
Chapter 3

Development of the TIGRE

Method

This describes the TIGRE method for combinator graph reduction.

Section 3.1 illustrates the conventional notion of performing graph

reduction. Section 3.2 describes a faster interpretation method that

uses one-bit tags. Section 3.3 describes using direct execution of com-

binator graphs in order to eliminate tag bits and further increase

execution speed.

3.1. THE CONVENTIONAL GRAPH REDUCTION METHOD

Many early graph reducers have treated combinator graphs solely as

data structures to be manipulated. This point of view leads to assump-

tions and implementation methods that result in significant efficiency

penalties. TIGRE (Threaded Interpretive Graph Reduction Engine) is

a graph reduction technique that views the combinator graph as a

directly executable program instead of a data structure, offering signifi-

cant performance improvements over the conventional approach.

Combinator graphs can be represented by binary graphs, with each

node having a function cell (the left-hand side) and an argument cell

(the right-hand side). However, some tagging information is also

needed to identify the type of cell contents. Figure 3-1 shows that, in

practice, nodes are typically represented by four fields. The first pair of

fields are the tag and value of the function cell, while the second pair of

fields are the tag and value of the argument cell. Figure 3-2 shows a

15

TAG RIGHT SIDELEFT SIDETAG

Figure 3-1. Basic structure of a node.



graph for the expression ((+ 11) 22) built using this typical node struc-

ture.

The problem with the tagged node representation is that every

time a node is read, a case analysis must be performed to determine

what to do with the contents. For example, in Figure 3-2, pointers,

combinators, and literal values must be distinguished by inspecting

their tag values for correct interpretation of the program graph. Con-

ditional branches are inherently difficult and expensive operations, as

can be attested to by any computer architect who has designed a

pipelined processor. Hence, this case analysis is a major impediment to

improving execution speed. Although only three tag types are shown in

Figure 3-2, in general more tag types are used since the cost for the case

analysis must be paid anyway.

One clever implementation is to select the tags to be the base value

of a jump table containing addresses of action routines. Accessing a

node requires a double indirection operation through the tag and jump

table. This technique has been previously implemented for the G-Ma-

chine graph reduction implementation on a VAX (Peyton Jones 1987).

In VAX assembly language, unwinding a node while traversing the

stack requires four instructions, including this double indirect jump

through the jump table:

movl Head(r0),r0 # get head of node
movl r0,-(%EP) # push value onto spine stack
movl (r0),r1 # get tag of node
jmp *0_Unwind(r1) # unwind the node

The G-Machine has modes of operation, the primary two of which

are stack unwinding and evaluation. Each jump table has fixed loca-

tions of entries for each mode of operation, and a separate jump table is

provided for each combinator. All combinator references require an

COMB CONST 11+
1

0 tag

tagtag

tag

rightleft

rightleft

PTR CONST 22

Figure 3-2. Example for expression ((+ 11) 22).

16 Chapter 3. Development of the TIGREMethod



access to an empty node, which has a combinator value as its tag.

Function application nodes, however, use a tag that addresses a function

application �combinator� with appropriate left-hand and right-hand

cells.

There is a further cost for the G-Machine of a seven-instruction

sequence that must be used as a preamble to each combinator to fix up

the spine stack after the stack unwinding. A representative value

(reported in detail in a Chapter 6) for spine stack nodes consumed per

combinator is 1.38. This means that, on average, processing nodes for

stack unwinding costs:

(4 * 1.38) + 7 = 12.52 VAX instructions per combinator

This represents an overhead cost above and beyond the actual

combinator execution code. Since TIGRE implements most Turner set

combinators with between three and twenty VAX instructions (e.g., the

S combinator is implemented in 17 VAX instructions, while the K

combinator is implemented in four VAX instructions), it is clear that the

G-Machine approach to unwinding the spine can cause a considerable

overhead. There are further problems associated with the G-Machine

tag strategy. One of these is that combinators are represented by

unique tag values, which can require the creation of a new jump table

for each combinator added to the system.

3.2. FAST INTERPRETIVE EXECUTION OF GRAPHS

A primary goal of TIGRE is the elimination of the tag processing

overhead just described. TIGRE takes the most straightforward ap-

PTR PTR

COMB CONST 22I

COMB + PTR

COMB I CONST 11

1

0

3

2

Figure 3-3. Example using indirection nodes for constants.

3.2. FAST INTERPRETIVEEXECUTIONOF GRAPHS 17



proach to solving the problem. Since the interpretation of tags is an

expensive operation, eliminate the tags and hence the expense of proc-

essing them. This section and the next describe in a step-by-step process

how this elimination of the need for tags is accomplished.

