innovations in software.

3.2The manner in which the copy is associated
with the goods

How should the judge interpret “the mannerin
which the copy is associated with the goods?”

The Article 2 draft comments suggest that a
consideration is “whether its [the software’s] range
of functions is pre-set and cannot be modified
during operation.” Most off-the-shelf software
products have a pre-set range of functions. It is
difficult to modify most programs, especially off-
the-shelf programs, while they are running. This
doesn’t make these programs embedded or
suggest that they are like embedded programs.
Some programs have options—functions that allow
you to select how other functions will work—but
these can be provided just as well to a person
driving a car as to a person driving a word processor.

An obsolete view of embedded software is that
it comes on Read Only Memory chips that can
never be modified, just replaced. Some software
does come this way, but increasingly embedded
software is delivered and stored in a way that
allows for updating of the software as necessary.
The software might come on flash memory. Or it
might come on disk and be uploaded to a device
by the customer. Or it might come on ROM
cartridges (as many computer games do) that can
easily be swapped out by the customer. The choice
among delivery/storage media is a classic example
of engineering cost tradeoff. That choice should
not determine whether we call something
“embedded” or not.

3.3 The nature of and circumstances surround-
ing the transaction

How should the judge evaluate “the nature of
and circumstances surrounding the transaction?”

The comments ask (a) whether the transaction
occurs in the consumer market, (b) whether an
alternative program is available that performs a
similar function, and (c) whether it is available from
a source other than the seller of the goods.

The consumer/non-consumer distinction has
absolutely nothing to do with whether software is
embedded. Large commercial aircraft, tanks, and
nuclear reactors have a great deal of embedded
software, are subject to Article 2, but are not
consumer goods.

It is easy to provide customers with alternative
versions of a program to control a device. This is a
marketing choice, not an engineering choice.
Customers can buy fuel efficient versus high

performance versions of cars, and a key difference
often lies in the software. Cars could just as well
come with antilock brake and stability control
options that use different algorithms depending on
the experience and driving style of the driver.

The issue of availability from a third party also
involves a marketing choice, not an engineering
choice. If the law provides a strong enough
incentive to manufacturers to allow others to
develop and sell software that is compatible with
their devices, those manufacturers will publish
appropriate specifications and third parties will be
able to create the software. Third-party component
suppliers already write much of the software in
cars, so whether they sell it directly or via car
manufacturers is simply an issue of distribution
and marketing agreements, not technology.
Independent third parties already sell aftermarket
software to control many cars’ fuel injectors. (See,
for example, Turbo City Performance Headquarters,
Hey There Corvette Crossfire Owners!
www.turbocity.com/CorvetteCrossfile
ECMUpgrade.htm.)

Suppose that Customer A buys a stock
Corvette. Customer B buys the same car but then
buys fuel injector control software from Turbo City
and installs it in her car. Customer B’s fuel injector
software has limited functionality and exists to
control a device. To us, it looks somewhat like
embedded software (whatever that is). But the
transaction is independent of the car sale, and
the software is licensed. So under proposed Atrticle
2, this is probably not embedded software. But if
the Turbo City software is not embedded, then why
should the original software be considered
embedded? The one is a direct replacement for
the other, they serve the same functions, they
control the same device, and they are for the same
customer. If one is not embedded (and therefore
escapes the scope of Article 2), the other must
not be embedded either. But suppose Customer
C buys a Cadillac and suppose that its fuel injector
software is very similar to the Corvette’s (perhaps
even running on the very same computing
hardware), but there is no third-party replacement
software on the market yet. Would this mean that
Cadillac fuel injector software is embedded even
though Corvette fuel injector software is not? What
if Customer C’s fuel injector software is then
upgraded by the dealer to a newer software version
that comes with a software license (and that is
identical to preloaded software being shipped with
newer vehicles)? What if an independent garage
does the upgrade? Why should any of these
circumstances have any relevance to whether

UCC BULLETIN

software that runs a car’s fuel injection is in or
out of scope for Article 27

The “nature and circumstances surrounding
the transaction” factor will create enormous
confusion because it sweeps into relevance facts
that we think would otherwise be irrelevant in
deciding whether software is embedded or not.

3.4 Whether the copy is subject to a license

Finally, the judge must determine whether the
copy of the software was provided subject to a
license.

This factor, at least, is easy. Either there is a
valid licensing contract or there is not.

4. Evaluating Distinctions between
Embedded and Non-Embedded

There is no engineering basis for a principled
distinction between embedded and non-embedded
software. Software is software, no matter how it
is stored. However, this issue has been argued
$0 many times, in so many meetings of the Article
2B and Article 2 committees that we doubt that
we are seeing the last attempt at a distinction in
the February 2001 proposal.

This section suggests a few other approaches
to evaluating any proposed distinction between
embedded software (feel free to substitute the
equivalent phrase du jour) and non-embedded
software.

We have published two other detailed
analyses of proposed distinctions. The first was
in November 2000, when the Article 2 drafting
committee floated a distinction between integrated
(goods and software) and non-integrated products.
(Phil Koopman & Cem Kaner, Why the Proposed
Article 2 Revisions Fall Short for Embedded
Systems, available online at
www.badsoftware.com/embedd0.pdf.) The second
was our analysis of the UCITA distinctions in UCC
Bulletin, February and March.

In that analysis, we suggested that you ask
three questions of any proposal to distinguish
embedded from non-embedded software:

1) Does this distinction go to the heart of the
difference between embedded and non-
embedded software, or does it merely reflect
a difference in how these types of software
are (as far as you or the drafters know)
commonly implemented today?

2) What would it take for a manufacturer to
redesign its product in a way that brings the
embedded software under UCITA (or out of
Article 2)? Are there examples already on the
market that most people would consider to
be embedded products that would fall under

UCITA without such modifications?

