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Abstract

Distributed embedded computer systems are at the heart of many safety-critical
systems such as airplanes, automobiles, and elevators. These systems have higher
dependability requirements than general-purpose computer systems, as a system
failure can cause human injury. However, these systems typically also have tight
cost constraints, meaning there is a limit on the amount of design effort and
redundant resources that can be spent making the system dependable. Traditional
fault tolerance techniques of installing multiple identical backup systems may be
cost prohibitive. Additionally, demand for more sophisticated system features has
led to significantly more complex software being incorporated into these systems,
and software design defects have become a magor impediment to system
dependability.

Graceful degradation mechanisms can potentially provide increased system
dependability without having to provide redundant system resources. A gracefully
degrading system tolerates partial system failures by providing reduced
functionality with the remaining available system resources. In general, distributed
embedded systems are designed to optimize performance and functionality with
complex control algorithms and high quality sensors and actuators. The resources
aready designed into the system can provide somelevel of redundancy because not
all of these system optimizations are required for the system to satisfy its primary
requirements. Graceful degradation can exploit existing resources to provide
increased dependability when partial system failures occur.

Designing a gracefully degrading complex software system is a significant

chalenge. Existing best practice consists of specifying all possible combinations of
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system failures, and designing adistinct system response for each combination. For
a system with N failure modes, the design effort required for an ideal gracefully
degrading system is O(2") which is clearly intractable for a complex distributed
embedded system.

This thesis presents a scalable approach to building gracefully degrading
distributed embedded systems. We define graceful degradation in terms of system
utility: a generic measure of the system’s ability to satisfy its functional and
dependability requirements. An ideal gracefully degrading system minimizes the
cumulative loss of system utility as successive system failures occur. We present a
system model that enables scalable specification of system-wide graceful
degradation. Our model views a distributed embedded system as a set of
components that are either software components, sensors, or actuators. A system
with N components that can each fail independently has 2" possible distinct system
failure configurations, one for each possible combination of failed components.

Defining the system’s ability to gracefully degrade would traditionally require
specifying the relative system utility of all 2 possible failure combinations. We
avoid this exponential complexity by exploiting the structure in the system’s
architecture to partition componentsinto subsystems. We view each subsystem asa
configuration of components that changes utility when components are removed
due to failure or added via repair. We then view the system as a composition of
subsystems that each contribute to overall system utility. Our model reduces the
complexity of the system utility analysis from O(2") to O(N*2") where k is the

maximum number of componentsin any one subsystem.
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We apply our system model to representative system architectures and identify
some design techniques that can improve graceful degradation. We apply these
design techniques to two distributed embedded systems and demonstrate how they
enable scalable graceful degradation and increased system dependability. Our
model also allows us to evaluate traditional fault tolerance techniques in terms of
their ability to provide graceful degradation, and we can explicitly identify tradeoffs
between the cost of graceful degradation mechanisms, in terms of design effort and

redundant resources, and system dependability.
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1 I ntroduction

Our society has become increasingly dependent on complex, distributed embedded
systems for critical activities. Airplanes, automobiles, and medical diagnostics
systems are examples of safety-critical embedded computer systems that must
continually provide dependable service in the face of harsh environmenta
conditions, partial system failures or loss of resources, or human error. Current
techniquesfor assessing dependability properties such asreliability and availability
typicaly focus on determining whether the system is working “perfectly” (i.e.,
provides 100% functionality) or has failed. However, redlity is often somewhere
between those two extremes.

Often adistributed system, after suffering some component failures, has enough
resources to satisfy some or al of its primary objectives, even though it cannot
fulfill al of its requirements completely. Not all system states of degraded
functionality may be explicitly specified, but they are necessary to tolerate some
failures. Degraded operating modes are especially important when cost precludes
providing enough additional redundant resources to maintain total system
functionality.

This thesis explores scalable techniques for specifying and designing graceful
degradation into distributed embedded systems. Intuitively, the term graceful
degradation means that a system tolerates failures by reducing functionality or
performance, rather than shutting down completely. Anideal gracefully degrading
system s partitioned so that failuresin non-critical subsystems do not affect critical
subsystems, is structured so that individual component failures have a limited

impact on system functionality, and is built with just enough redundancy so that
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likely failures can be tolerated without loss of critical functionality. This is
especially important for embedded systems, as they typically must maintain higher
levels of dependable operation with fewer system hardware and software resources
than general purpose computer systems.

Specifying and designing system-wide graceful degradation is not trivial.
Graceful degradation mechanisms must handle not only individual component
failure modes, but aso combinations of component failures that can have a
cumulative effect on the system’ s ability to continue operation. The previous best
practice for specifying graceful degradation required identifying all system failure
modesindividually, aswell asidentifying all possible combinations of these failure
modes [Herlihy9l]. Then, a separate system recovery response was defined for
each possible failure mode combination. Thus, specifying graceful degradation
became exponentially complex with the number and type of possiblefailure modes.
Typical graceful degradation design techniques emphasize adding complete
component redundancy to preserve perfect operation when failures occur, or
designing several redundant backup system configurations that must be tested and
certified separately to provide a subset of system functionality with reduced
hardware resources. These techniques have ahigh cost in both additional hardware
resources and complexity of system design, and might not use system resources
efficiently.

In general, it should be possible to provide graceful degradation in distributed
embedded systems because a significant portion of asystem’sresourcesis used for
optimization of certain properties, or increased system functionality. If a partial

system failure occurs, the system can gracefully degrade by using these resourcesto
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preserve some basic level of functionality at the expense of losing the “auxiliary”
system functionality or sacrificing high performance. We can define the minimum
functionality required for primary missions, and treat optimized functionality as a
desirable, but optional, enhancement. For example, the primary function of an
elevator is to safely deliver al its passengers to their destinations. This can be
accomplished, albeit very inefficiently, if the elevator moves slowly in the

hoistway, stops at every floor, opens the doors at each floor, and does not
compromise the safety of the passengers. Most elevators have much more
functionality, such as responding to passenger input and only stopping at requested
floors, as well as providing passenger feedback. However, if afew of the elevator
buttons are broken, this should not cause the elevator to shut down. Similarly, much
of acar’ sengine control softwareis devoted to emission control and fuel efficiency,

but loss of emission sensors should not strand a car at the side of the road.

1.1 Problem Statement

Graceful degradation could be a mechanism for achieving high dependability in
distributed embedded systemsthat have limited redundant system resources. When
faults occur, the system may shed some functionality or reduce performance, but
will continue to provide service. Unfortunately, specifying and designing a
gracefully degrading system currently requires exponential design effort with the
number of component faults that are considered. In the worst case, a separate
system recovery mechanism must be designed for each possible combination of

system faults that can occur. For distributed embedded systems that may have
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hundreds or thousands of individual processing nodes that each may host several
software components, each of which can encounter system faults, thisisinfeasible.

This exponential design effort may offset any savings gained from not building
dedicated redundant backup systems, and may not be feasible for human system
designers with limited design time. In order for system-wide graceful degradation
to be practical, the design effort required to specify, design, and implement graceful
degradation mechanisms should be scalable with the design complexity of the
system. In other words, the complexity that specification and design of
system-wide graceful degradation addsto the system should not be greater than the
total complexity of the system’ s design and architecture. Prior to thisresearch, we
have not seen any work that addresses the problem of scalability for specifying and
designing graceful degradation. Thisthesisisafirst step towardsamethodol ogy for
scalable graceful degradation in distributed embedded systems. Our ultimate goal
isto reducethe design effort necessary to build gracefully degrading systems so that
it istractable for system designers.

Thisresearch proposes an architectural system model, an analysistechnique, and
architectural design techniques to achieve scalable graceful degradation in
distributed embedded systems. We present a system model that enables scalable
specification and analysis of graceful degradation and has helped us to identify
some system architecture properties that may contribute to a system’s ability to
degrade gracefully. We then apply this model to two representative distributed
embedded system designs and identify: (i) how well these systems gracefully
degrade, and (ii) the parts of the system that we could modify to improve graceful

degradation.
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We define graceful degradation in terms of system utility: a measure of the
system’s ability to satisfy its specified functionality and dependability
requirements. A system that has all of its components functioning properly has
maximum utility. A system degrades gracefully if component failures reduce
system utility proportionally to the sum of all the components that have failed.
Utility isnot al or nothing; the system providesaset of features, and ideally theloss
of one feature should not hinder the system’s ability to provide the remaining
features. It should be possible to lose a significant number of components before
system utility fallsto zero.

We focus our analysis on distributed embedded computer systems. Distributed
embedded systems are usually resource constrained, and thus cannot afford
complete hardware redundancy. However, they have high dependability
requirements (due to the fact that they must react to and control their physical
environment), and have become increasingly software-intensive. These systems
typically consist of multiple compute nodes connected via a potentially redundant
real-time fault-tolerant network. Each compute node may be connected to several
sensors and actuators, and may host multiple software components. Software
components provide functionality by reading sensor values, communicating with
each other viathe network, and producing actuator command valuesto provide their
specified behavior.

Our system model provides a means for assessing graceful degradation by
evaluating the relative utility of system configurations. Our framework achieves
scalable analysis by partitioning the system into subsystems based on component

input and output interfaces, and restricting utility analysisto individual subsystems.
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Rather than specify the relative utility values of al possible configurations of the
system, we determine only the utility values of configurations of each subsystem,
and then combine these values to evaluate the utility of all possible system
configurations.

This framework enables tractable analysis and design of graceful degradation in
distributed embedded systems. We can usethe model to explicitly identify tradeoffs
among the design effort required for graceful degradation mechanisms, the cost of
redundant resources, and the improvement to the robustness of the system. We can
aso use the model to evaluate the graceful degradation of the system
implementation and ensure that it matches the system design and dependability
requirements.

Thiswork isapart of the RoOSES (Robust Self-Configuring Embedded Systems)
project and builds on the idea of a configuration space that forms a product family
architecture [Nace2000]. Each point in the space represents a different
configuration of hardware and software components that provides a certain utility.
Removal or addition of acomponent to a system configuration movesthe system to
another point in the configuration space with a different level of utility. For each
possible hardware configuration, there are several software configurations that
provide positive system utility. Our model focuses on specifying therelative utility
of all possible software component configurations for a fixed hardware
configuration. For a system with N software components, the complexity of
specifying a complete system utility function is normally O(2"). Our model
exploits the system’s decomposition into subsystems to reduce this complexity to

O(N*2"), where k is the maximum number of components within a single
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subsystem. When we have a complete utility function for all possible software
configurations, we can identify how well the system gracefully degrades by
examining the differences in utility among different system configurations.

A scalable specification of system-wide graceful degradation enables scalable
anaysis and design of graceful degradation. We can rank the relative utility of
different system configurations and identify which components and subsystems
provide significant system utility contributions. We can then target these
components and subsystems for graceful degradation design improvements, rather
than adding design complexity to the entire system. We can also use the system
utility model to validate the graceful degradation ability of the system
implementation. If we compare the utility of different system configurations
predicted by the model to the ability of these configurations to satisfy system
requirements in the implementation, we can evaluate whether the implemented

system actually achieves graceful degradation.
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1.2 Thesis Contributions

This research provides four major contributions towards designing gracefully
degrading distributed embedded systems:

* A structural model derived from the system’ s software architecture
specification that enables scalable specification of graceful degradation in
embedded systems, and expresses many current hardware and software
fault-tolerance techniques in a single framework.

» Proposed design principles that will promote system-wide graceful
degradation in distributed embedded systems that were identified as a result
of applying the system model.

A tractable analysis technique that uses the model to provide hintsto where
to focus design effort for improving graceful degradation and can validate
that the implementation achieves graceful degradation.

» Two case studies in which we applied our system model and design
techniques to representative distributed embedded system applications and
observed how well they could gracefully degrade.

Theframework we have devel oped makesit possibleto quantitatively assess how
well the system will gracefully degrade due to the particular system properties

developed in the software architecture.

1.3 System Context

The system’ s software architecture embodiesthe system behavior and functionality,

but it must be considered with therest of the computer system aswell. Our goal isto
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identify and systematically measure what properties of the system’ ssoftware design
contribute to graceful degradation in distributed embedded systems. However, for
the complete system to degrade gracefully, other system properties must be
addressed aswell. Since thiswork only addresses the particular architectural style
that is common for distributed embedded systems, we make some assumptions
about these properties that match thistype of system and putsthe software systemin
an “ideal” context:

» System hardware resources satisfy all processing, memory, and bandwidth
requirements for the software system.

» The system is scheduled so that all working components satisfy real-time
requirements, and failure recovery mechanisms have been considered in the
schedule such that they do not cause additional timing faults.

» Thefault model assumesthat all components are fail-fast and fail-silent,
and that these failures are detectable by other system components.

» The system communication mechanisms are assumed reliable and the
software architecture is specified at the level of component inputs and
outputs.

These assumptions are non-trivial, but determining how to achieve them and how
they impact the system is outside the scope of the research proposed here. Our focus
is on design techniques for graceful degradation that tolerate combinations of
component failures.

Real-time embedded control systems are typically designed to be time-triggered
[Kopetz97], meaning that processing and network communication are periodically

scheduled. A software component may be implemented as a real-time task that
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periodically processes inputs and produces outputs. Thus, a timing failure in a
component will manifest as an output not being updated beforeits deadline, and not
being available for other components to process. This matches our fail-fast,
fail-silent fault assumption. Other components that receive the component’s
outputs will detect that the component has failed because it missed its deadline and
did not produce its outputs.

Any failures of interest must be detectable by other system components. If the
other components never detect acomponent failure, the system cannot recover from
it. Thiswork focuses on how to design the system to automatically recover from
failures rather than attacking the issues of failure and fault detection. We make a
common assumption that most component failures will be fail-fast and fail-silent,
and that failures only manifest as the loss of a outputs from a component. The
communication interface will aid failure detection somewhat, asinvalid messages
can be detected if they do not follow the communication protocol. However, the
problem of determining when a component is sending valid but incorrect
information is an open question that currently cannot be overcome without costly
replication and approaches such as Byzantine-agreement algorithms [Lamport82].

Our view of the software architectureis at alevel of abstraction that defines the
components and their interfaces but not the detailed design of the components or
communication mechanisms. The architectural connectors are represented by
system variablesthat represent the data val ues passed among software components.
The communication implementation must satisfy communication requirements
such that data outputs from components are available as inputs for other

components to satisfy real-time deadlines and provide functionality. The software

Introduction 10



architecture described in our system model is separated from the network
communication implementation and should not need to know the details of how data
is transmitted among components.

For distributed embedded systems, we assume that the network isafault-tolerant
broadcast bus that transmits all messagesto all nodes periodically, ensuring that all
software components receive their inputs. However, changing the communication
architecture does not affect the validity of our software model, as long as all
working components receive their inputs from other working components. There
could be distributed middleware that ensuresthat messages are delivered intimefor
real-time deadlines to be met, and can optimize message delivery when software
components reside on the same hardware node. A survey of communication

architectures for embedded control systemsis presented in [Rushby2001].