As a first step in eliminating tags, all cells containing constant

values are replaced by pointers to indirection nodes having the constant

value. Figure 3-3 shows the result of this rewriting on the example

graph for ((+ 11) 22). Any graph can be rewritten during compilation

with constant values placed in the right-hand sides of indirection nodes

in a similar manner. This rewriting operation may appear to be waste-

ful, but is in fact the way graphs often exist during program execution.

For example, the + combinator, when executed, creates an indirection

node with the sum. Thus, if the 11 and 22 in Figure 3-3 were actually

the results of previous computations, both would have been in the

right-hand side of I nodes before being moved to the right-hand sides of

nodes 0 and 1.

Now, notice that constants are only found as arguments to indirec-

tion combinators. If those I combinators in the left-hand side of constant

nodes are renamed as LIT combinators (short for �literal value� combi-

nators), as shown in Figure 3-4, the constant tag is no longer needed,

since the LIT combinator implicitly identifies the argument as a con-

stant value. All other special tag types can be eliminated by defining

new combinators in a similar manner. In particular, variations of the

LIT combinator can be created for different numeric data types.

The graph shown in Figure 3-4 now only has two tag types:

combinator and pointer. The cost of tag checking can then be reduced

by using any number of standard tricks. For instance, all nodes and

PTR PTR

COMB ??? 22LIT

COMB + PTR

COMB LIT ??? 11

1

0

3

2

Figure 3-4. Example using LIT nodes instead of indirection nodes for

18 Chapter 3. Development of the TIGREMethod



therefore pointer values can be aligned on 4-byte boundaries (which

improves speed or is even required on many machines). The lowest bit

of a cell�s contents can then be used as a one-bit tag. Figure 3-5 shows

the graph rewritten in this style. It is important to note that there is

still, in fact, a one-bit tag hidden within each cell value, and that the

process of describing how tags are eliminated continues in the next

section.

The case analysis for numeric constants has been replaced by the

need to reduce LIT combinators (although we argue that this combina-

tor is often present in the form of an I node anyway). However, we have

also reduced the amount of tag checking on all other cells. This is the

representation used for the C language implementation of TIGRE.

Other details of TIGRE will be deferred for the moment, but in general

TIGRE loops while scanning the lowest order bit of left-hand side cells

to unwind the stack. When a non-pointer value is found, TIGRE then

uses a casestatement to jump to the correct action code.

3.3. DIRECT EXECUTION OF GRAPHS

There is an additional key insight which provides at least a twofold

speedup when using assembly language on many architectures over

that possible with C code alone. This insight is gained by exploiting the

hardware support for graph traversal that already exists in most con-

ventional processors.

The generic graph shown in Figure 3-6 is executed by traversing

the leftmost spine, placing pointers to ancestor nodes onto a spine stack.

When a combinator is encountered in the graph, some code to implement

the combinator is executed. The data structure is controlling the exe-

22LIT+

LIT 11

1

0

3

2

Figure 3-5. Example with tag fields removed.

3.3. DIRECT EXECUTIONOF GRAPHS 19



cution of the program. Another, more insightful, view is that the data

structure is itself a program with two instruction types: pointer and

combinator. Then graph reduction is essentially a process of interpret-

ing a threaded program that happens to reside in the node heap. In

other words, the tree is a program that consists mainly of calls to

subroutines. These subroutines then contain calls to other subroutines,

and so on until, finally, some other executable code is found. Thus,

threaded code interpretation (Bell 1973) is used to implement the C

version of TIGRE.

Now, consider the operations used to unwind the spine of this

threaded program graph. As each spine element is unwound, a pointer

into the program graph (which may be called pc), is pushed onto the

spine stack, then the contents of pcare replaced with the contents of the

memory location pointed to by pc as in the following sequence:

push(pc)
pc ← [pc]

2

SPINE STACK

POINTER TO 0

POINTER TO 1

POINTER TO 2

POINTER TO 3

COMB

PROGRAM
SUBGRAPH

PROGRAM
SUBGRAPH

PROGRAM
SUBGRAPH

PROGRAM
SUBGRAPH

1

0

3

Figure 3-6. An example TIGRE program graph, emphasizing the left

20 Chapter 3. Development of the TIGREMethod



However, it is equally valid to specify that a pointer to the right-hand

side of the graph is pushed onto the spine stack, while still accomplish-

ing the same purpose of retaining pointers to spine elements. If pointers

are assumed to be four bytes in size, the spine unwinding operation

becomes:

push(pc+4)
pc ← [pc]

But, this exactly corresponds to the actions of a subroutine call instruc-

tion (assuming that the pcpoints to a 32-bit word in memory containing

the subroutine call instruction�s address field when the sequence is

started).

The key idea is that the spine stack is actually just a subroutine

return stack for the threaded program. As control flows from node 0 to

node 1 to node 2 to node 3 in the graph of Figure 3-6, pointers to these

nodes are stored on the spine stack. These pointers will eventually be

used to access the right-hand side values of the ancestor nodes as

arguments to a combinator, so what really is desired is, in fact, to save

the pointers to the right-hand sides of each node on the spine stack.

