
Appendix A

A Tutorial on Combinator Graph

Reduction

Since part of the audience for this research is the computer architecture

community, it seems appropriate to provide a brief introduction to

combinator graph reduction for the nonspecialist. This introduction

contains many simplifications and omissions, and uses some informal

notation and nomenclature in order to convey the essence of how

combinator graph reduction works. The objective is not to teach all the

details of the process, but rather to give the reader a feel for how a

translation from functional programming languages to combinator

graphs is performed. More rigorous treatments may be found in Field

& Harrison (1988), Henderson (1980), and Peyton Jones(1987).

A.1. FUNCTIONAL PROGRAMS

The basic operation of a functional program is the application of a

function to an argument. The notation

f x

means that the function referred to by f is applied to the argument value

referred to by x. Functions are so-called �first class citizens� in func-

tional programming languages, which means they may be used as

arguments to other functions, and may be returned as the result of

functions. For example:

(f g) x

applies function f to function g, then applies the resulting function to

argument x. A familiar example of this process is the map function in

LISP, which maps a function across an argument which is a list. By

convention, function applications associate to the left, so the expression

�(f g) x� is equivalent to �f g x�, but is not the same as �f (g x)�. (This

convention is called Curried notation.)

101

Functional programming languages do not allow side effects, and

so lack an assignable state. The equal sign, therefore, has a slightly

different meaning than in imperative languages. In functional lan-

guages, an assignment statement is used to bind a value to an identifier.

For example,

suc(x) = x + 1

defines a function called suc which returns the value of its input

parameter plus 1. Conditional assignments may be handled by using a

piecewise definition of the function. For example, the signum function

may be defined as:

signum(x) = -1 ; x < 1

= 0 ; x = 0

= 1 ; x > 1

We shall use a function that doubles its input as an example

program:

double(x) = x + x

This running example will illustrate the process of converting a

function definition to a combinator graph, then executing that combina-

tor graph.

A.2. MAPPING FUNCTIONAL PROGRAMS TO LAMBDA

CALCULUS

The first step in compiling a functional program to a combinator graph

is to transform it into an expression in the lambda calculus (Barendregt

1981). The lambda calculus is a simple but computationally complete

program representation that involves applying functions to input pa-

rameters. Lambda expressions have the form:

λ name . body

The � λ� indicates a function abstraction. The �name� indicates the local

name of the input variable. The period separates the header from the

function definitions. The �body� is the body of the lambda expression in

prefix polish notation. A lambda expression that just returns its input

is:

λ x . x

A lambda expression which adds three to its input is:

λ x . + x 3

102 Chapter A. A Tutorial on Combinator Graph Reduction

The lambda expression for a doubling function, which will be a

running example throughout this tutorial, is:

λ x . + x x

A function which takes two inputs and multiplies them together

is:

λ y . λ x . * x y

Note that two λs are needed to specify this function, since only one
input parameter may be associated with each λ. What is actually

happening is that the function �multiply the input by x� (which corre-

sponds to the expression λ x . * x) is being applied to the argument y to

form a new function �multiply y by x�.

A.3. MAPPING LAMBDA CALCULUS TO SK-COMBINATORS

SK-combinators are a small set of simple transformation rules for

functions. Each combinator has associated with it a runtime action and

a definition. The definition is used to translate programs from the

lambda calculus into combinator form. The runtime action is used to

perform reductions to evaluate expressions.

I is the identity function. At the function application level of

abstraction, the action taken by applying I to an input x is:

I x → x

Which is to say, the function I applied to any argument x simply returns

the result x. The lambda calculus equivalent of I is simply:

I is defined as λ x . x

K is a cancellator function (K and S come from the German

heritage of Schoenfinkel, the inventor of combinators (Belinfante 1987))

that drops the second argument and returns the first argument:

K c x → c

The first argument c (which must be a constant expression) is returned,

while the second argument x is dropped. The lambda calculus imple-

mentation of K is:

K c is defined as λ x . c for c a constant

S is the distributor function, which distributes an argument to two

different functions:

S f g x → f x (g x)

Remember that function applications associate to the right, so a

fully parenthesized version of this transformation is:

A.3. MAPPING LAMBDA CALCULUS TO SK-COMBINATORS 103

(((S f) g) x) → ((f x) (g x))

The action of the S combinator is to distribute the argument x to two

functions f and g, then apply f(x) to g(x). The lambda expression for S

is:

S (λx .a) (λx .b) is defined as λ x . a b where a and

b are lambda expressions.