1.4 ThesisOutline

Therest of thisthesisis organized asfollows: Chapter 2 discusses prior and related
research areas for graceful degradation, dependability, embedded systems, and
software architecture. Chapter 3 introduces our system model for specifying
graceful degradation with anillustrative example, and shows how we can apply this
model to traditional fault tolerance and dependability techniques. Chapter 4 shows
how we applied this model to a more complex automobile navigation system and
describes design techniques for achieving graceful degradation. We aso present an
anaysis method for using the model to identify which parts of the system should

receive more graceful degradation design effort and to validate graceful degradation
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in the system implementation. Chapter 5 describes a case study with the design and
implementation of a distributed embedded elevator control system. Chapter 6
describes a case study with an autonomous robot navigation system. Finaly

Chapter 7 ends with conclusions and future work.
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2 Related Work

This thesis draws on work from several different research areas to address the
problem of scalable graceful degradation in distributed embedded systems. In this
chapter wewill examine current research in graceful degradation, dependability and
fault tolerance, embedded system architecture and design patterns, and software

architecture.

2.1 Graceful Degradation

Previouswork on formally defining graceful degradation for computer systemswas
presented in [Herlihy91]. That work proposed constructing a lattice of system
constraints that identifies what tasks the system can accomplish based on which
constraintsit can satisfy. A system that works perfectly satisfiesall constraints, and
a system that encounters failures might satisfy a looser set of constraints and still
provide functionality, but is degraded with respect to some system properties. The
difficulty with this model is that in order to specify the relaxation lattice, it is
necessary to specify not only every system constraint, but also how constraints are
relaxed in the presence of failures. It further requires determining how constraints
interact and developing a recovery scheme for every possible combination of
failuresin order to move between pointsin the lattice. Because all combinations of
component failures must be considered, specifying and designing graceful
degradation is exponentially complex with the number of system components.
Other work on graceful degradation hasfocused on devel oping formal definitions

[Jayanti99, Weber89], but has not addressed how to apply these definitions to
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complex system specifications, nor how to overcome the problem of exponential
complexity for specifying failure modes and recovery mechanisms. The concept of
multitolerance was proposed in [Arorad8] to provide a unifying mechanism for
providing dependability and graceful degradation by classifying all possible types
of faults and designing separate mechanisms called detectors and correctors to
minimize their effects on the system. However, global detectors and correctors
must be specified for every distinct failurein the system, and every combination of
detector and corrector mechanisms for different fault classes must be analyzed to
ensure that they do not negatively interact to decrease system dependability.

Research on implementing graceful degradation for tolerating missed deadlines
and solving quality of service constraints [Abdelzaher97, Mittal 98, Ramanathan97]
has focused only on processor |oad and timing-rel ated faults rather than application
faults due to component failures. The graceful degradation observed is only in
terms of system performance rather than reduced or different functionality.
Research effort in building self-healing systemsis ongoing [WOSS2002], and may
be complementary to gracefully degrading systems. Self-healing systems might
incorporate mechanisms for graceful degradation to prevent interruption of service
while the system recovers from afailure.

The term “graceful degradation” has been used informally in many different
situations to mean anything from fault tolerance to quality of service guarantees.
Graceful degradation has been identified as a desirable property for dependable
systems and has been studied in early reliability research [Losq77, Ng77], but the
focus was mainly on evaluating graceful degradation in terms of traditional

hardware reliability models. Our work differs from previous research in that we
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provide a framework for explicitly defining what software system properties
graceful degradation covers, and how graceful degradation affects system

dependability.

2.2 Dependability and Fault Tolerance

Dependability covers a range of system properties such as reliability, availability,
and maintainability. A taxonomy of dependability properties and related concepts
of fault definitions, diagnosis, and recovery are listed in [Avizienis2001].
Traditional reliability and availability models tend to focus on hardware
architecture and configurations rather than software, and the notion that a system
can only move between the states of perfectly working and failed when faults occur.
A software reliability model based on software architecture was described in
[Wang99], but required knowledge of individual software component reliabilities (a
difficult problem in its own right), and did not specifically address graceful
degradation or include a notion of a partialy working system.

Traditional fault tolerance relies on redundant resources to provide
dependability, and can tolerate a limited number and type of system faults.
Hardware replication strategies such as triplex modular redundancy [Rennels84]
provide redundant copies of software running on separate processors to tolerate
hardware faults, but cannot prevent afault due to a software design defect that will
affect all copies of the software. Software fault tolerance techniques such as
N-version programming rely on multiple design efforts to build multiple distinct

software modules that provide the same functionality but will not have the same
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design defects, ensuring that they will not fail due to a correlated defect
[Avizienis85]. However, this technique requires twice or more the design effort to
build multiple software modules, and it is controversial whether this actually
prevents correlated software defects [Knight85, Koopman99]. Both hardware and
software fault tolerance techniques have a cost either in terms of replicated
resources, design effort, or both. Additionally, if enough faults occur to fail all of
the backups, the system will then become very brittle and susceptibleto catastrophic
failures.

Survivability and performability are related to our concept of graceful
degradation. Survivability is a property of dependability that has been proposed to
define explicitly how systems degrade functionality in the presence of failures
[Knight2000, Knight2003]. Performability is a unified measure of both
performance and reliability that tracks how system performance degrades in the
presence of faults[Meyer78, Meyer93]. Our work differsfrom survivability in that
we are interested in building implicit graceful degradation into systems without
specifying all failure scenarios and recovery modes a priori. Also, we focus on
distributed embedded systems rather than on large-scale critical infrastructure
information systems. Performability rel ates system performance and reliability, but
our concept of graceful degradation addresses how system functionality can change
to copewith component failures. Military systemshavelong used similar notionsto
provide graceful degradation (for example, in shipboard combat systems), but had
scalability limits and were typically limited to adozen or so specifically engineered

configurations.
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Other researchersin dependable distributed systems define graceful degradation
as a combination of performability and rea-time quality of service
[Verissimo2001]. Real-time quality of service specifications define levels of
performance that the system can maintain given available system resources. As
resources are lost, system performance will degrade and some system services may
be stopped to provide resources for other services that are mission-critical.
However, this view of graceful degradation only deals with system hardware
resources such as network bandwidth or processor utilization, and only focuses on
the effects of timing faults or resource overload faults.

In contrast, our view of graceful degradationisthat it isageneral mechanism that
canrefer to any individual system property or set of propertiesin the presence of any
set of defined faults. We use system utility as the general combined metric for
whatever properties the system is required to satisfy, and we specify afault model
that explicitly states what faults the graceful degradation mechanism should cover.
Beyond performance and reliability, functionality, security, availability,
maintainability and other system properties could potentially degrade in the
presence of systemfailures. These properties may not be quantitatively defined, but
may have severa levels of service that can be ranked in terms of utility. These
levelsof service may also map to different forms of system functionality that cannot
be mapped to aresource quality of service model.

The system faults identified may be design defects that fail software and
hardware components in addition to timing faults or resource overload faults that
make system resources unavailable. There may be multiple faults that manifest as

the same failure behavior and can be handled with one mechanism. Our goal isto

Related Work 17



provide a framework for evaluating graceful degradation that can be tailored to a
system’s fault model and system requirements. We have built some assumptions
about system utility and system faults into our model, but attempted to make their

definitions explicit and extensible.

2.3 Embedded Systems

Current industry practice for dealing with faults and failures in embedded systems
focuses on the traditional approaches of fault-tolerance and fault-containment
[Rushby99]. Software subsystems are physically separated into different hardware
modules. Additionally, system resources, such as sensors and actuators, that are
commonly used may be replicated for each subsystem. That approach provides
assurance that faults will not propagate between subsystems since they are
physically partitioned, and fault tolerance is achieved by replicating resources and
subsystems.  Typicaly, failures are deat with by having separate backup
subsystems available rather than shedding functionality when resources are |lost.
Thisapproachisarestricted form of graceful degradation, inthat it toleratestheloss
of afinite set of components before suffering a complete system failure. However,
this methodology is costly because of itsrequired high level of redundancy. Other
research on designing graceful degradation for manufacturing control systems
[Adlemo95] did not address how to overcome the difficulty of dealing with
increasing combinations of possible failure modes.

A promising approach to achieving system dependability is NASA’s Mission

Data System (MDS) architecture [Dvorak2000, Rasmussen2001]. This system
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architecture is being designed for unmanned autonomous space flight systems that
must complete missions with limited human oversight. Their architecture focuses
on designing software systems that have specific goals based on well defined state
variables. The software is decomposed based on the subgoals it must complete to
satisfy itsprimary goal. The softwareisnot constrained to a particular sequence of
behavior, but rather must determine the best course of action based onitsgoals. The
potential difficulties with this approach include the effort required to decompose
goals into subgoals, and conflict resolution among subgoals at run time. Our
framework differs from MDS in that we specifically focus on behavior-based
subsystems and the coordination among them through system communication

interfaces.

2.4 Software Architecture

We aso draw on research from the software architecture community to explore how
a system’s high-level organization can influence its ability to gracefully degrade.
Well-known system decomposition strategies have been codified into architectural
patterns that have become common knowledge. Architectural principles have
become recognized asamajor part of the system design process [Bass98, Shaw96].
Work has also been done on fitting architectural patternsinto ataxonomy based on
their system properties as a resource for choosing certain architectural styles for
certain systems[Kazman97, Shaw97]. There have been several papers on applying
certain architectural patterns to specific embedded system domains and real-time

distributed systems [Banks94, Boasson98, Botti2000, Ravindran97,
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Rostamzadeh95], but we have not found any research focusing on developing a
generalized methodology for system-wide graceful degradation using architectural
properties.

Our system model focuses on distributed embedded system architectures, and
defines software in terms of components that represent real-time tasks, and system
variables that represent data communicated between these tasks. Thisis somewhat
similar to the traditional software architecture view of components and connectors.
If an embedded system architecture specifiesthe set of system componentsand their
input and output i nterfaces, this should be enough information to expressthe system
in terms of our model.

Many architecture description languages (ADL) have been proposed for
expressing a system’ s software architecture. In [Medvidovic97] a comprehensive
set of ADL’sisexamined in terms of what system properties they can express. Our
software system model is not a substitute for an ADL or architecture specification,
but isderived from these structuresto primarily highlight the componentsdefined in
the system and the dependencies among them. We use the Acme ADL
[ Garlan2000] to formally specify the semantics of our software component model.
This formal specification provides unambiguous definitions of the framework of
our model, making it accessible to other architects familiar with ADL'’s.
Additionally, the tool support available for Acme may provide a foundation for

automating our system model analysis.
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3  System Model for Graceful Degradation

Our system model for specifying graceful degradation is based on identifying the
relative utility of all possible valid system component configurations. Overall
system utility may be a combination of functionality, performance, and
dependability properties, based on the requirements of the system for the servicesit
must provide. For a system that is a set of N software components, sensors, and
actuators, the total possible system configurations are represented by the system’s
power set. Thus, there are 2" possible system configurations. If we specify the
relative utility values of each of these 2" configurations, then we can determine how
well asystem gracefully degrades based on the utility differences among different
software configurations.

Our model enables complete definition of the system utility function without
having to evaluate the relative utility of all 2" possible configurations. Our model
splits the system into orthogonal software and hardware views so that we can
specify the utility of all software configurations without considering the hardware
system, but still see the effects of hardware redundancy mechanisms on graceful
degradation. A software dataflow graph enables scalable system utility analysisby
partitioning the system into subsystems and identifying the dependencies among
software components. Our system utility model is based on the system’ s software
configurations. It is primarily concerned with how system functionality changes
when software componentsfail, and the effect of software fault tolerance techniques
onsystemutility. A hardware allocation view enables mapping hardwarefailuresto

software component, sensor, and actuator failuresfor utility analysis. Thehardware
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view also represents the effect of hardware replication on system dependability for
hardware reliability and availability analyses.

We focus on real-time distributed embedded computer systems, which allows us
to make several assumptions about a system’s organization and fault model. Such
systems are often composed of autonomous periodic tasks (e.g. reading a sensor
value, updating a controller output) that only communicate via state variables (e.g.
sensor data values, control system parameters, actuator command values).
Examples of such systems include automotive and avionics control systems.
Therefore our model of communication among software components is based on
dataflow rather than control flow, and assumes a fault-tol erant, broadcast real-time
network.

Thefault model for our system usesthetraditional fail-fast, fail-silent assumption
on a component basis, which is best practice for this class of system. Individua
components are designed to shut down when they detect an unrecoverable error,
meaning they no longer provide their outputsto therest of the system. Thelossof a
component’s outputs enables the other components in the system to detect the
component’ sfailure, and prevents an error from propagating through the rest of the
system. All faultsin our model thus manifest themselves astheloss of outputsfrom
failed components. Software components either providetheir outputsto the system
or do not. Hardware component failures cause loss of all software components
hosted on that processing element. Network or communication failures can be

modeled as aloss of communication between distributed software components.
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3.1 DataFlow and Dependency Graph

The dataflow graph shows how information flowsin the system from sensor inputs,
through software components, to actuator outputs. Each vertex in the graph is a
sensor, actuator, or software component, and each edge in the graph is a system
variable that represents communication among components. This data flow graph
can be directly generated from the system design’ s software component definitions
and interface specifications.

If the system has a software architecture specification, we can generate the
system from the component and connector view of asystem’ s software architecture.
The components are software components that represent real-time tasks that
produce periodic outputs, sensors, and actuators. The connectors are the system
variables that represent data communicated among components. Since the class of
embedded systems we are examining deal primarily with data flow at the
application level, they generally resemble the pipe-and-filter architectural style
[Shaw96] in this dependency graph view. Section 3.2 presents a formal
representation of the system’s component model as an architectura style in the
Acme ADL.

To illustrate the model, we present a hypothetical automotive brake-by-wire
system. We constructed this example by adapting areal anti-lock braking system
design described in [Jurgen99] from a centralized electro-mechanical system to a
distributed software control system. We also added a vehicle dynamics subsystem
to represent an active stability control feature. Figure 3.1 showsthe dataflow graph
for this system, with all of the software components, sensors, and actuators

necessary for braking functionality ontheleft front (LF) wheel of thecar. Thebrake
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Figure 3.1. Data Flow Graph for the Left Front Wheel Brake Actuator.

controller sends brake commands to the brake actuator for the LF wheel, and the
brake controller receives input from the pedal controller (which monitors the pedal
sensor for driver brake commands) and anti-lock braking software. The anti-lock
software al so receivesinput from the pedal controller, aswell asthe LF wheel speed
sensor (to detect when the wheel 1ocks) and vehicle dynamics software component
(to maintain stability of the vehicle). The vehicle dynamics software monitors all
four wheel speed sensors to calculate the overall vehicle speed. The right front
(RF), left back (LB), and right back (RB) wheel braking subsystems have similar
data flow graphs, and they all receive data from the pedal controller and vehicle

dynamics software.
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Figure 3.2. Feature Subset Definitions and Component Dependencies.