3) Suppose that a manufacturer made the least-
cost design changes that bring its embedded
software under UCITA (or out of Article 2). What
are the expected impacts of the changes? For
example, do we expect the resulting product
to be safer? Easier to set up and use? Less
likely to need repairs?

We respectfully suggest that the four-factor
approach of the February 2001 draft would not fare
well under these questions. The factors appear not
to go to the heart of any differences between
embedded and non-embedded software. The
engineering and marketing changes needed to
change an “embedded” product covered by Article
2 to one outside the Article 2 scope would be
minimal and there is no reason to expect those
changes would provide anything more than a legal
benefit to the company, without a corresponding
benefit to society.

Gail Hillebrand, of Consumers Union (letter to
Lance Liebman, director of the American Law
Institute, November 30, 2000) also suggested
several factors for evaluating a proposed distinction
between embedded and non-embedded software
(her letter called them integrated versus non-
integrated products). We are rephrasing her
gquestions as assertions:

1) Software that operates features of consumer
goods like cars, stereos, home appliances,
and home medical devices should always be
covered by Article 2.

2) Itshould not be easy to “engineer around” the
scope rule by changing the location or manner
of delivery of programs contributing to the
features of goods.

3) Merely changing the storage medium of the
software, such as by using flash memory,
should not make a difference to the
deteymination of whether software is embedded.

4) Competing products in the marketplace should
not be treated differently under the definition
of embedded software. For example,
consumers of one brand of camera should not
find their transactions fully under Article 2 while
consumers of another brand of camera with
similar features find their purchase partially
excluded from Article 2 because of how the
software is delivered to or used in the product.

5) The current technological trends dealing with
embedded software should not have the effect
of excluding more and more goods from Article
2. Article 2’s scope should not automatically
and predictably be shrinking as more of the
functionality of goods is implemented in

UCC BULLETIN

software rather than in equivalent hardware.

6) The application of the test for an embedded
product, and thus for the scope of Article 2,
should not depend on factual questions which
will have to be litigated on a product-by-product
basis.

7) The characterization of a traditional consumer
product as information rather than goods
should not cause a change in the warranty or
intellectual property rights of the parties.

We respectfully suggest that the four-factor
approach of the February 2001 draft would not fare
well under these questions either.

5. Conclusions

As technology advances, more functions of
everyday products will be implemented in software.
In our view, functional products that are sufficiently
finished that they could be sold in a mass market
should be considered as goods, whether they
consist partially of software or not. To say
otherwise is to say that eventually most things we
use in everyday life will no longer be goods. We
don’t really believe anyone is trying to intentionally
remove most everyday goods from coverage under
UCC 2. But the problem is, nobody has been able
to propose a way to distinguish different types of
software that preserves the important principle of
everyday goods staying entirely within the scope
of UCC 2 as one would expect.

While several approaches to distinguishing
between embedded and non-embedded software
based on implementation approach have been
proposed, none have withstood technical scrutiny.
Nor are any such proposals likely to have a sound
engineering basis, because fundamental principles
of Computer Science hold that if there is an
advantage to any particular implementation
approach, it is possible to modify any software to
use that approach, whether “embedded” or not.
The current proposed wording for Article 2 has the
(in our view undesirable) effect of encouraging
manufacturers to skew their designs in order to
take products out of Article 2 (courts would
probably reason by analogy to the more vendor-
friendly UCITA). Furthermore, the current proposed
wording would result in an ever-increasing number
of products being driven out of scope from Article
2 with the normal passage of time and the routine
evolution of technology.

States that have adopted UCITA have made a
different policy choice, but in states that have not
adopted UCITA, we see no reason for the drafters
of the Uniform Commercial Code to compromise
long-standing protections for customers and

competitors, nor the doctrines of exhaustion, fair
use, and first sale. If something looks like a first
sale, and the state has not adopted UCITA, the
UCC should let it stay a first sale.

Mere technical implementation decisions
should not be the primary basis for a powerful
public policy change that will remove the
functionality of whole classes of goods from UCC
protection. The existing UCC should not be
weakened by removing an ever-increasing number
of everyday products from its scope. Copyright and
patent laws already protect the industry against
piracy—state laws need not provide these
essentially federal protections, especially if they
are unable to do so without undermining the
applicability of the UCC to everyday goods.

MATTERS OF MAJOR INTEREST
PAYMENT ARTICLES REVISION AGENDA

[Please post your response to this agenda to
the UCC e-mail discussion group. To join, go to

http://lists. washlaw.edu/mailman/listinfo/ucclaw-/
and follow the instructions there.—Ed.]

To: Drafting Committee To Revise Payment
Articles of The UCC, Observers And Advisers
From: Edwin E. Smith & Ronald J. Mann
Subject: 2001 Agenda
Date: March 2, 2001

In response to the resolution adopted by the
Executive Committee of the Conference in January
of 2001, the Drafting Committee met in San Diego
in February. The principal activity at that meeting
was to formulate an agenda for the possible
continuation of the project. The resolution calls
for a report to the Executive Committee from the
Chair and the Reporter. This memorandum
constitutes a first cut of the report that the Chair
and the Reporter plan to present to the Executive
Committee. Part of it is in draft form as a
convenient method of communication. To ensure
the broadest possible opportunity for comment,
this memorandum will be disseminated widely
before a final version is produced for transmission
to the Executive Committee.

At the San Diego meeting, the Drafting
Committee decided to recommend to the
Executive Committee that the project continue.
The Drafting Committee believes that there are a
number of significant enough issues on which the
Drafting Committee already has reached or is
relatively close to reaching consensus to support
that recommendation. The March 2001 Draft to be