Amazingly, S, K, and I are sufficient to represent any computable

function! An implication of this is that variables are unnecessary for

programming, since converting programs to combinator form eliminates

all references to variables. As a further simplification, even I is not

needed, since it is equivalent to the sequence S K K, hence the term

SK-combinator instead of SKI-combinator. In practice, however, I is so

useful that it is always included as a basic combinator.

In order to convert a lambda expression to sequence of SK-combi-

nators, we repeatedly apply the lambda definitions of the combinators

�in reverse�, picking the innermost lambda expressions first. For our

example program, we would start with:

(λ x . + x x)

First, let us add more parentheses to emphasize the evaluation order:

(λx .((+ x) x))

In the following sequence, the underlined term represents the next term

which will be transformed.

(λx .((+ x) x))

Applying the S rule to the λ expression, the a term is (+ x) and the b

term is x, resulting in:

((S (λx .(+ x)))(λx .x))
Now, we can apply the I rule to λx .x, giving:

((S (λx .(+ x))) I)

Continuing,

((S ((S (λx .+)) (λx .x))) I)
((S ((S (λx .+)) I)) I)

Note that the + operator is a constant expression, since functions are no

different than data elements in this notation. Therefore, we apply a K

reduction to the expression (λx .+), getting our result.
((S ((S (K +)) I)) I)

The result is a function which takes one argument. The transfor-

mation process has been rather mechanical, so it is not at all obvious

104 Chapter A. A Tutorial on Combinator Graph Reduction

that this is the correct answer. To reassure ourselves, let us apply this

function to an input, say 123, and use the combinator reduction rules to

reduce the expression to a result. Note that we are using the result of

a function as the input to the expression. We shall use the same

underlining convention to highlight the combinator expression which

will be converted using the combinator execution rules. Control is

always passed to the leftmost combinator. This passing of control to the

leftmost combinator is called normal order reduction, and is an imple-

mentation strategy that guarantees lazy evaluation.

((S ((S (K +)) I)) I) 123

For this reduction, S takes two functions f and g, and applies the rule:

((S f) g) x → (f x) (g x)

In this case, function f is ((S (K +)) I) and function g is just I, while the

argument x is 123.

(((S (K +)) I) 123) 123

Notice that S has made a copy of the input parameter 123. Next,

another S is executed.

(((K +) 123) (I 123)) 123

(+ (I 123)) 123

Note that + is a strict operator. It forces evaluation of both its

arguments before it returns a result. Therefore, the next combinator

reduced is the I and not the +.

(+ 123) 123

246

And, we have our result. No understanding of how the combina-

tors are working has been required: blind adherence to the reduction

rules guarantees correct operation, and in fact, guarantees complete

laziness when performing normal order reduction. The process of per-

forming the reduction is tedious, but follows very simple rules.

A.4. MAPPING SK-COMBINATOR EXPRESSIONS ONTO A

GRAPH

There is one step left. How does one map the combinators into a data

structure for computation? The data structure of choice is a binary tree

(with cycles and sharing permitted to accomplish recursion and common

subexpression sharing, respectively). Each node of the tree, shown in

Figure A-1, has a left-hand side, which is the function cell, and a

A.4. MAPPING SK-COMBINATOREXPRESSIONS ONTO A GRAPH 105

right-hand side, which is the argument cell. The function may be either

a combinator or a pointer to a subtree. The argument may be a

combinator, a pointer to a subtree, or a constant value. In general, each

argument is a subtree, so we shall draw it as shown in Figure A-2, with

the understanding that a degenerate subtree case is simply a combina-

tor or constant value.