Based on the data flow graph, we can group the components into subsystems
based on the outputs they provide. We define these subsystems in our model as
feature subsets. A feature subset is a set of components (software components,
sensors, actuators, and possibly other feature subsets) that work together to provide
aset of output variables. Feature subsets may or may not be digoint and can share
components across different subsets. Each feature subset can be viewed as a
subgraph of the system data flow graph, where other contained feature subsets are
represented as components. Figure 3.2 shows the feature subset definitions for the
braking system with respect to the LF wheel. The LF brake control feature subset
contains the LF brake actuator, the LF brake control software component, and the

brake pedal and LF anti-lock braking feature subsets. The LF anti-lock braking
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feature subset is composed of the LF anti-lock braking software component, the LF
wheel speed sensor, and the brake pedal and vehicle dynamics feature subsets. The
vehicle dynamicsfeature subset contains the vehicle dynamics software component
and all four wheel speed sensors. Note that feature subsets can share componentsiif
they require similar information. For example, both the brake control and anti-lock
braking feature subsets contain the brake pedal feature subset as a component that
provides the Pedal Pressure Data system variable. Additionally, the LF wheel
speed sensor isacomponent in both the LF anti-lock braking and vehicle dynamics
feature subsets. These shared components only represent onelogical instanceinthe
software data flow view, and whether or not they are replicated in hardware will be
visible in the hardware allocation view (see Section 3.3).

The data flow graph can also represent dependency relationships among
components. Each component may provide functionality without all of its specified
inputs. For example, the brake control software only needs input from either the
pedal control software or the anti-lock braking software. The anti-lock braking
output is preferred becauseit provides better vehicle stability while braking, but if it
isnot available, normal braking is still possible with the pedal control output.

We annotate the data flow graph with a set of dependency relationships among
components (Figure 3.2 illustrates this for the example brake-by-wire system).
These relationships are determined by each component’s dependence on its input
variables, which might be strong, weak, or optional. I1f acomponent isdependent on
one of itsinputs, it will have a dependency relationship with all components that
output that system variable. A component strongly depends on one of its inputs

(and thusthe componentsthat produceit) if theloss of that input resultsin the loss of
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the component’ sability to provideitsoutputs. A component weakly depends on one
of itsinputsif theinput isrequired for at |east one configuration, but not required for
at least one other configuration. For example, the vehicle dynamics software
component requires at least one wheel speed sensor to perform calculation of
vehicle dynamics, but it can still provide its output without inputs from al four
whedl speed sensors. Additionally, a component can be weakly dependent on
multiple components that redundantly output the same required system variable. |If
an input is optional to the component, then it may provide enhancements to the
component’s functionality, but is not critical to the basic operation of the
component. For example, the anti-lock braking software can produce its outputs
with only the Pedal Pressure and Wheel Speed system variables. The Vehicle
Dynamics Data system variable enhances the anti-lock braking functionality, but is
not required for basic operation.

These dependency relationships will enable us to eliminate invalid
configurations (configurations that have zero utility) for each feature subset based
on whether or not components that provide required system variables are present in
each configuration. Any valid feature subset configuration must contain all of the
components necessary to satisfy all strong system variable dependancies within the
feature subset. At least one component that provides each distinct system variable
must be present in the configuration. All other configurations can be eliminated as
invalid. For system variables that are considered optional in a feature subset, the
presence or absence of the componentsthat output these variablesin aconfiguration
may affect the utility of the feature subset, but will not affect whether or not that

feature subset isvalid. For any valid configuration without an optional component,
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the same configuration that only differs by the addition of that optional component
must also be valid and must be evaluated.

Weakly dependent system variable inputs cover all variables that are required as
inputs for some componentsin some feature subset configurations, and are optional
inputs for those components in other feature subset configurations. The only
situation in which we have used the weak dependency relationship iswhen thereare
multiple components that have semantically related output variables that can serve
as redundant backups for inputs to other components. In this situation, al
configurations in which at least one of the components that can provide one of the
weakly dependent outputs are valid. The weakly dependent relationship is
intentionally broad so that more complex dependency relationships can still be
represented in our model without having to redefine the basic semantics. These
dependencies are only used in amodel to reduce the number of valid configurations

that must be evaluated in each feature subset.

3.2 Acme Specification of the Software System View

The Acme ADL [Garlan2000] provides a mechanism for generating a formal
specification of an architectural style by defining the semantics of component and
connector interaction. The architectural style of our software system view
represents software components, sensors, and actuators as components, and system
variables as connectors, along with the basic rules of how they should interact. The
Acme specification of our software component model islisted in Appendix A. Our

Acme specification only covers the system component and interface definitions.
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Each component has a set of input and output ports that specify which input
variablesthey receive and which output variables they produce. Each component’s
input port also has a dependency property associated with it that specifies whether
the input’ s dependency is strong, weak, or optional for that component.

Acme currently does not have a mechanism to accurately represent our
hierarchical feature subset definitions. Acme uses recursive component definitions
to represent hierarchical component decomposition, but the hierarchy is strict and
components at different levels of the hierarchy are not visibleto one another. Acme
aso alows specification of groups of associated elements (components and
connectors), but the current semantics for group definitions do not allow one group
to contain another as an element. Feature subsets, on the other hand, represent sets
of components that form logical subsystems but do not encapsulate all of the
interfaces of the components they contain. Feature subsets also allow multiple
feature subsets to contain the same component instance, and alow one feature
subset to contain another as a component without strong encapsulation.

Our definition of feature subsets is essential to our model’s ability to provide
scalable specification of system-wide graceful degradation. It is common in
embedded systems for separate subsystems to share resources and information but
not necessarily have a strict hierarchical structure that ensures that subsystems are
digoint and layered. Acme only allows specification of digoint hierarchical
subsystems, so an Acme architectural description of thistype of system could have
only one level where all components and connectors are visible, but the subsystem
definitions are obscured. Thus, system utility evaluation cannot be partitioned to

individual subsystems because they are not visible in the architecture description.
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Feature subsets provide a mechanism for evaluating the utility of individual
subsystems as if they were digoint while preserving connections and common

dependenciesto other subsystems.

3.3 Hardware Allocation Diagram

The hardware allocation diagram provides information about which processors are
tied to sensors and actuators, and where software components are allocated in the
hardware system. The hardware structure of the system defines the set of available
processing elements that form a distributed system. The fault-tolerant network
topology isdescribed in terms of which hardware nodes can communi cate with each
other. Each hardware component has sensor, actuator, and software components
mapped to it, defining the hardware configuration. Sensors and actuators are
physically connected to particular nodes in the system, and software components
are dlocated to nodes. There may be multiple sensors, actuators, or software
components allocated to different hardware nodesfor redundancy. Thisview of the
system alows us to assess the system’s ability to tolerate hardware failures by
identifying which software components, sensors, and actuators are affected by a
processor failure.

Figure 3.3 shows a possible hardware allocation for our example brake-by-wire
system. Software components, sensors, and actuators for brake control in each
wheel are alocated to separate processors, while the components for vehicle
dynamics and brake pedal control are allocated to other processors. Notice that in

hardware there are dual redundant brake pedal sensors and brake pedal controllers
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Figure 3.3. A Hardware Allocation Diagram for the Brake-By-Wire System.

to provide increased reliability. Thisredundancy isorthogonal to the software data
flow graph. A software component that is replicated in hardware only represents
onelogical software component in the software dataflow system view. Thismeans
that redundancy management mechanisms such as replica determinism are below
our level of abstraction and are implicit in our view of the software architecture.
We assume that the hardware allocation mapping is static during operation (one
could envision dynamic allocation, but that is beyond the scope of this work). If
there are redundant hardware nodes, loss of one node will not change the software
configuration if there is another copy still available. A hardware node failure that
removes a set of software components, sensors, and actuators from the system will
alter the software configuration by the loss of those components. Therefore, we can
focus on analyzing the utility of the software configuration to assess graceful

degradation.
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3.4 Utility Mode

Our utility model exploits the system decomposition captured in the software data
flow view to reduce the complexity of specifying a system utility function for all
possible software configurations. We have already grouped the system components
into several feature subsets based on their communication interfaces, and these
feature subsets encapsulate functional subsystems. Rather than manually rank the
relative utility of all 2V possible software configurations of N components, we
restrict utility evaluationsto the component configurationswithinindividual feature
subsets. We specify each component’s utility value to be 1 if it is present in a
configuration (and providing its outputs), and O when the component is failed and
therefore not in the configuration. Utility values of other than O or 1 for individual
components are precluded by the fail-fast, fail-silent assumption.

We also make a distinction between valid and invalid system configurations. A
valid configuration provides some positive system utility, and an invalid
configuration provides zero utility. For graceful degradation we are interested in
the utility differences among valid system configurations, as the system is till
considered “working” until its utility iszero. In general, there are many “trivially”
invalid system configurations. A system configuration that strongly dependsupon a
component that is failed provides zero utility regardless of what other components
arepresent. For example, acar with no brake actuatorsat al cannot provideitsbasic
system functionality and is aready failed, so examining the rest of the system’s
component configuration is unnecessary. However, thereis still a set of multiple
valid configurations that must be ranked for system utility, and we use our feature

subset definitions to specify the utility of these system configurations.
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Configurations that are invalid due to weak dependence on multiple missing
components can be eliminated aswell. If afeature subset has m components, where
these components can be software components, sensors, actuators, or other feature
subsets, then we can define the utility of the feature subset U; as.

Us = Hi(Uy, Uy, ... , Up)

Where u; ... u, are the utility values of each component, and H; is the utility
function of the feature subset. Since we are restricted to the feature subset and not
the entire system, we only need to rank therelative utility of 2™ possible component
configurationsto completely specify the feature subset’ s utility function. For many
systems, m << N, making this task tractable. If there are p feature subsets in the
entire system, and the number of components per feature subset is bounded by k <<
N, then we must eval uate a maximum of p* 2* component configurations to specify
the utility functions of al feature subsets.

To determine the utility of system configurations, we must be able to relate the
utilities of individual feature subsets to overall system utility. We can view the
system as providing several orthogona functional capabilities that can be
implemented by one or more feature subsets. Capabilities are “top-level” feature
subsets that encapsulate al other feature subsets in a hierarchical subsystem
decomposition. Once we have determined the relative utility values of feature
subset configurations, we can determine the utility of a system configuration by
specifying the utility of the configurations of the system’s functional capabilities.

Each functional capability may have multiple feature subsets that can implement
the required functionality. For graceful degradation, the system designers may

create multiple feature subsets of varying utility for each capability. The utility of
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Figure 3.4. Top-down View of System Decomposition into Capabilities.

the capability is then dependent on which of its feature subsets are present in the
system. For acapability with t feature subsets, there are 2' possible configurations
of that capability. Figure 3.4 illustrates a top-down view of the system
decomposition into functional capabilities and feature subsets for a portion of our
brake-by-wire system. The braking capability is one of several functional
capabilitiesan automotive system provides. Thisbraking capability iscomposed of
four braking feature subsets to drive the brake actuators on each wheel of the car.
The utility of the braking system will be different depending on which of the four
brake control feature subsetsare present. Having all four brakes provides maximum
utility, but having a single pair of brakes on either the front or back wheels will

provide more utility than having a pair of brakes on only the left or right side.

System Model 34



If the feature subsets that provide a capability are not present in the system
configuration, then that capability will have a utility of zero. Otherwise each
capability will have a utility value based on its feature subset configuration. Thus,
for a system with q capabilities, the system utility function can be specified by
evaluating the relative utility values of 2 capability configurations, assuming we
have already generated all of the utility functions for al feature subset and
capability configurations.

For a system of N software components, sensors, and actuators, one would
normally evaluate therelative utility of 2" system configurationsto manually define
the system utility function. Using our model, we first evaluate the utility of all
configurations of up to k components in each feature subset, which is 2
configurations for each of p feature subsets. Then, we evaluate the utility of all 2'
configurations of up to r feature subset alternatives in each functional capability,
and repeat thisfor each of g capabilities. To determinetherelative utility of system
configurations, we evaluate the utilities of 29 possible configurations of g
capabilities. The number of individual utility valuesthat must be assigned (i.e., the
complexity of specifying the complete system utility function) is:

(max featur e subset configs) + (max configsin capabilities) + (capability configs) =
(p*2Y + (a*2) + (29

For the expected situation of g, r £ k and p£ N thisutility model requires O(N* 2)
complexity to specify a utility function for 2" system configurations. Table 3.1
summarizes the parameters of our system utility model. For systemsinwhich k <<

N, meaning that individual subsystems have few components compared to the total
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Table 3.1. Key Parameters of the Utility Model.

Parameter | Description

N Total # of system components (software, sensors, actuators)
p Total # of feature subsets

q Total # of system functional capabilities

k Maximum number of components in any feature subset

r Maximum number of feature subsets in any capability

number of system components, this utility model enables a scalable definition of the

system utility function.

3.5 Scalable Generation of the System Utility Function

If we apply this model to our brake-by-wire subsystem example, we can see the
scalability benefits. Our example software system has five sensors (four wheel
speed sensors and one brake pedal sensor), four actuators (the four brake actuators),
and ten software components (four brake controllers, four anti-lock braking
software components, one vehicle dynamics algorithm, one brake pedal controller).
This makes a total of 5+4+10 = 19 components, which can have 2°*° = 219 =
524,288 possible system configurations. We first eliminate all of the invalid
component configurationsthat cannot providethe functionality of at least one brake
actuator, but are still left with 89,600 possible valid configurations.

Using our model, there are p = 10 feature subsetsin the system (four brake control
feature subsets, four anti-lock braking feature subsets, one vehicle dynamicsfeature
subset, and one brake pedal control feature subset). The largest of these feature

subsets, vehicle dynamics, has k = 5 components. There are r = 4 braking feature

subsets (onefor each wheel) that make up the braking system capability. If wewere
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looking at the entire automotive system, braking would be one of several functional
capabilities such as steering and acceleration. Since we are only looking at the
braking subsystem for this example, g = 1 (i.e., one subsystem). Based on these
parameters, the maximum number of subsystem configurations for which we have
to assign utility values would be:
p*2¢+ gqr2' + 29=10*2° + 1*2* + 2' = 338

Thisisasignificant reduction, but we can do better. Thiscalculation givesusthe
maximum bound assuming that all feature subsets have 5 components each, but if
we look at the individual feature subsets, most actually have fewer components.
The brake pedal feature subset has two components, each of the four anti-lock
braking and brake control feature subsets hasfour components, and only thevehicle
dynamicsfeature subset hasfive components. Using thisinformation, we can lower
the number of configurations evaluated to:
(feature subset configs) + (featuresubset configsin capabilities) + (cap. configs) =

122 +82'+1%2° 4+ 1%2* + 2! =181

Furthermore, there are multiple invalid configurations within each feature subset
that can be eliminated because they are missing a required component. Using the
dependency information in the software data flow view, we can immediately
identify these configurations. For example, the brake pedal feature subset will only
provide utility if both the brake pedal sensor and brake pedal control software are
present in the system. Any other configuration of this feature subset is invalid.
Likewise, the vehicle dynamicsfeature subset cannot provide any utility without the
vehicle dynamics software algorithm. Also, at the capability level, we will need at

least one functioning braking feature subset out of the four available, and the
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braking capability must be present in the system to provide positive utility. If we
continue this examination for every feature subset, we are left with 1 system
capability configuration with a working braking capability, 15 feature subset
configurations for the braking capability, and 36 component configurations across
the 10 feature subsets for atotal of 52 subsystem configurations. We only need to
specify the utility values of these 52 subsystem configurations to determine the
relative system utility of any of the 89,600 valid system configurations. Once we
specify the relative utility of al valid possible component configurations, we can
assess how well the system gracefully degrades as components fail.

