Chapter 7
The Potential of Special-Purpose
Hardware

The preceding chapters have described various implementation
methods and performance data for TIGRE. This chapter uses those data
points to propose architecture and implementation features which could
be used to speed up the execution of TIGRE. The reason for examining
such features is to determine the feasibility of constructing special-pur-
pose hardware, or, if construction of special-purpose hardware is not
attractive, the features that should be selected when choosing standard
hardware to execute TIGRE.

Section 7.1 discusses using the DECstation 3100 as a baseline for
consideration. Section 7.2 discusses improvements that are possible by
modifying the cache management strategy of the 3100. Section 7.2
discusses improvements that are possibly by modifying other architec-
tural parameters of the 3100 and its MIPS R2000 processor. Section 7.4
summarizes the results of the discussions in the chapter.

7.1. DECSTATION 3100 AS ABASELINE

Since many of the performance measurements for TIGRE are expressed
in terms of the MIPS R2000 assembly language implementation, and
since the R2000 is a reasonably efficient processor, the approach used
for examining processor features to support TIGRE will be made in
terms of incremental modifications to the MIPS R2000 processor. This
approach will give a rough estimate for the potential performance
improvement, while maintaining some basis in reality. These pos-
sibilities for change should not be construed as implying that such a
modified processor should (necessarily) be built, but rather taken as a
method for approximating the value of adding certain features to con-
ventional processors.

The baseline performance of the MIPS R2000 as implemented in
the DECstation 3100 was discussed in Chapter 6. For the purposes of

89

90 Chapter 7. The Potential of Special-Purpose Hardware

Instructions per combinator 27.82
clock cycles per combinator 29.47
bus-limited clock cycles per combinator 30.09
cache read misses per combinator 0.33
bus writes per combinator 4.74
traffic ratio 0.59
heap nodes per combinator 0.74
spine unwinds per combinator 1.37
stack accesses per combinator 4.61

Table 7-1. Summary of TIGRE DECstation 3100 performance charac-

the following performance analysis, the characteristics of the SKI
implementation of the fib benchmark shall be used. A summary of these
characteristics, given in Table 7-1, will be used as the basis for estimat-
ing performance improvements possible with architectural modifica-
tions.

Since TIGRE has been shown to have some unusual cache access
behavior, the first area for improvement that will be considered is
improving the arrangement of cache memory. Then, improvements in
the instruction set of the R2000 will be considered.

7.2. IMPROVEMENTS IN CACHE MANAGEMENT

7.2.1. Copy-Back Cache

The most obvious limitation of the DECstation 3100 cache is that it uses
a write-through memory update strategy. This caused the limiting
performance factor to be bus bandwidth for memory write accesses,
instead of instruction read or data read miss ratios. A simple improve-
ment, then, is to employ a copy-back cache. A cache simulation of fib for
the DECstation 3100 shows that this reduces the data cache traffic ratio
from 0.59 to 0.29, removing the bus bandwidth as the limiting factor to
performance. This reduces the execution time of an average combinator
from 30.09 clock cycles (the bus bandwidth-limited performance) to
29.47 clock cycles (the cache hit ratio-limited performance).

7.2. IMPROVEMENTS IN CACHE MANAGEMENT 91

7.2.2. Increased Block Size

A second parameter of the cache that could be improved is the block size.
TIGRE executes well with a large block size, so increasing the cache
block size from 4 bytes to, say 256 bytes, should dramatically decrease
the cache miss ratio. A simulation using a block size of 256 bytes (and
assuming a 256 byte data bus) reduces the data cache miss ratio from
0.1103 to 0.0046, yielding a performance of 27.96 clock cycles per
combinator. Unfortunately, the R2000 has a 32-bit bus, and pin count
limitations prohibit the use of a very wide memory bus.

Using a wide bus write buffer with a 4 byte cache block size can
capture many of the benefits of a large block size, and reduce bus traffic.
A write buffer width of 8 bytes (one full graph node) can be utilized
efficiently by a supercombinator compiler to get a very high percentage
of paired 4-byte writes to the left- and right-hand sides of cells when
updating the graph.

Even if a very sophisticated cache mechanism were used to reduce
cache misses to the absolute minimum possible (ideally, 0.0000 miss
ratio), the speedup possibilities are somewhat small, since only 1.65
clock cycles of the 29.47 clock cycles per combinator are spent on cache
misses to begin with.

7.2.3. Prefetch on Read Misses

One variation of an increased block size is to use prefetch logic to fetch
the succeeding word in memory after each access. There are various
ways of determining when to fetch particular words, but the one of
interest here is the strategy of fetching a word into cache only after a
read generates a cache miss and the cache read miss was to an even-ad-
dressed word location.