Thus, saving pc+4 on the return stack is actually more efficient than

saving just pc.
Combinator nodes, such as node 3 in Figure 3-6, contain some sort

of token value that invokes a combinator. At some point during program

execution, this value will have to be resolved to an address for a piece

CALL LIT
2

22

CODE FOR LIT

CALL +
1

CALL 2

CALL 1
0

CALL 3

CALL LIT3 11

CODE FOR +

Figure 3-7. A TIGRE program graph with only subroutine call pointers.

3.3. DIRECT EXECUTIONOF GRAPHS 21



of code to be executed, so the assembler version of TIGRE simply stores

the actual code addresses of the combinator action routines instead of

token values. In fact, if a subroutine call to the combinator code is

stored, the address of the right-hand side of node 3 will be pushed onto

the spine stack, and the combinator will have all its arguments pointed

to by the spine stack (which is now the subroutine return stack). A

pleasant side effect of this scheme is that there is now only one type of

data in the graph: the pointer. Hence there is only one type of node, and

therefore no conditional branching or case analysis is required at run-

time. All nodes contain either pointers to other nodes or pointers to

combinator code. Figure 3-7 shows the running example of ((+ 11) 22)

compiled using this scheme. Since all node values (except the right-

hand sides of LIT cells) are subroutine call instructions, matters are

simplified by saying that each cell contains a pointer that is interpreted

as a subroutine call by the TIGRE execution engine.

At a more detailed implementation level, TIGRE graph nodes can

be implemented as triples of 32-bit cells. The first cell of each triple

contains a subroutine call instruction while the second and third cells

of the triple contain the left- and right-hand sides of the node, respec-

tively. The hardware�s native subroutine calling mechanism is used to

traverse the spine, using the subroutine return stack as the spine stack.

Figure 3-8 shows the example graph as it appears in the VAX assembly

language implementation of TIGRE. (Note that the jsb is the fast VAX
subroutine call instruction, which pushes only the program counter onto

2
22

1
jsb3 11jsb

0

jsb

jsb

CODE FOR LITCODE FOR +

Figure 3-8. VAX assembly language implementation of a TIGRE ex-

22 Chapter 3. Development of the TIGREMethod



the return address stack, as opposed to the slower procedure call

instructions which automatically allocate stack frames.)

While the graph shown in Figure 3-8 is simple, its operation is not

necessarily obvious. Evaluation of a program graph is initiated by

performing a subroutine call to the jsb node of the root of a subgraph.

The machine�s program counter then traverses the left spine of the

graph structure by executing the jsb instructions of the nodes forming

the spine. When a node points to a combinator, the VAX simply begins

executing the combinator code, with the return address stack providing

addresses of the right-hand sides of parent nodes for the combinator

argument values. When graph nodes are rewritten, only the pointer

values (which are 32 bits in size on a VAX) need be rewritten. The jsb
opcode is initialized upon initial acquisition of heap space and thereafter

never modified.

The processor is in no sense interpreting the graph. It is directly

executing the data structure, using the hardware-provided subroutine

call instructions to do the stack unwinding. However, the jsb opcode

does provide a tag of sorts for pointer cells (since jsb is associated with

cells in the heap whereas combinator code uses other opcodes). Thus,

TIGRE can be thought of as a method for using the decoding circuits

already existing in conventional hardware to perform hardware-based

execution of tagged data. As noted previously, this use of jsbinstructions
to speed up graph reduction was previously reported by Augusteijn &

van der Hoeven (1984).

A summary of TIGRE�s operation, then, is that an interpretive

pointer is used to execute subroutine call operations down the left spine

of the graph. When combinators are reached, they pop their arguments

from the subroutine return stack, perform graph rewrites, and then

jump to the newly reduced subgraph to continue traversing the new left

spine. The use of the return stack for graph reduction is slightly

different than for �normal� subroutines in that subroutine returns are

never performed on the pointers to the combinator arguments which

have been pushed onto the return stack. Instead, the addresses are

consumed from the return stack by the combinators. (This use of the

stack to provide arguments seems to be a characteristic of other combi-

nator reducers as well).

TIGRE uses the same primitive functions over and over again to

implement the combinators. Only a few primitives such as �fetch the

right-hand value of the parent node� are needed to implement the entire

Turner Set of combinators. This suggests the possibility of a simple

assembly language that can be used to defined supercombinators for

TIGRE, even on a special-purpose hardware version, with only a mini-

3.3. DIRECT EXECUTIONOF GRAPHS 23



mal set of machine operations. A definition of the TIGRE abstract

machine and its assembly language are given in the next chapter.

24 Chapter 3. Development of the TIGREMethod



3.3. DIRECT EXECUTIONOF GRAPHS 25