A system designer with domain knowledge should be ableto assign utility values
within individual subsystems based on how he or she ranks the different
configurationswithin each subsystem. If we assumethat afeature subset’ sutility is
dependent on its functioning components’ utility values, we can specify its utility
function H; by generating a separate utility function for each valid feature subset
configuration. Table 3.2 shows an example specification for the left front brake
control feature subset and its encapsul ated feature subsets. Note that our framework
requires the system designers to specify the parameters of the utility functions for
each feature subset configuration, and our specification for this system is an
arbitrary example.

Each configuration isidentified by which of the feature subset’ s components are
functioning. The brake pedal feature subset only has one valid configuration in
which both of its components must be present, and this by definition provides
maximum utility for this feature subset. All other configurations of this feature

subset provide zero utility. There are only two valid configurations of the LF
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Table 3.2. Example Utility Specification for the LF Brake Control Feature Subset.

Feature Subset

Configuration

Utility Function

Feature}

Brake Pedal {Pedal Sensor (ugs), Pedal Controller (upc)} Usrake Pedal = Hi1(Ups, Upc) = 1

All other configurations Usrake pedal = 0

{LF Anti-Lock Brake Control (Uay), LF Wheel ULF antiLock = Hra(Uttal, Uttws, Usrake
LF Anti-Lock Speed Sensor (uiws), Brake Pedal Feature, pedal, Uvenicle Dynamics) = 0.7 +

Vehicle Dynamics Feature} 0.3*Uvenicle bynamics

{LF Anti-Lock Brake Control(ural) , LF Wheel UL anti-Lock = Hez(Utal, Uiiws, Usrake

Speed Sensor(uiws), Brake Pedal Feature} pedal) = 0.7

All other configurations UL antiLock = 0

{LF Brake Control (uimc), LF Brake Actuator ULF Brake Control = Hi1(Uitbe, Uttba,
LF Brake Control | (uima), LF Anti-Lock Feature, Brake Pedal ULF antiLock, Urake Pedar) = 0.4 +

0.6*ULF Anti-Lock

{LF Brake Control, LF Brake Actuator, LF
Anti-Lock Feature}

ULF Brake Control = H2(Uitbe, Uttba,
ULF antiLock) = 0.4 + 0.6*Uir

Anti-Lock

{LF Brake Control, LF Brake Actuator, Brake
Pedal Feature}

ULF Brake Control = Hi3(Uitoc, Uttba,
Usrake Pedal) =04

All other configurations

ULF Brake control = 0

anti-lock feature subset; one with the vehicle dynamics feature subset, and one
without it. Since we know all other components must be present for the feature
subset to provide utility, we do not have to specify the utility function based on their
values.

In this hypothetical system, we might determine that the vehicle dynamics data
contributes 30% utility to the anti-lock braking algorithm, and specify our utility
functions accordingly. Similarly, there are three valid LF brake control feature
subset configurations in which either the Brake Pedal feature, LF anti-lock feature,
or both are available for the brake controller. Here we assume that the anti-lock
braking system contributes 60% utility to the brake control system. Since the LF
anti-lock feature subset depends on the brake pedal feature subset, the configuration

in which the anti-lock feature is working but the brake pedal feature is not should
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never occur. However, we still specify its utility in the LF brake control feature
subset since we treat them as independent components.

Though not shown in the table, there are 15 possible vehicle dynamics feature
subset configuration utility functions that are dependant on which wheel speed
sensors are working. These functions cannot be collapsed into asingle linear utility
function, because the vehicle dynamics feature subset may have more or less utility
based on which wheel speed sensors are functioning. For example, the vehicle
stability information may be better if both front wheel speed sensors are working
than if the left front and right back wheel speed sensors are working.

This utility function specification can be the same for each of the four brake
control feature subsets since they are not directly coupled. Then we can specify the
utility functions for each of the 15 possible configurations of the braking capability
based on the utility values of the four brake control feature subsets. Each braking
capability function can be of the form:

Ugraking system = Hic(ULF Brake control, URF Brake controly ULB Brake controls URB Brake Control)

= WU g + Wre*Ure + W " U g + Wrs* Urs
in which any of the brake control feature subsets that have zero utility can be
eliminated. The four weights {w r, Wgr, W g, Wrs} Should be specified with
different valuesfor each of the 15 possible valid capability configurations based on
the expected behavior of the braking system when the different combinations of

brake actuators on each wheel are working.
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3.6 Assumptions of Our Model

Our model isnever any worsethan having to consider 2" system configurations of N
components, and in typical caseswill be asignificant improvement. To attain these
improvementswe rely upon several assumptions with regard to how these software
systemsaredesigned. First, we assumethat the parametersof the utility function for
each feature subset configuration are independent of the configuration of any other
feature subset in the system. We only define different utility functionsfor different
feature subset configurations, in which a configuration specifies whether a
component is present and working (providing positive utility) or absent and failed
(providing zero utility).

When afeature subset is treated as a component in a higher-level feature subset,
that component can potentially have different utility values based on its current
configuration, rather than just 1 for working and O for failed as with individual
software components, sensors, and actuators. This could potentially mean that in
order to define the higher-level feature subset’ s utility function, we would have to
define a different utility function for every possible utility value for every feature
subset contained asacomponent in the higher-level feature subset. However, thisis
only necessary if the encapsulated feature subsets are strongly coupled within
higher level feature subsets. Similarly, individual components could have utility
values other than 0 or 1 if adifferent fault model were applied that allowed partial
component utility. Thesecomponentscould bemodeled as“logical” feature subsets
with an internal utility specification, and would not affect the number of feature

subset configurations required to specify the system utility function.
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Because system architects generally attempt to decouple subsystems to the
degree possible, we assume that encapsulated feature subsets are not strongly
coupled. Additionally, the high-level capabilities could also be coupled. For
example, if abraking capability has degraded utility, it might mean that high utility
in a steering capability is worth much more to the system than if the brakes were
functioning normally. If some subsystems are strongly coupled, one could apply
multi-attribute utility theory [Keeney76, Keeney92] to deal with the added system
complexity withinthemodel. Intheworst case, if itisnot possibleto separate utility
evaluations acrossfeature subsets, we can still confine our utility evaluationto valid
system configurations rather than all 2" possible configurations.

Defining the system functional capabilities requires grouping the system feature
subsets according to the functionality they provide. The feature subsets within a
capability may be functionally equivalent and represent system-level redundancy,
or they may coordinate their functionality to provide a general system service. In
our brake by wire example, thefour brake control subsystemsare viewed asisolated
feature subsets that contribute individual utility to system braking ability, but they
can also be viewed as feature subsets that coordinate their behavior to provide
enhanced functionality. In this view, each brake control feature subset definition
would be modified to reflect that each brake controller software component receives
the system variable outputs of the other three brake control feature subsets as
optional inputs. Although the number of valid system configurations does not
change, thiswouldincrease the number of valid configurationsin each brake control

feature subset that must be specified from 3 to 24, to account for each case of how an
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Figure 3.5. Alternate Brake-by-Wire System Feature Subset Organization.

individual brake controller subsystem’s utility changes when the other subsystems
arelost.

It might also be reasonable to group the four brake control feature subsets into
two front and back feature subsets since these subsystems are coupled by wheel
axle. These two feature subsets would each have 4 possible configurations (3 of
which are valid) of their two feature subset components. Then the brake control
capability would have 4 possible (and 3 valid) configurations of the two front and
back brake control feature subsets. This aternative feature subset organization is
showninFigure3.5. Thiscapability definition may more accurately reflect how the
braking subsystems are related, and aid the system designer in constructing a more

accurate utility model. However, this aso requires specifying a total of 130
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configuration utility functions rather than 52. This example illustrates the tradeoff
between the expressiveness of the system utility function and the detail of the
functional capability specification. A more detailed capability specification may
more accurately model how each feature subset affects system utility, but will
requirethat more configurations be eval uated to specify the system utility function.

We also assume that the system is “well-designed” such that combinations of
components do not interact negatively with respect to feature subset or system
utility. In other words, when acomponent has zero utility, it contributes zero utility
to the system or feature subset, but when a component has some positive utility, it
contributes at least zero or positive utility to the system or feature subset, and never
has an interaction with the rest of the system that resultsin an overall loss of utility.
Thus, working components can enhance but never reduce system utility. We
assume that if we observe a situation in which a component contributes negative
utility to the system, we can intentionally deactivate that component.

Our utility model only deals with software system configurations, and we do not
directly account for hardware redundancy as asystem utility attribute. However, in
genera hardware redundancy mechanisms will not affect system functionality, but
rather hardware system reliability or availability. Since we have separated the
hardware and software views of the system, we can still perform traditional
dependability analysis on the system's hardware configuration. To analyze
tradeoffs between system functionality and dependability, we could again apply
multi-attribute utility theory to judge the relative value of the software

configuration’s utility and the hardware configuration’s reliability and availability
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to the system’s overall utility. This analysis may include factors such as system

resource costs and hardware and software failure rates.

3.7 Traditional Fault-Tolerance Techniques

Our goal is to provide a common representation of system component
configurations that can be used to analyze system-wide utility and graceful
degradation. For our model to be useful, it must be readily applicable to current
software system design techniques and architectural approaches. Because our
model isdirectly generated from component and interface definitions, we should be
able to apply it to systems early in the design process.

Although our model emphasizes graceful degradation, it must also be able to
represent common dependability techniques. Beyond that, it is desirable for a
model of graceful degradation to have commonly used fault-tolerant computing
techniquesas special cases of graceful degradation. We demonstrate elements of the
generality of our system model by showing how hardware redundancy, software
fault tolerance techniques (described in [Lyu95]) such as recovery blocks,
multi-version software redundancy, self-checking programming, analytic

redundancy, and the simplex architecture can be represented in our model.

3.7.1 Hardwar e Redundancy

Hardware componentsthat replicateidentical copiesof software can mask hardware
faults and prevent them from affecting the system. Hardware redundancy treats

replicated software components as one logical component in the software system.
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Figure 3.6. Hardware TMR in the Data Flow Graph and Allocation Views.

Therefore hardware redundancy is expressed only within the hardware allocation
diagram within our model. Figure 3.6 shows how we represent hardware triplex
modular redundancy (TMR) [Rennels84] in our system model. Three redundant
software components logically represent only one component within the software
data flow graph, but that software component is mapped to three processing
elementsintheallocation diagram. Intheimplementation, these components would
attach anode|D to their output variableswhen they are sent over the network so that
the voter component could distinguish between the different sources of the output,
but these redundant component outputs represent the same system variable type in
the software data flow graph.

Hardware redundancy can be combined with software fault tolerance techniques
to improve system dependability. Using two different views for hardware and
software fault tolerance techniques permits a separate anaysis of these two
approaches. The next few sections describe how our model represents current

software fault tolerance techniques.
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3.7.2 Recovery Blocks and Temporal Redundancy

Recovery blocks [Randell 75] use checkpointing to prevent errors in computations
from corrupting system state. A snapshot is made of system state before a
computation. If the computation failsor its output fails the acceptance test, system
state can be restored to the checkpoint and the computation can beretried. Multiple
alternate algorithms are used to avoid having the same computation fail repeatedly.
If the first aternate fails, the system is rolled back to the checkpoint, and the next
algorithm is executed until there is a successful completion. If al of the alternates
fail, then the subsystem reportsacomputation failure. If therecovery block only has
one algorithm for computation, and executes it multiple times, this special case
represents temporal redundancy.

Temporal redundancy takes advantage of the transient nature of somefaults. Ina
time-triggered embedded system, atransient component fault can be automatically
tolerated because a missed output for one period will be recovered in the next
period. It is only when output values become stale (no new value for severd
periods) that a fault manifests as a failure. In an event triggered system, a
component may receive requests as inputs to provide its outputs. In thiscase, if a
component does not provide its outputs, the component that sends the request as
input can retry the operation to tolerate atransient fault. 1n our model, thiswould be
represented asacyclewithin the dataflow graph between the component that makes
the request and the component that outputs a response.

Distributed recovery blocks replicate some or all of the aternate algorithms

across multiple hardware nodes, requiring mechanisms to synchronize state
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Figure 3.7. Temporal Redundancy and Recovery Block Model Descriptions.

between the various alternates. Figure 3.7 shows examples of arecovery block and

adistributed recovery block, as well as a simple example of temporal redundancy.

3.7.3 Multi-Version Software Redundancy

Multi-version software redundancy (also known as N-version redundancy)
[Avizienis85], isrepresented in the data flow dependency graph, but not necessarily
in the alocation diagram. If three software components implement the same input
and output interfaces, they can provide software redundancy and are represented as
three software components in our data flow graph that have the same input and
output system variables. A voter component receives the outputs of the different

software component versions and uses maority voting to determine the correct
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Figure 3.8. Multi-Version Software Redundancy.

output to send to the rest of the system. These components may all be allocated to
the same processing element, or be distributed across multiple processors. Software
redundancy will affect system utility measured by our model if the individual
components implement different algorithms that provide different levels of quality
in their outputs.

Multi-version software redundancy schemes are designed primarily to prevent
software defects from causing system failures. According to this methodology,
independently designed and verified software components should not share similar
or identical software defects, and should not be susceptible to similar software
failures. Thus, these components should provide higher reliability by serving as
redundant backupsfor one another’ s software defects. Figure 3.8 showsan example
of multi-version software redundancy in the data flow graph and hardware
alocation views of our model. As shown in the figure, this scheme could either

have its components distributed across multiple nodes, or they could be allocated to
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the same node. If the primary dependability concern is software defects rather than
hardware faults, it might be cost effective to spend the extra design effort on
multiple software versions while conserving hardware costs by allocating all of the

components to the same node.

3.7.4 Self-Checking Programming

N Self-checking programming [Laprie87] can take advantage of multi-version
software redundancy and recovery blocks to increase overal reliability. N
Self-checking programming has multiple algorithms that run in paralel with the
results passed to avoter. Each variant itself isaset of components that cross check
their results against each other before passing them to the voter component. These
interior components can be implemented as another multi-version redundancy
scheme or as arecovery block. Using this technique, software components can be
organized into a hierarchy that keeps faults from propagating across multiple
alternates.

Figure 3.9 shows an example of this hierarchy in a software system as well asa
possible hardware configuration in our model. As shown in the figure, each
self-checking component isitself afeature subset that contains two componentsthat
provide the same outputs. Within each self-checking component feature subset, the
results of the algorithms are compared against each other to detect an error. Only
when the results agree will their outputs be passed on to be output by the

self-checking feature subset. A voter component compares all of the results of the
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Figure 3.9. Self-Checking Software With Hierarchical Component Organization.

self-checking components to provide an output. In hardware, components may be

allocated to nodes according to which self-checking feature subsetsthey comprise.