Data cache read misses to even-addressed words (words which
align on 8-byte boundaries) specifically occur whenever a threading
operation is taking place. As threading takes place, the left-hand cells
of nodes are read to traverse the program graph. Since left-hand cells
are aligned on even word boundaries by TIGRE, these prefetches will
automatically fetch the right-hand sides of nodes being threaded into
the cache. The right-hand sides will probably be read as input argu-
ments to one of the next few combinators executed. This decreases the
overall cache miss ratio.

Unfortunately, the cache simulator cannot be coerced into simulat-
ing this very specific cache miss behavior. It is estimated that the
performance speedup obtainable is probably rather small, since the high

92 Chapter 7. The Potential of Special-Purpose Hardware

temporal locality of accessing program graphs ensures that the right-
hand sides of nodes will probably already be cache resident (not having
been flushed from cache since they were created) when the threading
operation takes place.

7.3. IMPROVEMENTS IN CPU ARCHITECTURE

The opportunities for improvement by changing the architecture of the
R2000 are somewhat more promising than those possible by modifying
the cache management strategy. In particular, it is possible to sig-
nificantly increase the speed of stack unwinding and performing indirec-
tions through the stack elements.

7.3.1. Stack Unwinding Support

The one serious drawback of the MIPS R2000 architecture for executing
TIGRE is the lack of a subroutine call instruction. The current TIGRE
implementation on the R2000 uses a five-instruction interpretive loop
for performing threading (i.e. stack unwinding). Since 1.37 stack un-
wind operations are performed per combinator, this presents 6.85 in-
structions which, assuming no cache misses, execute in 6.85 clock cycles.

But, there is a further penalty for performing the threading opera-
tion through graphs with the R2000. A seven-instruction overhead is
used for each combinator to perform a preliminary test for threading,
and to access a jump Iable to jump to the combinator code when
threading is completed. This imposes an additional 7.00 clock cycle
penalty on each combinator.

So, the total time spent on threading is 13.85 clock cycles per
combinator. It takes three clock cycles to simulate a subroutine call on
the R2000:

sw $31, 0($sp) # store current return address
jal subr_address # subroutine call

branch delay slot instruction follows
addu $sp, $sp, -4 # decrement stack pointer

so it is reasonable to assume that a hardware-implemented subroutine
call instruction could be made to operate in three clock cycles. Thus, if

* - - -
One of these instructions increments a counter used for performance measurement. It
can be removed for production code, as long as measuring the number of combinators
executed is not important.

7.3. IMPROVEMENTS IN CPU ARCHITECTURE 93

the instruction cache were made to track writes to memory (permitting
the use of self-modifying code), a savings of 10.85 clock cycles is possible.
One important change to the instruction set would be necessary to allow
the use of subroutine call instructions — the subroutine call instruction
would have to be defined to have all zero bits in the opcode field (so that
the instruction could be used as a pointer to memory as well).

An alternate strategy that does not require the use of self-modify-
ing code is to incorporate a subroutine call instruction that takes its
address from the next location in memory, but fetches that location from
the data cache instead of the instruction cache. Because the subroutine
call addresses are the only information in the instruction stream subject
to modification, this strategy would eliminate problems with instruction
cache consistency.

As suggestive evidence that support for fast stack unwinding can
greatly improve performance, consider that the 10 MHz Harris RTX
2000 was almost as fast as the 16.7 MHz DECstation 3100 in Table 5-1,
despite the fact that the RTX 2000 takes two clock cycles for memory
loads and stores compared to the R2000's one clock cycle per memory
access (for cache hits). This competitiveness was in large part due to
the RTX 2000’'s hardware support of single-cycle subroutine calls, and
use of an on-chip subroutine return stack buffer.

7.3.2. Stack Access Support

An important aspect of TIGRE's operation is that it makes frequent
reference to the top elements on the spine stack. In fact, 4.61 reads to
the spine stack are performed per average combinator. Most of the load
and store instructions that perform these stack accesses can be
eliminated by the use of on-CPU stack buffers that are pushed and
popped as a side effect of other instructions.

For spine stack unwinding, two of the three instructions could be
eliminated with the use of hardware stack support, leaving just a single
jal instruction to perform the threading operation at each node. Of
course, the R2000 has a built-in branch delay slot, so it is not probable
that the actual time for the threading operation could be reduced to less
than two clock cycles. But, the second clock cycle could be used to allow
writing a potential stack buffer overflow element to memory. This
technique results in a savings of 1.37 clock cycles (1 clock cycle per
thread operation, with 1.37 stack unwinds per combinator) for an
average combinator.

