
Chapter 8
Conclusions

This book has demonstrated the effectiveness of a Threaded Interpretive
Graph Reduction Engine for executing combinator graph reduction.
The performance of TIGRE has been analyzed with respect to changes
in computer architecture. While special-purpose hardware can give
measurable performance improvements, the improvements are not sig-
nificant enough to merit building a custom CPU for the execution of
TIGRE programs. However, the exercise of creating the conceptual
design for a fast TIGRE processor shows that several architectural
features including cache management strategy, hardware stack buffer-
ing, and support of fast subroutine calls can significantly improve
performance if available on stock hardware.

8.1. CONTRIBUTIONS OF THIS RESEARCH

A summary of the contributions of research reported here is as follows:
• An execution model for combinator graph reduction has been

designed. This model is based on treating the combinator
graphs as executable threaded program graphs, instead of
data graph structures. Although the use of threaded execu-
tion for graph reduction has been previously reported, this is
the first comprehensive treatment presenting discussion of
implementation techniques, performance, and architectural
considerations.

• TIGRE, the Threaded Interpretive Graph Reduction Engine,
has been designed and implemented on a number of plat-
forms. TIGRE has been shown to be a fast graph reducer,
based on published performance data for other combinator
reduction schemes.

• TIGRE is able to take advantage of supercombinator compila-
tion and strictness analysis to improve efficiency over the
Turner Set of combinators. These advanced compilation tech-

97

niques do not require modifications to the TIGRE execution
scheme, showing the generality of the TIGRE approach.

• TIGRE is shown to be able to perform well within an order of
magnitude of performance of imperative languages and strict
functional programming languages, for small programs.
Thus lazy functional programming and other programming
methodologies built on pure combinator graph reduction are
viable for research and, with further improvements, for
general programming use.

• Cache simulations for TIGRE show that combinator graph
reduction has some unexpected cache behavior. Specifically,
programs show very high spatial locality. Additionally, the
write-allocate characteristic of cache memories, which is
given little attention in most architectural studies, proves to
be crucial to attaining good hit ratios for graph reduction and,
indeed, for any program using a compacting garbage collector.

• Other architectural analysis for TIGRE is given, listing
desirable architectural features for combinator graph reduc-
tion. These features are desirable to the extent that they can
be found on existing architectures, but do not offer the order-
of-magnitude speedups required to justify building special-
ized processors.

8.2. AREAS FOR FURTHER RESEARCH

The development of TIGRE has yielded new insights and new questions
at every step. Many research areas are now ready for exploration. Some
of the more important areas are listed below.
• Parallel graph reduction. A problem with parallel graph

reduction in the past has been one of practicality. If in-
dividual graph reduction nodes could not be made to go
within a factor of 100 as fast as a uniprocessor running an im-
perative language, there seemed little point in building a 100
node processor which could not possibly go as fast as single
workstation. TIGRE thus makes it feasible to design a paral-
lel graph reduction engine that can potentially run programs
more quickly than a uniprocessor using imperative lan-
guages. The Grip project (Peyton Jones et al. 1987) has used
similar reasoning to justify a parallel closure reduction
machine based on TIM, but TIGRE makes parallel pure

98 Chapter 8. Conclusions

graph reduction viable. Graph reduction is a simpler, more
obvious program manipulation technique than other methods,
and therefore may allow better insight into parallel execution
issues.

• Further software tool development. The work reported
here has focused on the core of TIGRE and, in particular, the
actual graph reduction engine. The results obtained form a
favorable feasibility analysis for the TIGRE approach to
graph reduction. However, many more software tools will be
needed before TIGRE can come into general use by the re-
search community. In particular, adaptation of a front-end
for some functional programming language, completion of a
fully automatic supercombinator compiler and a creation of a
usable interactive shell are required to make TIGRE useful
for software development.

• Further architectural measurements. The initial meas-
urements of TIGRE behavior are limited by a lack of exten-
sive software support. Additionally, large lazy functional
programs are difficult to find and, even when available, im-
possible to run without good compiler support. Therefore, it
would be prudent to repeat some of the experiments on
TIGRE when a larger software base is available. Also, it
would be revealing to compare TIGRE against other abstract
machines using a comprehensive benchmark suite with com-
parable implementations and compilers. This would not only
improve understanding of the strengths and weaknesses of
TIGRE, but also of common architectural requirements for
combinator reduction techniques in general.

• Formal analysis of TIGRE. A formal mathematical repre-
sentation of TIGRE might permit the analysis of TIGRE op-
timizations and a characterization of TIGRE with respect to
other approaches. It could help discover the fundamental dif-
ferences between TIGRE and other reducers such as TIM and
the G-Machine.

8.2. AREAS FOR FURTHER RESEARCH 99

100 Chapter 8. Conclusions