3.7.5 Analytic Redundancy

Analytic redundancy [Patton93] allows the system to take advantage of multiple
sources of heterogeneous information. For example, if a system has sensors for

measuring the temperature, pressure, and volume of a gas, loss of any one sensor
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Figure 3.10. Analytic Redundancy to Tolerate a Temperature Sensor Failure.

input can be mitigated by creating a synthetic sensor value based on the other two
sensors. The synthesized input may not be as accurate as aworking sensor, but will
still provide some level of functionality and generally cost less than redundant
Sensors.

Figure 3.10 illustrates a representation of analytic redundancy in our system
model. Inthefigure, there are three sensors that each measure a different aspect of
the environment (temperature, pressure, and volume). Each of the sensors provides

different dataand are not functionally equivalent, so they cannot provide traditional
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redundancy. However, the values these sensors measure are physically related to
one another, and the value of one sensor (e.g. temperature) can be estimated by
using the values of the other two sensors (volume and pressure). Thus, in the event
of atemperature sensor failure, the temperature sensor data can be synthesized by
using a software component estimator to process the other two sensors’ data.

This example displays how graceful degradation mechanisms can provide
tradeoffs between high dependability and constrained system resources. If the
system used abrute force hardware replication strategy of dual-redundant hardware
sensors, then the system could tol erate as many asthree sensor failures, but at ahigh
component cost. If the system designer is only concerned about tolerating the
failure of one temperature sensor, analytic redundancy isamore affordable choice.
When the sensor islost, the rest of the system continues to synthesize the missing
data, but it is degraded with respect to its accuracy.

One of the benefits of our model as demonstrated in this example is that it can
show where there are opportunities to provide additional redundancy and fault
tolerance with existing system resources. The software components communicate
viawell-defined system variable interfaces, and components that output similar or
identical system variables can be used as redundant components even if their

primary functionality is different.

3.7.6 Simplex Architecture

The simplex architecture [Bodson93] is a control system architecture for using

design diversity to improve the reliability of a software control system, and provide
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some level of graceful degradation. It explicitly defines tradeoffs between
low-performance, more reliable controllers that are less likely to introduce design
defects, and high performance controllers that may contain more residual defects.
Rather than develop multiple versions of software from the same specification and
with the same requirements asin traditional multi-version software redundancy, the
simplex architecture requires at least two different control algorithmswith different
specifications and requirementsto be implemented as separate software controllers.
One control algorithm is specifically designed so that it isas simple and reliable as
possible and its control laws can be easily verified. These requirements lead to a
software controller that sacrifices high performance for reduced complexity and
fewer residual defects. A second control algorithm is designed to provide
high-performance control at the cost of higher complexity and possibly more
software defects. Within the control system, both controllers receive inputs from
the same sensors, and an acceptance test decides whether to use the output from the
high-performance, complex controller, or the simple, reliable controller. If the
high-performance controller’s output fails the acceptance test (possibly due to a
software defect), the output from the simple controller can be used to maintain
system stability with lower system performance.

The simplex architecture can be readily represented within our system model, as
shown in Figure 3.11. Each control algorithm can be represented as a separate
feature subset that receives data from the same sensors in the software data flow
view. The acceptance test component is responsible for issuing commands to the
actuator, and will only use the high-performance controller output if it passes

validation. Otherwise, it will always use the output from the simple controller.
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Figure 3.11. Simplex Architecture in the Software and Hardware Views.

Thusit treats the high-performance output as optional, and is strongly dependent on
the output from the simple controller. In hardware, the different control algorithms
may be allocated to different processors with their own sensors, with their control
outputs broadcast on the network to be received by the acceptance test software

component which outputs to the actuator.
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3.8 Conclusions

Our system model provides a scalable approach to determining how well a system
gracefully degrades. Since individual component failures simply transform the
system from one configuration to another, we can evaluate how well the system
gracefully degrades by observing the utility differences among valid system
configurations. By exploiting thefact that systems are decomposed into subsystems
of components, we can reduce the complexity of determining the utility function for
al possible system configurations from O(2") to O(N*2*), where N is the total
number of software components, sensors, and actuators in the system, and k is the
maximum number of components in any one subsystem. Data dependency
relationships among components enable efficient eimination of invalid
configurations from our analysis.

Our model consists of a software data flow graph for determining dependency
relationships among software components, sensors, and actuators; a hardware
allocation diagram that provides information about hardware replication; and a
utility model that provides aframework for comparing the relative utility of system
configurations. Since feature subset definitions are based on component input and
output interfaces, they can be automatically generated from the software system
data flow graph. We alow multiple feature subsets that require the same input
system variable from another component to share that component. Feature subsets
are in general not digoint, and a component or feature subset encapsulated in one
high-level feature subset may belong to several other feature subsets. Thisallowsus
to decouple subsystem utility analyses within our model, even if the system itself

does not completely encapsulate its subsystems into a strict hierarchy.
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We have shown that the model can represent traditional fault-tolerance
mechanisms and evaluate how they affect system-wide graceful degradation. Since
we have two orthogonal views of the software and hardware structure of the system,
we can consider the effects of hardware and software replication separately.
Hardware replication will affect the reliability of software components with respect
to hardware failures, but will not affect system functionality and will be largely
invisible to the software system. Software replication may affect system
functionality as different software components that output the same interface may
implement algorithmsthat output different levels of dataquality. Our system model
provides a common representation of heterogeneous redundancy mechanisms, as
well as a scalable technique to evaluate how these mechanisms may affect system
utility.

In the following chapter, we will apply thismodel to a more complex example of
a distributed embedded system architecture. This example will drive our
identification of architectural propertiesthat contribute to graceful degradation. We
will also show how we can use the model to identify parts of the system that may
benefit from graceful degradation mechanisms, anayze the effectiveness of a
system’s graceful degradation mechanisms, and evaluate whether the system

implementation achieves the level of graceful degradation predicted by the model.
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4  Architectural Propertiesfor Graceful Degradation

Now that we have a scalable model for specifying graceful degradation, we can use
it to identify likely architectural properties that improve a system’s ability to
gracefully degrade. A system’s ability to gracefully degrade will improve with the
number of possible valid configurations it can have, as well as with smaller
differencesin system utility between different configurations. Thus, propertiesthat
tend to increase the number of valid configurations within feature subsets and also
tend to reduce the differences in utility provided by different feature subset
configurations should make a system more gracefully degradable in the presence of
multiple component failures. Our system model should provide a means to
explicitly identify these properties.

Our model is designed primarily for examining the software organization of
distributed embedded systems, with alesser focus on its complimentary hardware
and communication structures. Therefore, we focus on the system’s software
architecture in terms of component and connector [Shaw96] organization for
mechanisms that should improve graceful degradation at the application level.

In this chapter we will use a typical example system that was specifically
designed to have multiple graceful degradation opportunities. We will apply our
model to this system’s architecture and identify the properties that contribute to
making this system gracefully degradable. Our goal is to develop a set of general
techniques that should improve graceful degradation that can be applied acrossthis
class of distributed embedded systems.

The example system is the system architecture of a hypothetical automobile

navigation system. It was originaly designed as an example problem to drive the
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development of ahardware allocation and reconfiguration algorithm in [Nace2002].
It has many heterogeneous software components that have alternate means of
providing system functionality, and should provide multiple graceful degradation
opportunities. The system was designed as a product family architecture (PFA) in
which different valid hardware/software configurations constituted different
versionsof the navigation system with differing utility values. Failure or addition of
components moves the system from one product instance to another.

The original problem for which this system architecture was designed involved
building an algorithm that could allocate software componentsto limited hardware
resources to provide maximum system utility. Thus, the work in [Nace2002] was
only concerned with finding valid software configurations that fit on available
hardware and not with identifying all possible valid software configurations. Since
the previous work focused on reconfiguration mechanisms rather than having
backup redundancy available in the system, the allocation algorithm considered
software components that provided the same functionality as mutually exclusive
and were not allocated to the same configuration. Also, sensors and actuators were
tied to hardware configurations and not considered as part of the software
configuration. Thus, the view of software configurations in [Nace2002] was
significantly constrained, and they manually assigned utility values to different
software configurations, which were used by the reconfiguration algorithm to
evaluate different allocations of software to hardware.

Our goal isto specify therelative utility of all possible software configurationsin
order to evauate the ability of the system’s software architecture to gracefully

degrade. Therefore, we will not ook at possible system hardware configurations,

Graceful Degradation Properties 59



but rather assume that there are enough hardware resources avail abl e to support any
possible software configuration. We will take the original PFA specification and

build our system model to specify the system’s feature subsets.

4.1 System Description

Our example is an automobile navigation system that provides turn-by-turn
directions to the driver to his or her desired destination. The navigation system
draws information from the vehicle's sensors to determine the car’s current
position, and uses a map database and path planning algorithms to determine what
the driver’s next action should be. The system can then provide feedback to the
driver either through a color display in the car that provides visual output of the
directions, through audio cuesfor turnsviathe car radio speaker, or through turning
hints displayed by the car’s turn signal indicators.

Figure4.1 shows adataflow graph view of the system’ s software architecture. In
the figure, there are multiple sensors, such as a GPS (global positioning system)
sensor, engine sensor, or compass sensor, that can provide varying levels of
information about the car’ s position and direction. The actuators available include
the turn signal indicator, speaker, and display that can output directions to the
driver. The adapters and features in the data flow graph represent software
components that process the sensor inputs and provide outputs. Thefeature classes
represent the functional subsystems they identified within the navigation system.
We will not use these features in our model, but rather identify a set of feature

subsets based on the data flow of the system.
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4.2 Specification of the System Utility Function

Since the system architecture is expressed as a data flow diagram, we can directly
apply our system model and identify feature subsets. The data elementsin Figure
4.1 will become our system variable definitions. Weidentified 22 system variables
that are directly generated from the data elements described in the PFA graph (all
system variable namesareinitalics): AvgWheel Soeed, Acceleration, ThrottleAngle,
SeeringAngle, YawRate, GroundSpeed, CurrentDirection, CurrentLocationRaw,
CurrentLocation, MapDataRaw, MapData, UpdateMap, DesiredDestination,
Pathinfo, Turnlinfo, TurnSound, TurnText, Foeaker Commands,
TurnSgnalCommands, MapDrawCommands, Maplmage, and DisplayMap. Note
that we combined the current location and error estimate data elements into the
single CurrentLocation system variable, since the error estimate can be
implemented as an attribute of the location data. The sensors, actuators, adapters,
and features will become our system components. There are 9 sensors, 3 actuators,
and 33 software components for a total of 45 system components. Without our
model this would require manually evaluating the relative utility of 2*° » 4 * 10"
system configurations. If we eliminate all of the invalid system configurations,
there are approximately 6 * 10™ valid possible configurations for which we still
must specify relative system utility values.

We will apply our system model to the data flow graph starting at the system
actuators and working backwards to generate the system’s feature subsets. At the
system level, there are three functional capabilities (Turn Signal, Speaker, Display)
derived from the three actuators available in the system that provide user

functionality. Thedriver will receive navigation information aslong as at least one
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Figure 4.2. System-Level Functional Capabilities.

of these three capabilities provides positive utility. Figure 4.2 shows the top level
functional capabilities and the feature subsets of which they are composed. The
Turn Signal and Speaker capabilities each contain one feature subset, while the
Display capability has eight feature subsets that can provide display functionality.
Figures 4.3 and 4.4 show definitions of the feature subsets which are
encapsulated by the system-level capabilities. Figure 4.3 details the hierarchical
feature subset definitions for the Turn Signal and Speaker feature subsets. Figure
4.4 defines the feature subsets from two of the eight available Display feature
subsets. Based on the feature subset dependencies, we can see that for the systemto
provide any utility in agiven configuration, that configuration must contain enough
components for working Location and Map Data feature subsets. The Turn Signa
and Speaker feature subsets depend on the Turninfo feature subset, which in turn
depends on the Path Planner and L ocation feature subsets. The Path Planner feature
subset then al so depends on the L ocation and Map Datafeature subsets. Each of the
eight possible Display feature subsets depends on at least a working Location and

MapData feature subset.
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Since the system functionality heavily depends on providing valid location data,

itisnot surprising that the designersfocused thei

r effortson providing several levels

of heterogeneous redundancy for this subsystem. Figure 4.5 shows the Location

feature subset in detail. 1n addition to using the GPS sensor to get accurate location

data, the system has several dead reckoning alg

orithms available in the event that

GPS location datais lost. Similarly, the dead reckoning algorithms require both
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speed and location data, which can be derived from multiple sensors within the car
with a bit of data transformation. The graceful degradation of the location
subsystem manifestsin the loss of accuracy in the location data provided when the
high accuracy components fail. This may reduce the effectiveness of the system’s
path planning navigation algorithms, making the directions that are provided to the
user through the system actuators less accurate.

We were able to completely specify the navigation system with 24 feature
subsets, the largest of which had 6 components, and 3 functional capabilities that
encompassall feature subsets. Thismeansthereisan upper bound of 24 * 2° = 1536
feature subset configurations that must be eval uated to specify the utility functions

for all feature subsets. However, this assumes that all feature subsets have the

maximum 6 components, and that all feature subset configurations are valid. We
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were able to eliminate many invalid feature subset configurations based on
component dependencies. Thetotal number of feature subset configurationswe had
to specify was 106.

If we look at the capability configurations there is one valid feature subset
configuration for both the Turn Signal and Speaker capabilities, and 2° - 1 = 255
valid configurations for the Display capability that has eight feature subsets.
Although the Display capability has 255 valid configurations, we will not have to
specify their utility valuesindividually. Since thereisonly one Display actuator it

can only receive inputs from one of the eight map components at a time to provide
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utility. Therefore, we only need to rank the relative utility of the 8 Map feature
subsets to specify the utility of the Display capability. When multiple feature
subsets are available in the system configuration, the Display will only use the one
that provides the most utility. The other feature subsets are treated as backups.
Since we need at least one working capability to provide positive system utility,
thereare 2® -1 = 7 possible configurations at the system level that must be specified
to complete the system utility function. We have atotal of 123 configurations that
must be specified (106 in feature subsets, 10 in functional capabilities, 7 system
capability configurations) to evaluate the relative utility for all 6* 10™ valid system
configurations. Appendix B containsall of the feature subset definitions along with

our utility specification.
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4.3 Mechanismsthat Contributeto Graceful Degradation

Since this example system was designed to provide a high level of graceful
degradation, we can perceive characteristics of the architecture through our system
model that seem to particularly enhancethe system’ sability to gracefully degrade.
Several aspects of this system’ s software architecture stand out:
» The architecture has well-defined interfaces among components that
provide for logical partitioning of the system into subsystems.
» Subsystems that provide required functionality are targeted for an increased
level of functional redundancy and brute-force redundancy.
» Heterogeneous redundancy is available to provide multiple alternatives for
providing system outputs and compl eting system requirements.
» Subsystems are designed to be robust to input failures so that they can
continue to provide utility when system variable inputs are not available.
We will examine each of these aspects in both the navigation system and the
brake-by-wire system discussed in the previous chapter to derive a set of heuristics

that should help improve graceful degradation for distributed embedded systems.