Since functions are first class citizens, functions and arguments

are not distinguishable except by the fact that they are pointed to by a

left-hand side or right-hand side. In fact, since sharing of subtrees is

permitted, the same subtree may be both a function and an argument

for different parent nodes simultaneously, as shown in Figure A-3.

The operation of combinators may be translated directly from

parenthesized form to a graphical representation. Each pair of paren-

theses encloses a list of exactly two objects, which form the function and

argument halves of a node. Figure A-4 shows a graph which adds the

numbers 11 and 22. In this diagram, the plus operation is paired with

11, and the function (+ 11) is paired with 22 as its second operand. Note

that a function is at the leftmost leaf of the subtree, and that the n

arguments for the function are in the n right-hand sides of the

current and ancestor nodes. This formatting of a function and

its arguments is universal among combinators.

ARGUMENTFUNCTION

Figure A-1. The function and argument structure of a node.

FUNCTION
SUBTREE

ARGUMENT
SUBTREE

ARGUMENTFUNCTION

Figure A-2. A function argument pair.

106 Chapter A. A Tutorial on Combinator Graph Reduction

PROGRAM
SUBTREE

PROGRAM
SUBTREE

ARGUMENTFUNCTION

PROGRAM
SUBTREE

ARGUMENTFUNCTION

Figure A-3. A shared subtree.

22

11+

Figure A-4. Graph to add 11 and 22.

1

I

0

???

x

0

???

x

Figure A-5. Operation of the I combinator. (I x) → x

A.4. MAPPING SK-COMBINATOREXPRESSIONS ONTO A GRAPH 107

The reduction rules for the combinators S, K, I, and + are shown

in Figures A.5 through A.8. Figure A-5 shows the reduction rule for I.

Since I is the identity function, it simply repoints its parent (node 0) to

the subtree X. The right-hand side value of node 0 is unimportant, and

does not participate in the reduction.

Figure A-6 shows the reduction rule for theK combinator. K drops

the reference to x from node 0 and replaces it with a reference to c. Since

a reference to node c only occupies half a node, an I combinator is placed

in the function side of node 0 to keep everything operating properly.

Figure A-7 shows the reduction rule for the S combinator. S

allocates new nodes 3 and 4 from the heap (the data structure used for

dynamically allocating memory elements), then repoints node 0 to these

new nodes. This new node allocation has very important implications.

At the simplest level, it ensures that if nodes 1 or 2 are shared with other

nodes, proper operation will result. At a deeper lever, it is used to build

new suspension structures to allow recursion. The actual mechanism

of the recursion technique is beyond the scope of this brief tutorial.

Figure A-8 shows how the + combinator is reduced. Since + is strict

in both its parameters, subtrees A and B are first reduced to constant

values. Then, the sum is computed and placed in node 0 with an

indirection node. The result of the A subtree computation is left behind

in node 1, so that any node sharing node 1 will not have to reevaluate

1

0

I

K

0

x

cc

Figure A-6. Operation of the K combinator. ((K c) x) → (I x)

108 Chapter A. A Tutorial on Combinator Graph Reduction

subtree A. The updating of nodes 0 and 1 provide automatic common

subexpression sharing at runtime.

Let us now examine how our example program is translated into

a combinator graph. Figure A-9 shows the combinator graph for the

doubling function. Since a function must be applied to an argument to

yield a result, we shall construct a graph with the argument ((+ 100) 23)

as shown in Figure A-10. A subtree that computes the sum will be used

instead of just a constant to illustrate how sharing is used to eliminate

redundant computations. Observe how a parent node has been added

above the double function, representing the application of double to the

2

S

g

f

g

4

0

x

1

3

f x

0

Figure A-7. Operation of the S combinator. (((S f) g) x) → (f x) (g x)

A.4. MAPPING SK-COMBINATOREXPRESSIONS ONTO A GRAPH 109

1

+

0

b

a

0

1

+

sum value

a value

b value

I

0

Figure A-8. An addition example. ((+ a) b) → (I sum)

+K

S

I

S

I

Figure A-9. Doubling function. ((S ((S (K +)) I)) I)

110 Chapter A. A Tutorial on Combinator Graph Reduction

input parameter ((+ 100) 23). The nodes have been assigned numeric

labels so that we may conveniently refer to them.