Of the 4.61 instructions that access the spine stack, the threading
technique just described may be used to eliminate the effect of 1.37 of

94 Chapter 7. The Potential of Special-Purpose Hardware

the instructions. The remaining 3.24 instructions can also be
eliminated by introducing an indirect-through-spine-stack addressing
mode to the R2000. All that would be required is to access the top,
second, and third element of a spine stack buffer as the source of an
address instead of a register. A simple implementation method could
map the top of stack buffer registers into the registers already available
on the R2000. This gives a potential savings of 3.24 clock cycles, since
explicit load instructions from the spine stack need not be executed
when performing indirection operations.

Of course, the issue of stack overflows and underflows arises
whenever one discusses the issue of hardware stack buffers. Overflows
and underflows with the described techniques should cost almost noth-
ing. Overflows can only happen during threading, which specifically
allocates the branch delay slot of the jal instruction to handle a
potential write to memory. Underflows can only happen one element at
a time, if TIGRE code is assembled so as to pop stack elements as they
are used (as the TIGRE compiler does for VAX code). If only a single
element is overflowed, this overflow can be handled in a single clock
cycle. With a reasonably large stack buffer (16 or 32 elements), such
overflows tend to occur on less than 1% or 2% of stack accesses for
stack-based programs in general (Koopman 1989).

7.3.3. Doubleword Store

The astute reader has noticed that TIGRE is usually able to write cells
in pairs, with both the left- and right-hand cells of a single node written
at approximately the same point in the code for a particular combinator.
Thus, it becomes attractive to define a “double store” instruction format.
Such an instruction would take two source register operands (for ex-
ample, an even/odd register pair), and store them into a 64-bit memory
doubleword. If the processor were designed with a 64-bit memory bus,
such a “double store” could take place in a single clock cycle instead of
as a two-clock sequence. The savings of using 64-bit stores is 0.895 clock
cycles per combinator for the SKI implementations of fib, and 1.192 clock
cycles per combinator for the Turner Set implementation of fib
(measured by instrumenting TIGRE code to count the opportunities for
these stores as the benchmark program is executed). Support of 64-bit
memory stores would speed up supercombinator definitions even more,
since the body of supercombinators often contains long sequences of
node creations. For example, the supercombinator implementation of
fib can make use of 1.33 64-bit stores per combinator.

7.4. PERFORMANCE IMPROVEMENT POSSIBILITIES 95

optimizations clocks per combinator
current implementation 30.09
copy-back cache 29.47

100% cache hit ratio 27.82
subroutine call through data cache 16.97
hardware stack fgal 15.60

hardware stack indirect addressing 12.36
8-byte store instructions 11.47

Table 7-2. Summary of possible performance improvements.

7.4. PERFORMANCE IMPROVEMENT POSSIBILITIES

The previous suggestions for optimizations present some good news and
some bad news. The good news is that special hardware support for
TIGRE can result in substantial speedups, as shown in Table 7-2. Most
of this speedup comes from providing hardware stack support and
support for fast operations on 64-bit quantities. A 100% cache hit ratio
is assumed for the third and subsequent performance figures to present
a best-case speedup.

The bad news is that the potential speedup available is substan-
tially less than an order of magnitude. In fact, an order of magnitude
speed improvement is rather unlikely no matter what architectural
innovations are possible, since a factor of 10 speedup from the current
R2000 TIGRE implementation leaves just 3.009 clock cycles per com-
binator for program execution time. Speeding up TIGRE operation by
that amount exceeds all plausible expectations. So, it is probably not
worthwhile building a special-purpose CPU to support TIGRE, since
current RISC technology will probably have increased in speed enough
by the time a TIGRE chip could be designed and fabricated to make the
exercise pointless.

From a positive aspect, the exercise of identifying architectural
features to speed up TIGRE has not been a complete waste of time. The
features described definitely have potential to support high-speed ex-
ecution of TIGRE. Therefore, instead of building custom TIGRE silicon,
TIGRE developers should look for commercially produced architectures
that provide some of the features desired. For example, several stack-
based processors designed to support the Forth programming language
provide hardware stack support and single-cycle subroutine calls. Ex-
amples of 32-bit processors with such support include the RTX-32P from

96 Chapter 7. The Potential of Special-Purpose Hardware

Harris Semiconductor and the FRISC 3 from Johns Hopkins/Applied
Physics Laboratory (Koopman 1989). Support for 64-bit store opera-
tions and copy-back caches also exists on many mainframes, and will
probably be supported by workstation-class computers soon. So, the
task of designing special-purpose TIGRE hardware is best accomplished
by collecting and reviewing a large library of product information sheets
from manufacturers of commercial hardware, and choosing wisely.