4.3.1 Well-Defined System Component Interfaces

In order for a system to provide graceful degradation, the individual subsystems
should be decoupled so that they can tolerate failuresfrom other parts of the system.
One method of decoupling subsystems is to define a set of system interfaces that
restrict the amount of state that is passed among components. In distributed

embedded systems, these interfaces should map to a set of system state variables
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that represent the key data elements that are required across different subsystems.
In our system model the interfaces are represented by the set of defined system
variables. Since the system components and subsystems are only coupled through
system variables, making individual subsystems and components robust to | osses of
inputs should improve the system’ s ability to gracefully degrade.

Unfortunately, producing well-designed component interfaces is a fundamental
problem of software and system architecture. One of the key insights of software
architectureisthat the interfaces among components can have as much of animpact
on the system as the components themselves. The software architecture view of
components and connectors emphasi zes specifying the connectorsin as much detail
as the components.

Within the context of distributed embedded systems, we reduce the general
interface problem to only specifying what data will be passed in the system state
variables. System designers must have domain knowledge so that they can identify
what internal transformations are useful from sensor data values to actuator
command values. If we are dealing with areal-time control system, we can use the
control system parameters as a starting point for identifying system variables.

The system variables should provide logical partitioning of the system into
subsystems, as well as computational “checkpoints’ that represent intermediate
stepsinthe system’ sprocessing. For example, inthe automobile navigation system,
two of the mgjor system variables are the CurrentLocation and MapData variables.
Every part of the system that provides functionality depends on receiving these two
datavariables. The PathPlanner component requirestheir datavaluesto provide an

accurate path to the destination. All of the Map components that output to the
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Display actuator must have access to map and location information to give the
driver any information about where the car istraveling. However, the PathPlanner
and Map components do not require the CurrentDirection and GroundSpeed
variables that were used to calculate the CurrentLocation variable in some
instances. Thus, in order to ensure that the system gracefully degrades, we can
either provide multiple sources for these data elements, or design components that
require them as inputs to tolerate their loss.

We can use our system model to recognize whether a system’sinterface is more
or less conducive to providing graceful degradation. Since feature subsets are
defined based on component interfaces, in general, the number of feature subsets
will scale with the number of defined system variables. If the interface has many
system variables, therewill be many feature subsets defined in the system relativeto
the number of components in each feature subset (p >> k), and we will have to
consider building mechanismsinto each oneto tolerate input failures. Thismay be
cost-prohibitive if alarge fraction of these feature subsets are required to provide
any system utility. However, if theinterface hasfew system variables, therewill be
few feature subsets defined relative to the number of components in each feature
subset (p << k). This would seem to indicate that feature subsets are large,
monolithic, and complex. Then, using brute-force redundancy to completely
replicate these feature subsets would seem to be the best way to achieve graceful
degradation. Unfortunately this would also be expensive in terms of system
resources. There should be a* sweet spot” in which the number of system variables
and feature subsets are within an order of magnitude of the number of components

per feature subset, where the graceful degradation techniques we propose at the
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subsystem level should have the maximum effect for the least system design effort
and resource cost.

Beyond understanding the system’ s problem domain and applying the traditional
approach of modular system decomposition, we do not have any new insight on how
to design system interfacesthat areideal for graceful degradation. For thisresearch,
we have focused on developing techniques that will be scalable given that the
system component interfaces are designed so that we have well-partitioned logical
subsystems. Sincethisisalready agoal for well-designed system architectures, and
we have reduced the scope to defining state variables in distributed embedded

systems, this should be a reasonable assumption.

4.3.2 Targeted Redundancy for Critical Subsystems

As a general graceful degradation approach, this mechanism is similar to the
simplex architecture [Bodson93]. We build a subsystem with multiple functionally
redundant software components that provide tradeoffs between their complexity
and the accuracy of their outputs. The simpler components should be less prone to
failures, but will not provide as much utility as the more complex components. We
could aso add brute-force hardware redundancy for subsystems that are identified
assingle points of failure. It may be more feasible to apply brute-force redundancy
such as replicated system resources to only those parts of the system that are
identified asmission-critical, rather than replicating all of the system’ scomponents.

The best example for this type of redundancy in the navigation system is the

Location feature subset. The location data is critical for the system’s ability to
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provide its navigation functionality. Therefore, the location subsystem must be
especialy resilient to component failures. However, implementing redundant
backup systems with complete functionality may be cost-prohibitive. For example,
the GPS sensor and software may be an expensive set of components to replicate.
The dead reckoner subsystem provides functional redundancy to the GPS sensor,
with atradeoff of reduced accuracy of location data. Similarly, the Turninfo feature
subset contains multiple software components that may have different algorithms
for providing real-time turn information to be communicated to the driver through
the turn signal indicator and speaker.

In the brake-by-wire system, discussed in Chapter 3, the Brake Pedal and
Anti-Lock feature subsets represent critical redundant functionality that trades
accuracy and performance for dependability. Each brake controller has direct
access to the data from the brake pedal controller in the event that the anti-lock
braking subsystemsfor each wheel fail. With this data, the system can still provide
low-performance braking functionality. Additionally, the Brake Peda feature
subset isreplicated in hardware sinceit can be asingle point of failure in the system

and requires high reliability.

4.3.3 Heter ogeneous Redundancy

We define heterogeneous redundancy as subsystems that are designed to provide
different functionality when the system is operating normally, but can be used as
redundant backups at reduced utility when failures occur. Heterogeneous

redundancy is similar to analytic redundancy but is broader in scope.
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Heterogeneous redundancy covers not only components and subsystems that are
considered functionally equivalent, but also subsystems that may satisfy the same
requirements with different functionality.

Heterogeneous redundancy can take many forms. There may be several sensors
available in the system that monitor different aspects of the environment that are
physically related, such that one sensor’s data can be synthesized by applying a
transform function to another sensor’s data. For example, if a system has sensors
that monitor temperature, pressure, and volume of a gas, a software component can
be designed to implement a transform function to synthesize the output of one
sensor based on the readings of the other two. Thus, one sensor failure could be
tolerated with this transformer component, without having to add redundant
sensors. Another example of heterogeneous redundancy would be multiple sensors
that have varying degrees of accuracy, such as the GPS speed sensor versus the
wheel speed sensor in the navigation system. Both sensors may output essentially
the same data, but in different formats that must be translated to a system variable
interface. One sensor may provide more utility becauseits datais more accurate and
reliable, but the other sensor can provide a redundant backup.

In the automobile navigation system, heterogeneous functionality is available at
thesystemlevel. Themain requirement of the systemisto provide navigation aid to
the driver by giving turn-by-turn real-time directions. The system hasthree distinct
actuatorsthat can provide system utility: theturn signal lights on the dash board, the
car’s radio speaker, and the visual display installed in the car with the navigation
system. In general, we would expect the visual display to provide the most utility

and give the driver the most information about the driving route. However, if the
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display suffersafailure, the system can still provide utility viatheturn signal lights
and audio cues from the speaker. The failure of any of these three functions is
compensated by the availability of navigation information from the other two
actuators, even though they are not designed to provide the same or equivalent
functionality. This redundancy is a consequence of the functionality built into the
system.

In the brake-by-wire system, there is heterogeneous redundancy by virtue of the
fact that there is one braking subsystem for each of the four wheels in the car.
During normal operation, each of the four brake actuators applies braking forceto a
separate wheel to stop the car. However, if one of the actuatorsfailed, the car would
still be able to brake, perhaps with an increased stopping distance. Even if three of
the four brake actuators failed, one working brake actuator would still be useful in

helping the driver regain control of the car.

4.3.4 Component Robustnessto L oss of I nputs

Designing individual components (and feature subsets) to be robust to input failures
complements designing subsystems to provide redundant sources of output system
variables. If acomponent can tolerate the loss of a system variable when all of its
input sources have failed, it may still provide reduced utility and prevent a system
failure. This may not be possible in all situations, but we can identify some
guidelines that might help implement this design approach. Within our system

model, thiswould be represented by transforming arrowsin the dataflow graph that
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represent strong dependence on system variable inputs, to arrows that represent
weak dependance or treat system variable inputs as optional .

One approach that can make components robust to a loss of input failuresisto
design acomponent with multiple algorithmsthat provide similar functionality with
each possible combination of required inputs. Of coursethiswill add agreat deal of
complexity to the component, as it must manage multiple algorithms as well as
transition between algorithms when inputs are lost. Within a feature subset, these
algorithms may be separated into multiple components, as with the Map feature
subsets defined in the Display capability in the navigation system.

Another approach might beto initially specify the component’ s output to provide
some “base level” utility with a minimum of system variable inputs and a default
behavior. Then any other inputs that are available should be treated by the
component as “advice’ that modifies the default behavior in specific ways. For
example, if the brake controllers in the brake-by-wire system lost both the brake
pedal and anti-lock braking data from those subsystems, they could provide a
default behavior that applies enough pressure to the brakes to hamper the car’s
acceleration, and then will cause the car to come to a gradual stop when the
accelerator isreleased. This crippled functionality would signal to the driver that
the car needs to be taken in for repairs, while providing at least a low level of
transportation ability. This technique assumes that received inputs will not be
erroneous, which is reasonable because of our fail-fast, fail-silent fault model.

In the navigation system, this technique is not readily visible in the system
architecture. The designers originally intended reconfiguration to be the main

mechanism of graceful degradation, so that when a component that provides
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functionality no longer had enough system inputs available, the reconfiguration
manager would swap that component for another that required fewer inputs.

However, it may not be feasible to require a reconfiguration action every time a
component failure occurs, and it might be necessary for some components to be
designed to continue operating even when all input data sources are lost. Thisisa
defensive strategy for component design to guard against the event that multiple

failures may occur that cause the complete loss of a system variable input.

44 Model Analysisand Graceful Degradation | mplementation

The techniques described in section 4.3 focus on mechanisms that should increase
the number of valid configurations within individual feature subsets. They
contribute to graceful degradation because reducing the proportion of feature subset
configurations that provide zero utility in general will translate to fewer system
configurationsthat provide zero system utility. However, itisnot feasibleto simply
apply al of these graceful degradation techniques to every feature subset in the
system. Each technique has a cost in terms of increased design effort or additional
system resources.

We can use our system model to analyze the system architecture to target which
components and feature subsets should receive graceful degradation support. There
are severa properties in the architecture that can be used as indicators for which
parts of the system should be improved with graceful degradation. For example,
with our scalable system utility function generated from the system model, we can

evauate every configuration in which a single component or feature subset is not
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available. If any of these configurationsareinvalid (provide zero system utility) we
know that the component or feature subset is a single point of failure. Any
component that isasingle point of failure in the system should have some graceful
degradation mechanism installed to compensate for a failure, such as a redundant
backup (Section 4.3.2), or a heterogeneous source of the component’s output
variables elsewhere in the system (Section 4.3.3). Similarly, afeature subset that is
critical to providing system utility should contain multiple components that can
provide its outputs to tolerate failures.

Another approach to improving system-wide graceful degradation could be to
analyzewhich system variablesare required inputsto alarge number of components
inthesystem. Thisinformation isavailablefrom the system model by counting how
many sink output roles each system variable connector has. The more components
that require any one system variable as an input, the more critical that system
variable is to system utility. Therefore, we should maximize the number of
components and feature subsets that can output that system variable. Depending on
the resources available, both targeted redundancy (Section 4.3.2) and
heterogeneous redundancy (Section 4.3.3) may be appropriate mechanisms to
provide multiple components and feature subsets that output a system variable.

Designing components to be robust to input failures (Section 4.3.4) may be more
difficult since multiple algorithms may be necessary for each software component
to tolerate the loss of any required system variable inputs. Again, depending on the
system resources available, it may be desirable to redesign all of the components

that receive an input from a critical component so that they can tolerate the
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Figure 4.6. Graph of Ideal Case of Predicted Model Utility vs. Measured System Utility.

component’ sfailure, rather than add redundant backup resources to the component.
This effectively renders the component no longer a single point of failure.

The model analysis provides information about which feature subsets and
components are critical to system utility, allowing us to target these parts of the
system for graceful degradation mechanisms. Choosing which techniques to
implement requires an analysis of the tradeoffs between the resources available in
the system and the level of dependability required. Our scalable specification
framework should enable these tradeoffs to be explicitly identified with the utility
model and information about the resources required for system components and
feature subsets.

In addition to using the model at design time to determine where graceful
degradation mechanisms should be applied in the system, the model can aso be

used to validate whether or not the system implementation achieves the level of
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graceful degradation predicted. In anideal case the utility model should perfectly
reflect each component and feature subset’s contribution to system utility. If we
have a utility metric that incorporates all of the desired system propertiesdefined in
the system’s requirements, and these attributes can be measured in the system
implementation, then every system configuration’s actual measured utility should
equal the utility predicted by the model. If we graph each configuration’s utility
from the model versusits measured utility for all 2" configurations, we should have
astraight line with aslope of 1 as shown in Figure 4.6.

Unfortunately, in general thisideal caseisnot possible. Many system properties
such as usability, maintainability, and dependability cannot be readily quantified,
and it isnontrivial to combine these properties along with system functionality and
performanceinto asingle utility metric. Additionaly, the utility function generated
in the system model is based on the feature subset definitions and the assumption
that each feature subset’s utility can be evaluated independently for each
configuration. Individual feature subset configuration utility functions may be
based on the designer’ s domain knowledge and understanding of the componentsin
the system. This may lead to a less accurate system utility function that does not
capture al of the interactions between components in the system.

Rather than focus on absolute utility measurements that may be inaccurate, we
can use the relative utility values of system configurations to rank all 2V
configurationsin order by increasing utility according to the model. Then we may
select asystem property or set of properties such as performance and reliability that
may be measurable for the system implementation, and use this measurement as a

proxy for a system utility metric. If we graph the system configurations by
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comparing their utility value as predicted by the model and their system property
metric that is a substitute for a system utility measurement, we expect a graph that
may not be linear, but will be monotonically increasing such that configurations
with higher utility values in the model will have higher system property
measurements. If there are configurationsthat do not fit the curvein thisgraph (e.g.
configurations ranked as low utility that have unusually high measured system
properties or configurations ranked as high utility that have low measured system
properties), they may indicate either an inaccuracy in the system model, a
dependability problem in the system implementation, or aviolation of the model’s
assumptions (described in section 1.3). We can apply thisanalysisiteratively to both
refine the system model and identify dependability bottlenecks in the system
implementation.

Thisanaysisassumesthat the utility values specified by the system model for al
2V configurations will be accurate enough that in general configurations that
actually have more utility will be ranked higher than configurations that actually
have less utility. It also assumes that the properties selected to measure the system
implementation are indicators of system utility as defined by the system
requirements. The system designer should choose propertiesfor thismetric that are
both quantifiable and general indicators of overall system utility. This may be
difficult depending on which properties are considered important by the system
requirements, and whether these properties have tradeoffs with one another. The
current best practice for combining properties into a single utility metric is

multi-attribute utility theory [Keeney76, Keeney 92].
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45 Summary

In this chapter we have used an example of acomplex distributed embedded system
architecture to identify a set of propertiesthat should improve graceful degradation
when applied to a system's software architecture. Traditional brute-force
redundancy techniques are resource intensive and may not be feasible for
cost-sensitive embedded systems. Therefore we propose some techniques that
apply limited redundancy in terms of both design effort and additional system
resources to parts of the system to improve its ability to gracefully degrade.