For normal order reduction, the left-hand side pointer of each node

is followed until a combinator leaf is reached. For this example, this

means that the graph reducer would follow the pointer chain through

the left-hand side of nodes 0, 1, and 2. Figure A-11 shows the results of

this traversal.

Since we are performing a tree traversal, a stack of nodes visited

is kept so that we may retrace our steps. Since the leftmost series of

pointers we have followed is called the left spine of the graph, the stack

is called the spine stack. In these diagrams, the stack grows downward

as the tree is traversed from top to bottom.

Once the S combinator in Figure A-11 is found, an S graph

reduction is performed. The S combinator knows which nodes are its

parents by the contents of the spine stack. Since the S combinator uses

three nodes as its input, the nodes participating in the reduction are

nodes 2, 1, and 0 as indicated by the shaded area and the top three

elements on the spine stack. Figure A-12 shows the graph after the S

100+

S

23

S

I

5

3

0

6

Double

2

K +

7

1

4

I

((+ 100) 23)

Figure A-10. Doubling function applied to argument. ((+ 100) 23).

A.4. MAPPING SK-COMBINATOREXPRESSIONS ONTO A GRAPH 111

100+

S

SPINE
STACK

S

I

5

3

0

6

I

2

K +

7

1

4

0

23

2

1

Figure A-11. Reduction step 1.

100+
S

SPINE
STACK

I

5

3

0

6

9

K +

7

8

4

0

23

4

8
I

3

Figure A-12. Reduction step 2.

112 Chapter A. A Tutorial on Combinator Graph Reduction

100+

SPINE
STACK

I

5

10

0

6

9

K +

7

8

11

0

23

5

8
I

10

Figure A-13. Reduction step 3.

100

+

SPINE
STACK

I

10

0

6

9

7

8

11

0

23

8
I

10

I

+

Figure A-14. Reduction step 4.

A.4. MAPPING SK-COMBINATOREXPRESSIONS ONTO A GRAPH 113

100

+

SPINE
STACK

0

6

9

7

8

11

0

23

8

I

I

+

11

Figure A-15. Reduction step 5.

100

+

SPINE
STACK

0

6

9

7

8
0

23

8
I

+

7

6

Figure A-16. Reduction step 6.

114 Chapter A. A Tutorial on Combinator Graph Reduction

+

SPINE
STACK

0

6

98
0

123

8

I

6
I

Figure A-17. Reduction step 7.

+

SPINE
STACK

0

6

98
0

123
8

I

I

123

9

Figure A-18. Reduction step 8.

+

SPINE
STACK

0

6
8

0

123
8

I 123
6

Figure A-19. Reduction step 9.

A.4. MAPPING SK-COMBINATOREXPRESSIONS ONTO A GRAPH 115

reduction. Two new nodes, 8 and 9, have been allocated from the heap.

Nodes 1 and 2 have been abandoned and become garbage cells in the

heap.

After the S combinator from Figure A-11 has been executed to yield

the graph shown in Figure A-12, traversal down the left spine continues

until the S combinator at node 4 is reached. In this case, nodes 4, 3, and

8 are used as inputs for the S combinator, resulting in the graph shown

in Figure A-13.

Execution continues with reduction of theK combinator and nodes

5 and 10 from Figure A-13 to modify node 10 into an I node as shown in

FigureA-14. This graph is further reduced to that shown in Figure A-15.

In Figure A-15, we have a slight problem. The combinator to be

reduced is +, but that combinator is strict in both arguments (i.e. it

requires both arguments to be evaluated before the addition may be

performed), and the arguments are subtrees instead of constants. To

solve this problem, we temporarily suspend evaluation of the + combi-

nator, and recurse with our evaluation process to evaluate the subtree

pointed to by the right-hand side of node 8. The marker in the spine

stack shows that we may use the same spine stack for this evaluation,

but must remember to return control to the + combinator when the

marker is on top of the spine stack. Figures A.15, A.16, A.17, and A.18

+

SPINE
STACK0

8

0

123

8

123

Figure A-20. Reduction step 10.

I
SPINE
STACK

0

0

246

Figure A-21. Reduction step 11.

116 Chapter A. A Tutorial on Combinator Graph Reduction

show the evaluation of the first argument of the + combinator in node

8. Note that in Figure A-17 the input subexpression ((+ 100) 23) has

been reduced to a single value, which is shared by both nodes 8 and

nodes 9.

Once the first argument for the addition is evaluated, the process

is repeated for the second argument in the right-hand side of node 0, as

illustrated by Figures A.18, A.19, and A.20.

Finally, in Figure A-20, the addition is ready to be performed, with

the result placed in node 0. When node 0 is evaluated, it produces the

correct result of 246 shown in Figure A-21.

A.5. THE TURNER SET OF COMBINATORS

There are some problems with the SKI set of combinators. While they

are sufficient to do any job, they have certain inherent inefficiencies.

The most obvious inefficiency is that the S combinator is forced to pass

copies of its third argument to both the right and the left, when what is

often desired is passing the argument to either the left or right, but not

both.

In the graph of Figure A-13, node 5 contained a K node whose

purpose was to discard the copy of a pointer to node 6 which was in the

right-hand side of node 10. In other words, the creation of node 10 was

a waste of effort, since its effects were undone by the reductions in

Figures A.14 and A.15. Node 10 was created because node 11 was

needed to make a copy of the input for the addition, and S must create

two nodes at a time.

Combinator input Result
I x x
K c x (I c)
S f g x ((f x) (g x))
B f g x (f (g x))
C f g x ((f x) g)
S’ c f g x ((c (f x)) (g x))
B* c f g x (c (f (g x)))
C’ c f g x ((c (f x)) g)
U f P x y ((f x) y)

Table A-1. Non-strict members of the Turner combinator set.

A.5. THE TURNER SET OF COMBINATORS 117

The Turner Set contains combinators that pass input parameters

to only the left and right sides, and perform other useful graph rewrites

of a similar nature. The full Turner Set is shown in Table A-1 (Peyton

Jones 1987).

Figure A-22 shows the effects of reducing a subgraph with the B

combinator. The results are similar to an S combinator reduction, but

the third argument x is passed only to g, not to f. The C combinator,

shown in Figure A-23, is a converse operation, which only passes x to f

but not g. The addition of the B and C combinators can cut garbage

production nearly in half, and eliminate a large number of K and I

2

B

g

f

g

3

0

x

1

f

x

0

Figure A-22. Operation of the B combinator. (((B f) g) x) → (f (g x))

118 Chapter A. A Tutorial on Combinator Graph Reduction

2

C

g

f

x

3

0

x

1

f

g

0

Figure A-23. Operation of the C combinator. (((C f) g) x) → ((f x)g)

Starting expression Optimized
1. ((S (K p))(K q)) → (K (p q))
2. ((S (K p)) I) → p
3. ((S (K p))(B q r)) → (((B* p) q) r)
4. ((S (K p)) q) → ((B p)q)
5. ((S ((B p) q))(K r) → (((C’ p)q)r)
6. (S (p (K q))) → ((C p) q)
7. ((S (B p) q)) r) → (((S’ p)q)r)

Table A-2. Turner Set optimizations.

A.5. THE TURNER SET OF COMBINATORS 119

reductions that would be needed to dispose of unwanted copies of

pointers to parameters.

Using the full Turner Set of combinators can be accomplished by

first compiling to SKI combinators, then applying the optimization rules

shown in Table A-2 (Peyton Jones 1987). At each step, the smallest

numbered optimization rule that can be applied is used to ensure the

highest quality code. The first two optimizations do not actually involve

the introduction of new combinators, but rather make use ofmathemati-

cal identities. For our example of the doubling function, these optimi-

zations would result in the modification:

((S ((S (K +)) I)) I)

((S +) I)

by applying rule 2, which is certainly a big simplification! In fact, in

this case, B and C were not needed at all. However, an inferior quality

optimization could be done using rule 4, which would produce:

((S ((S (K +)) I)) I)

((S ((B +) I) I)

illustrating the use ofB to eliminate the creation of node 10 as discussed

earlier.