We can use our system model for specifying graceful degradation to locatesingle
points of failurein the system at the component and subsystem level. Then we can
concentrate on adding redundancy to these parts of the system, implementing
multiple subsystems that trade complexity for utility. We can add brute force
hardware redundancy to smaller feature subsets and individual system components
that are mission-critical. We can also identify natural heterogeneous redundancy
that may be already designed into the system, and exploit it for graceful degradation.
Finaly, if we adopt astrategy for individual component and subsystem design such
that they are robust to input failures, thiswill complement the targeted redundancy
that emphasizes providing multiple output sources for system variables.

We also outlined a general analysis technique that uses our system model for
scalable graceful degradation to identify dependability problems in the system
implementation. By measuring relevant system properties of different system
configurations in the implementation and comparing these measurements to the
utility values predicted by the model, we can validate the accuracy of the model.

Any discrepancies between the model prediction and the measurements of the
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implementation may be traced to either an inaccuracy in the model or aproblemin
the system design and implementation.

The application of the graceful degradation techniques depends on aready
having well-defined system variable interfaces that create partitioned feature
subsets. We do not think it is unreasonabl e to require an architecture that provides
partitioned decoupled subsystems as a prerequisite for providing scalable
system-wide graceful degradation, as this is a fundamental goal of system and
software architecture design. In the next chapters we will demonstrate the
application of these techniques on two representative distributed embedded
systems, and evaluate how they contribute to system-wide graceful degradation.
We also use the analysis methods we have outlined to validate the utility model
compared to an approximate utility measure of the system implementation for each

case study.
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5 Case Study: Elevator Control System

To illustrate how we can apply our system model and graceful degradation
techniques to a redistic distributed embedded system, we use a design of a
relatively complex distributed elevator control system. This system was designed
by an elevator engineer (my thesis advisor) and has been implemented in adiscrete
event simulator written in Java. This elevator system has been used as the course
project in the distributed embedded systems class at Carnegie Mellon University for
several semesters. Since we have a complete architectural specification as well as
an implementation, we can directly observe how properties of the system
architecture affect the system’s ability to gracefully degrade by performing fault
injection experiments in the simulation.

The architectural specification is in the form of a requirements document that
specifies each system component’s inputs and outputs, as well as their functional
behavior. The component interfaces are specified as a message dictionary that
represents all network messages that can be sent among components. We first
describe the elevator system interface in detail, and then apply the graceful
degradation techniques from Chapter 4 to the system architecture. We then apply
our system model to the architecture to specify its ability to gracefully degrade.
Finally, we run a set of experiments on the elevator system using both the original
system architecture and the new architecture with our graceful degradation
improvements. Wefail several combinations of components and observe the effect

on the system’ s ability to deliver passengers.
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5.1 Elevator System Architecture

Our view of the elevator system is a set of sensors, actuators and software
components that are allocated to the various hardware nodes in the distributed
system. The nodes are connected by a real-time fault-tolerant broadcast network.
All network messages can be recelved by any node in the system. Since all
communication among components is via this broadcast network, al component
communication interfaces map to a set of network message types.

Our elevator system architecture is highly distributed and decentralized, and is
based on the message interfaces that system components use to communicate.
System inputs come from “smart” sensorsthat have a processing node embedded in
the sensing device. These sensors convert their raw sensor values to messages that
are broadcast on the network. The software control system, implemented as a set of
distributed software components, receives these messages and produces output
messages that provide commands to the actuators that provide the system’s
functionality.

The elevator consists of asingle car in a hoistway with access to a set number of
floorsf. The car has two independent left and right doors and door motors, adrive
that can accelerate the car to two speeds (fast and slow) in the hoistway, an
emergency stop brake for safety, and various buttons and lights for determining
passenger requests and providing feedback. Since the sensors and actuators map
directly to the message interfaces among components, we list al the possible
interface message types along with their senders and receivers below to define the
components and interfaces of the system architecture. 1nthefollowing notation, the

values within the “[ ]” brackets represent the standard replication of an array of
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sensorsor actuators, and thevalueswithin the“()” parenthesesrepresent thevalues
the sensor or actuator can output. For example, the Hall Call message type mapsto
an array of sensors for the up and down buttons on each floor outside the elevator
that isf (the number of floorsthe elevator services) by d (the direction of the button;
Up or Down) wide, and each button sensor can either have a value v of True
(pressed) or False (not pressed). Unless otherwise noted, “f” represents the number
of floorsthe elevator services, “d” represents avariable that indicates a direction of
either Up or Down, “j” isavariablethat isavalue of either Left or Right (for the | eft
and right elevator doors), and “v” denotes a value that can be either True or False.
The sensor message types available in the system include:

» AtFloor[f](v): Output of AtFloor sensors that sense when the car is near a
floor.

» CarCall[f](v): Output of car call button sensors located in the car.

» CarLevelPosition(x): Output of car position sensor that tracks where the
car isin the hoistway. x = {distance value from bottom of hoistway in
millimeters}

o CarWeight(w): Output of car weight sensor that measures the aggregate
weight of all passengersinthecar. w = { weight in car in pounds }

» DoorClosed[j](v): Output of door closed sensors that will be True when
the door isfully closed.

» Door Openlj](v): Output of door open sensors that will be True when the
door isfully open.

» DoorReversal[j](v): Output of door reversal sensors that will be True

when door senses an obstruction in the doorway.
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» HallCall[f,d](v): Output of hall call button sensors that are located in
hallway outside the elevator on each floor. Note that there are atotal of 2f -
2 rather than 2f hall call buttons since the top floor only has a down button
and the bottom floor only has an up button.

* HoistwayL imit[d](v): Output of safety limit sensorsin the hoistway that
will be True when the car has overrun either the top or bottom hoistway
[imits.

» DriveSpeed(s,d): Output of the main drive speed sensor. s = { speed value},
d ={Up, Down, Stop}

The actuator command messages available in the system are:

» DesiredFloor (f, d): Command from the elevator dispatcher algorithm
indicating the next floor destination. d ={Up, Down, Stop} (Thisisnot an
actuator input, but rather an internal variable in the control system sent
from the dispatcher to the drive controller)

» DesiredDwell(n): Command from the elevator dispatcher algorithm to the
door controllersindicating how long the doors should remain open when
stopped on afloor. n = { Integer dwell timein milliseconds} (Thisisalso
not an actuator input, but an internal control system variable that allows the
dispatcher to affect the operation of the door motors)

» DoorMotor[j](m): Door motor commands for each door. m = { Open,
Close, Stop}

* Drive(s, d): Commands for 2-speed main elevator drive. s= {Fast, Slow,

Stop}, d = {Up, Down, Stop}
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e CarLantern[d](v): Commandsto control the car lantern lights; Up/Down
lights on the car doorframe used by passengers to determine the elevator’s
current traveling direction.

e CarlLight[f](v): Commands to control the car call button lights inside the
car call buttons to indicate when a floor has been selected.

» CarPositionlndicator (f): Commands for position indicator light in the car
that tells users what floor the car is approaching.

» HallLight[f,d](v): Commands for hall call button lights inside the hall call
buttons to indicate when passengers want the elevator on a certain floor.

» EmergencyBrake(v): Emergency stop brake activated whenever the
system state becomes unsafe and the elevator must be shut down to prevent
a catastrophic failure.

For each actuator, there is a software controller object that produces the
commands for that actuator. The drive controller commands the drive actuator to
move the elevator based on the DesiredFloor input it receives from the dispatcher
software object. The left and right door controllers operate their respective door
motors. The safety monitor software monitorsthe elevator system sensorsto ensure
safe operation and activate the emergency brake when necessary. The various
software objects for the buttons and lights determine when to activate the lights to
indicate appropriate feedback to the passengers. The elevator control system
consists of 9 + 4f sensors, 5 + 3f actuators, and 6 + 3f software components, for a
total of 20 + 10f componentsin the system. Figure 5.1 illustrates how these system
components are allocated to hardware nodes in the elevator’s distributed control

system. Each software component has a set of inputs and outputs that are specified

Elevator Case Study 87



{Left, Right}

{Up, Down} Drive Speed {1 ... f} AtFloor Door Open {Left, Right}

Hoistway Limit Door Reversal
Sens%rs Sensor Sensors Sensors Sensors
Safety Monitor {Left, Right}
Controller and & Drive Motor and | Car Posmon Car Weight Door Closed /
Emergency Brake Controller Sensor Sensor Sensors

N I

Fault Tolerant
Broadcast Network

Dispatcherl&‘ @ H — H % [% —
Controller

{1...f} Car Call {1 ... f} Hall Call {Up, Down}
Button Sensors,, {Up Down} Lantern Cpntrollers
Controllers, and Lights  Bytton Sensors, and Lights -
L] Hardware Node Contrallers, and Lights Indi(é:trolzr)%s(;?l?rgller
¢ Software Component {Left, Right} Door and Lights
v Sensor Motors and 9
A Actuator Controllers
_ Network Connection

Figure 5.1. Hardware View of Elevator Control System.

from the message interface. Appendix C describes the interface specification for
each of these software components. All components are designed to require all of
their inputs to provide their functionality.

This elevator system is decomposed into severa distinct subsystems that have
control over different parts of the elevator system. Although the elevator has
well-defined component and interface definitions, this system was not particularly
designed for graceful degradation. Many of the subsystems are tightly coupled
because they depend on each others' outputs. For example, the drive controller will
not move the elevator unless it receives commands from the dispatcher, and the
dispatcher cannot effectively service al floors without receiving inputs from all of
the elevator hall call and car call buttons. In the next section we will apply some of
the mechanisms we identified in Chapter 4 to this elevator architecture to give the

system the ability to gracefully degrade.
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5.2 Adding Graceful Degradation to the Elevator System

In order to apply the graceful degradation techniques we identified, we first
examined which parts of the system should be considered mission-critical, and
which could be considered functional enhancements that can be lost without
causing a system failure. An elevator system’s most basic requirements are that it
protect passenger safety while using the system and transport passengers to their
destination floors without stranding them or trapping them in the elevator. Other
servicestypically associated with an elevator system, such as providing appropriate
passenger feedback and efficiently processing passenger requests, can be
considered “optional” functionality. Aslong as the elevator maintains passenger
safety, and can (eventually) service al floors, the elevator can still be considered
“working.”

Based on the software components defined for this elevator system, the safety,
drive control, and door control subsystems are responsible for satisfying the basic
elevator requirements. Therefore, we can significantly improve the system’ sability
to gracefully degrade if we can ensure that these subsystems can tolerate failures
from all other parts of the system. We can achieve this by redesigning system
components to tolerate multiple input failures, and by adding redundant
components to critical subsystems.

The safety monitor component requiresall of its sensor inputsto keep track of the
elevator’ s state and ensure that the elevator does not violate its safety conditions. If
aviolation is detected, the safety monitor will trigger the emergency brake and will
cause acomplete shutdown of the elevator system. Thereforeweareunlikely to find

any graceful degradation opportunities in the safety subsystem, as al of the
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components are required to prevent a catastrophic system failure that may harm the
passengers. A loss of any of the sensor inputs by the safety monitor will by design
trigger an emergency shut down.

There are severa modifications we can make to the drive controller that will
make it robust to input failures, which is one of the graceful degradation strategies
we propose in Section 4.3.4. The drive controller depends on the dispatcher to
provide commandsthat tell the drivewhereto movethe elevator in the hoistway, but
we can redesign the drive controller component to tol erate the loss of the dispatcher
input. If wedesign thedriveto have adefault behavior suchthat it will periodically
visit every floor when the input from the dispatcher is not available, this will
guarantee that the drive controller can continue to provide elevator service if the
dispatcher fails. When the dispatcher isworking and providing inputs to the drive
controller, the drive controller lets the dispatcher command override its default
behavior.

The drive controller also uses the floor, drive speed, and car position sensors to
determine what commands to send to the drive motor to travel in the hoistway. At
the drive motor’s slow speed, the elevator only needs floor sensor data to reliably
stop level with afloor. In order to travel faster in the hoistway, the drive controller
uses the car position sensor to calculate the appropriate stopping distance to
determine when to decelerate from fast to slow before approaching a destination
floor. We can ensure that the drive controller will tolerate car position sensor
failures by designing it to only command the drive motor to fast if the car position

sensor’s input is available, and to immediately command the drive motor only to
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dow if the car position sensor dataislost. Thiswill significantly impact elevator
performance, but will continue to guarantee basic elevator requirements.

We can also redesign the dispatcher component to be robust to hall call and car
call button failures. The dispatcher implements an algorithm to efficiently process
passenger requests by listening to these button inputs. If a button for a particular
floor fails, we do not have to change the algorithm, but can simply synthesize an
internal request for that floor periodicaly that will be incorporated into the
dispatcher’s regular algorithm. This will guarantee that the dispatcher does not
“starve’ floors on which all of the buttons have failed. Thisisan extension of our
strategy for heterogeneous redundancy and making components robust to input
failures, described in Sections 4.3.3 and 4.3.4. The dispatcher takes over the
responsibility of generating hall call and car call sensor data internally when some
of these sensors fail. This provides a redundant backup for these sensors in the
context that their floors continue to be periodically processed into the dispatcher
algorithm, even thought their buttons are disabled. This also has the benefit of
making the dispatcher software component robust to input failures.

Additionally, since the AtFloor sensors are a critical resource for the elevator
system (nearly every subsystem requires Atfloor sensor data), we add redundant
“virtual” AtFloor software componentsthat can synthesize AtFloor messages based
on data from the car position and elevator drive speed sensors. If some of the
physical AtFloor sensorsfail, these software sensors can be used as backups. These
virtual AtFloor sensors implement data transformations to provide backup Atfloor
sensor dataand will only transmit their messages when the real Atfloor sensorsfail.

Thisdrawson thetechniquesfor targeted and heterogeneous redundancy, described
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in Sections4.3.2 and 4.3.3. The AtFloor sensorsare acritical system resource, and
thus a target for additional redundancy to improve system dependability. We can
provide this redundancy by synthesizing AtFloor sensor data from other sensors
dready available in the system, rather than having to add additional physical
Sensors.

All of the changes made to the implementation to add these graceful degradation
mechanism did not require a large amount of code. Ignoring the smulation code
that was not altered for either system, the objectsthat implement the elevator control
system in the original design had a total of 1,659 lines of code. The gracefully
degrading system had a total of 1,807 lines of code in the control system
implementation. Thisis only a 9% increase in code size to implement all of our
modifications for graceful degradation.

Our goal was to identify what changes we could make to the software system to
give the elevator system the ability to gracefully degrade. Thus, although we
identified the critical parts of the system that could benefit from receiving brute
force hardware redundancy, we did not add it to our system. Rather, we evaluated
the system’s ability to gracefully degrade by restricting our component fault
injection only to those parts of the system that were enhanced with graceful
degradation mechanisms. The mission-critical sensors, actuators, and software
components (components that make up the safety, drive control, and door control
subsystems) only represent 25% of the total components in the system. We know
that if we fail parts of the system that provide mission-critical functionality, the

system will fail, but we are interested in ensuring that any failuresin the other 75%
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of the componentsin the system will not cause acomplete system failure, but rather

will alow the system to gracefully degrade.