The astute reader will notice that all these optimizations begin

with the S combinator, and that a peephole optimizer is well suited to

performing the optimizations on-the-fly during code generation. The

power of using these extra combinators should not be underestimated.

For example, the doubly recursive Fibonacci function can be simplified

from:

((S ((S ((S (K IF)) ((S ((S (K)) I)) (K 3)))) (K 1)))

((S ((S (K +)) ((S (K CYCLE)) ((S ((S (K -)) I)) (K 1)))))

((S (K CYCLE)) ((S ((S (K -)) I)) (K 2)))))

to:

((S (((S� IF) ((C) 3)) (K 1))) (((S� +) ((B CYCLE)

((C -)1))) ((B CYCLE) ((C -) 2))))

by using the full Turner Set. The entity CYCLE is not a combinator,

but rather a compiler directive that compiles a pointer to the root of the

graph for recursion.

120 Chapter A. A Tutorial on Combinator Graph Reduction

A.6. SUPERCOMBINATORS

One method for creating large combinators is using supercombinator

compilation (Hughes 1982). The idea is that there is unnecessary

overhead associated with invoking combinators and allocating heap

cells which are immediately discarded. To reduce these overheads,

supercombinators can be created by compressing suitable strings of

combinators into special-purpose code sequences to rewrite large sub-

graphs. For example, the optimized expression for doubling a number

is:

((S +) I)

This expression can be made into a combinator itself by creating a new

function that takes a single input and produces an output which is

doubled. Let us call this new combinator $DOUBLE . Using $DOU-

BLE, the example of doubling the sum of 100 and 23 can be written as:

($DOUBLE ((+ 100) 23))

instead of:

(((S +) I) ((+ 100) 23))

Since a function that doubles its input is quite likely to be faster

than a sequence generated with S, I, and + combinators, the supercom-

binator version using $DOUBLE will run faster. In fact, the supercom-

binator technique can be extended to the point of creating a unique set

of supercombinators for each program with only a little SKI glue used

to hold the program together. The supercombinators must be created

by the compiler for a specific program, since the number of possible

supercombinators is unbounded.

The advantages of using supercombinators are clear. Supercom-

binators can reduce the manipulations of the graph as well as the graph

size by providing customized combinator functions. Improvements of a

factor of ten in execution speed are believed possible (Wray 1988).

From a hardware construction viewpoint, special-purpose graph

reduction systems are often limited to the SKI or Turner Set of combi-

nators because there is limited microcode memory available to support

the combinator instruction set. With the TIGRE architecture intro-

duced by this book, this is not a problem, since TIGRE uses a small set

of (potentially microcoded) primitive operations described by TIGRE

assembly language to synthesize combinators which are defined as

routines in program memory. Other abstract machines, notably the

G-Machine and TIM discussed in Chapter 2, also synthesize combina-

tors from a small set of primitive functions.

A.6. SUPERCOMBINATORS 121

A.7. INHERENT PARALLELISM IN COMBINATOR GRAPHS

One of the things that makes functional programming languages excit-

ing is the lure of �free� parallelism. Since functional programming

languages are referentially transparent, the evaluation order is unim-

portant (except when dealing with infinite-length data structures, but

with reasonable care that situation can be handled).

Because of this insensitivity to evaluation order, the full available

parallelism of a program may be exploited simply by spinning off a new

process down the right-hand side of each tree node while traversing the

leftmost nodes. Issues of controlling parallelism and allocating re-

sources to ensure best use of the hardware exist, but the point is that

the combinator graphs are programs that have implicit parallelism

information inherent in their structure.

Much work needs to be done in the area of parallelism, but a good

start will be to create a very efficient graph reduction engine, and to

identify the architectural features necessary to support fast uniproces-

sor graph reduction.

122 Chapter A. A Tutorial on Combinator Graph Reduction