5.3 Specifying the Utility Function of the Elevator Control System

We can use the component and interface specifications of the elevator control
system to apply our system model for graceful degradation. We will not reproduce
the entire system data flow graph here, but rather show the subgraphs for each
feature subset we identified and how we performed our anaysis using these
subsystem definitions. These feature subsets will be defined based on the system
architecture after we have made the graceful degradation improvements. Many of
these improvements will manifest in the model as data flow arcs between
components that are optional rather than strongly dependent relationships. The
feature subset definitions of the origina elevator system architecture would each
have only one valid configuration since each subsystem is dependent on all of its
inputs to provide utility.

There is a significant amount of functional repetition in the elevator system.
There are two door controllers and two sets of door sensors and actuators, but their
only functional differenceisthat one controlstheleft door and one controlstheright
door. Similarly, all of the car call and hall call button software components are
implemented as objects that are instantiated at run time from one car call class and
onehall call class. However, inthe software view of our model, these objectsareal
considered distinct componentsthat make up distinct feature subsets. Most of these

sets of components have one instantiation per floor. They cannot be considered
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logically equivalent because each component in the set only provides functionality
for asinglefloor.

These replicated components form nearly identical feature subsets that have
identical sets of valid configurations, and are replicated on a per floor basis. Thus
we can take advantage of this replication to reduce the number of utility
specifications. One utility specification can be applied to the entire set of replicated
feature subsets. This replication does not represent redundancy for fault tolerance
or graceful degradation, but rather isaconsequence of distributing functionality for
multipleidentical system behaviors. Theelevator treatsevery floor the same, so one
base class can be designed that generates distinct software objects per floor for
similar functionality.

At the system level, there are seven major functional capabilities that provide
utility: the safety monitor, drive control, door control, hall call buttons and feedback
lights, the car call buttons and feedback lights, the car lantern lights, and the car
position indicator lights. These capabilities can each be represented by a single
feature subset that encapsulates other subsystems in the elevator architecture.

These feature subsets are outlined in the following section.

5.3.1 Elevator Feature Subsets

In the elevator system, there are several functional subsystems that map to feature
subsets. The primary control systemsin the elevator operate the drive and the door
motors. Their feature subsets are defined by the inputs and outputs of the drive

controller, and left and right door controller software objects. Figure 5.2 displays
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Figure 5.2. Feature Subset Graphs of the Door and Drive Control Subsystems.

these feature subsets and the dependency rel ationships among their components. In
the diagrams we annotated the output variables of each feature subset. Theleft and
right door control feature subsets are nearly identical with the exception of which
door sensors and actuators they contain, so only the left door control feature subset
isshownindetail. Both door control feature subsets can be covered with one utility
specification that is applied separately based on their configurations.

These feature subsets areresponsiblefor controlling the drive and door actuators,
but they also output their command variables over the network to the rest of the
system. Thisallows subsystemsto loosely coordinate their operation without being
strongly coupled and dependent on each other. For example, the Door Controllers
must receive inputs from the Drive Speed sensor in order to safely operate the door

only when the elevator is not moving. However, the Door Controller can also use
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the command output from the Drive Control feature subset to anticipate when the
elevator will stop based on the command sent from the Drive Control feature subset,
thus alowing more efficient door operation via sending the door open command
dightly before the elevator is level with the destination floor. The Drive Control
feature subset encapsulates all of its components, so that it isrepresented asasingle
component that outputs the Drive command system variable in the Left and Right
Door Control feature subsets. Likewise the Door Control feature subset
encapsulates all of the components in the Left and Right Door Control feature
Subsets.

These feature subsets also contain several identical components, such as the
Drive Speed and AtFloor sensors. These components do not represent multiple
copies of the same component in the software data flow view, but rather that these
feature subsets overlap and share some of their components. The feature subset
graphs show dependencies among components, but not whether individua
components are replicated for multiple subsystems. There may be multiple
redundant sensors instaled in the system, but the information about how
components are allocated to hardware would be visible in the hardware architecture
and is orthogonal to the software data flow view of our system model.

Wedefined several other feature subsetsfor our elevator systemin additiontothe
Door Control and Drive Control feature subsets. The safety monitor software
component and itsinputs and outputs definesthe Safety Monitor feature subset. The
Safety Monitor feature subset is responsible for detecting when the elevator system
state becomes unsafe, such as the doors opening while the elevator is moving, the

doorsfailing to reverse direction if they bump into apassenger while closing, or the
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Figure 5.3. Feature Subset Graphs of the Safety Monitor Subsystem.

elevator overrunning into the top or bottom of the hoistway. 1nany unsafe situation,
the safety monitor must trigger the emergency brake actuator that shuts down the
elevator system to prevent a catastrophic failure. Figure 5.3 shows the Safety
Monitor feature subset along with some of the sensorsfrom whichit receivesinputs.
The safety monitor must receive inputs from both the Door and Drive Control
feature subsets to ensure that their commands are consistent with the elevator’'s
actual operation determined from the drive speed and door sensors.

The Door Control, Drive Control, and Safety Monitor feature subsets represent
the critical elevator subsystems that provide an elevator’ s basic functionality. An
efficient elevator should also respond to passenger requests to move people quickly
to their destination floors. The Drive Controller listens to the DesiredFloor system
variable to determine its next destination, and this variable is the output of the

Desired Floor feature subset. The Desired Floor feature subset contains the
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Figure 5.4. Feature Subset Graphs for the Desired Floor and Car Call Button

Subsystems.

dispatcher software component that implements the algorithm for determining the

next floor at which the elevator should stop. The dispatcher also outputs the

DesiredDwell system variable to the door controllersto control how long they hold

the doors open on afloor.
The dispatcher receivesinputsfrom the car call and hall call buttonsto determine

passenger intent and compute the elevator’ s next destination. The dispatcher can

also use the elevator's weight sensor to determine when the car is full, thus
bypassing hall call requestsin favor of car call requests to unload the car. The car

call and hall call buttons in turn form their own feature subsets that provide the

button sensor messagesto therest of the system, but also control the button lightsto

provide appropriate passenger feedback. Figures 5.4 and 5.5 show the feature
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Figure 5.5. Elevator Hall Call Button Feature Subsets.

subset definitionsfor the Desired Floor, Car Call and Hall Call feature subsets. The
feature subsets for the car call and hall call buttons are similarly defined for each
floor since each car call and hall call software controller have similar input and
output interfaces and are replicated instances of the same base class. Each car call
and hall call controller outputs the value of its respective sensor on the network for
the rest of the system, but only sends the command messages for its button light to
its actuator.

In order to encourage people to move quickly in the elevator, the car lantern and
car position indicator lights provide feedback to let the passengers know the

elevator’'s current traveling direction, and the elevator’s next floor destination.
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Figure 5.6. Car Position Indicator and Car Lantern Feature Subsets.

Figure 5.6 displays the feature subsets for the Car Position Indicator and Up and
Down Car Lantern light subsystems. These features are not essential for the
elevator’ s basic operation, but provide information to the passengers to help them
use the elevator more efficiently.

One essential subsystem that is required by all of the other major elevator
subsystems is the AtFloor Sensors feature subset. Nearly every feature subset
strongly depends on AtFloor sensor information to provide functionality. For
example, the Drive Control and Door Control feature subsets need the AtFloor
sensor information to correctly operate the drive and door motors. Sincethisissuch
a critical feature in the elevator system, our elevator design also has redundant
software components. The virtual AtFloor software components can synthesize
AtFloor sensor messages from the car position and drive speed sensors when the

physical AtFloor sensorsfail. Thusthey areincluded in the AtFloor sensor feature
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Figure 5.7. AtFloor Subsystem Feature Subset Graph.

subset graphs. Figure 5.7 shows the AtFloor feature subset description for the
elevator system in our model. As with other replicated components, the virtual
AtFloor sensor components are software objects instantiated from the same base

class.

5.3.2 Utility Analysis

The gracefully degrading elevator system hasatotal of 20 + 11f system components
(there are an f extra components, representing each of the virtual Atfloor software

componentsthat we added to the system), meaning there are 2%+ **

possible system
configurations. The system can provide basic functionadlity if the minimum
components necessary to operate the drive motor, door motors, and maintain safety

are present. Thus these 17 components (drive controller software, drive speed
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sensor, drive motor, left and right door controller components, left and right door
motors, all door sensors, safety monitor software, hoistway limit sensors,
emergency brake actuator), in addition to the components required to provide valid
AtFloor feature subsets for each floor, are fixed and must be present in every valid
configuration. All other components (such as the button lights and sensors and
passenger feedback lights) can be considered optional and present in any
configuration. There are 2 + 9f optional components that can have 22 * ¥ possible
configurations.

Enough components to provide working AtFloor feature subsets for each floor
must be present aswell. Therefore, on each floor there must be aworking AtFloor
sensor or aworking virtual AtFloor component with aworking car position sensor.
If the car position sensor breaks, then all AtFloor sensors must work, assuming the
worst case scenario that the elevator must service at least one passenger on every
floor. Since all the AtFloor sensors must work in this situation, they are fixed and
have one configuration. However, the virtual AtFloor components can either work
or not work since their failure will not affect the availability of the AtFloor system
variables, making 2 valid combinationsfor the variousvirtual AtFloor components.
If the car position sensor works, then one or both AtFloor sensor and virtual AtFloor
component must work for each floor, so the only invalid combinations are when
both havefailed for at least onefloor. Thismeansthereare 3 valid combinations per
floor, making 3" valid combinations out of the possible 2. Thus there are 2 + 3
valid combinations of components in the AtFloor feature subset.

The total number of possible valid system component configurations after

eliminating all configurations that will aways have zero utility is (2" + 3)(22 " ¥).
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We ran our elevator simulator tests with seven floors, so thisis approximately 9 *
10% configurations that still must be manualy ranked. This is a significant
reduction from the 2% » 2 * 10% total possible system configurations, but still
intractable for specifying system-wide graceful degradation. However, we can
exploit the structure of the system design captured in the feature subset definitions
to reduce the number of configurations we must rank to completely specify the
system utility function.

We have defined 16 + 4f distinct feature subsets in the elevator system. If fis
small, the largest feature subsets are the left and right door control feature subsets,
with 11 components each. Thus we must rank a maximum of 2 = 2048
configurations in any one feature subset.

Since we can determine the valid and invalid configurations in each feature
subset by examining the component dependencies, we can significantly reduce the
number of configurations we must consider in each feature subset. For example, in
the left and right door control feature subsets, 7 of the 11 components are required
for the feature subset to provide utility, meaning we only need to consider the 16
possible configurations of the 4 optional components. If fislarge, the number of
configurations in feature subsets that contain f components (AtFloor, Car Call, and
Hal Call Up/Down) will dominate. However, these feature subsets contain
components that are largely orthogonal since each component’s functionality is
restricted to adifferent floor. Therefore we can simplify the utility specification of
these feature subsets to a linear combination of the utility values of their
components, requiring only that we specify f weights for each component utility in

the feature subset. Table 5.1 summarizes the number of valid configurations that
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Table 5.1. Valid Configurations in Each Feature Subset.

# Replicated COﬂﬁQ\J/L?I’I{giOI’]S . ' .
Feature Subset Feature per Feature Total Valid Configurations
Subsets Subset

Drive Control 1 8 8
Left/Right Door Control 2 16 32
Top Door Control 1 3 3
Door Closed Sensors 1 1 1
Door Reversal Sensors 1 1 1
Hoistway Limit Sensors 1 1 1
Safety Monitor 1 1 1
Desired Floor 1 8 8
AtFloor per floor f 9 of
Top AtFloor 1 f f
Car Call per floor f 8 8f
Top Car Call 1 f f
Hall Call per floor 2f-2 16 32f-32
Top Hall Call Up/Down Buttons 2 f-1 2f-2
Top Hall Call Buttons 1 3 3
Lantern Control Up/Down 2 1 2
Top Car Lantern 1 3 3
Car Position Indicator 1 8 8
Totals: 16 + 4f 37 +53f

must be assigned utility values in each feature subset for atotal of 37 + 53f feature
subset configurations that must be considered acrossthe entire elevator system. For
our seven-floor elevator, this totals 408 valid feature subset component
configurations for the entire system.

We can then determine overall system utility by composing the system
configurations of the capability feature subsetsthat provide system functionality. In
the elevator system, these feature subsets are the Drive Control, Door Control,
Safety Monitor, Car Call, Hall Call, Car Lantern, and Car Position Indicator feature

subsets. All other feature subsets are encapsulated within these seven subsystems
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that provide external system functionality. Since the Drive Control, Door Control,
and Safety Monitor feature subsets must be present to provide minimum elevator
functionality, that leaves only 2* = 16 possible configurations of the other four
capability feature subsets in the system. Once we specify the relative utilities of
these 16 configurationsin addition to the 408 total feature subset configurations, we
can completely specify the system utility function. We have greatly reduced the
number of configurations we must evaluate from 9 * 10% system component
configurations to 424 feature subset configurations to assess system’s ability to
gracefully degrade. Appendix D has the complete utility function specification for

the elevator control system.

54 Experimental Validation

We tested two hypotheses with these simulation experiments. The first is whether
the changes we made to the elevator system architecture actually improved the
system’ s ahility to gracefully degrade. We can measure this by running simulations
of both the original elevator system and our gracefully degrading elevator system,
and observing which system can more efficiently deliver passengers. The second
hypothesis is whether our system model accurately predicts the relative utility of
system configurations, so that we can use it asameasure of graceful degradation for
different configurations of a single system.

We performed a set of fault injection experiments on a simulated elevator
implementation of both system architectures. A discrete event ssmulator smulates a

real time network with message delay that delivers broadcast periodic messages
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between system components. Each software component, sensor, and actuator is a
software object that implements its message input and output interface to provide
functionality. Sensor and actuator objects interact with the passenger objects that
represent people using the elevator. Each simulation experiment specifies a
passenger profile that indicates how many passengers attempt to use the system,
when they first arrive to use the elevator, what floor they start at, and their intended
destination. We can specify which elevator system configuration to simulate by

setting which components are failed at the start of the simulation.

5.4.1 Experimental Setup

We selected a subset of the possible valid elevator system configurations that
represented a wide range of possible component failures. The configurations we
selected for evauation included the configuration in which only the minimum
required components for basic operation were present, as well as the configuration
in which all of the components were working. We tested several configurationsin
which different subsets of car call and hall call buttons were failed so that the
elevator could not receive all passenger requests. We also picked configurationsin
which the dispatcher component was failed so that no destination commands were
sent to the drive controller. There were atotal of 70 configurations tested for both
the original and gracefully degrading elevator architectures.

Wealso generated a set of passenger arrival profileswith which to test each of the
system configurations. Each profile had 50 passengers, al arriving within 5

minutes of each other on different floors to use the elevator. Elevator systems
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usually deal with three types of traffic: two-way, down-peak, and up-peak
[Strakosch98]. Two-way traffic assumes random passenger requests between
floors. Down-peak traffic is characterized by 90% of the requests from passengers
coming from arandom start floor and traveling to thefirst floor. up-peak traffic is
characterized by 90% of the requests from passengers coming from the first floor
and traveling to arandom destination floor. The other 10% of passenger requestsin
both up-peak and down-peak traffic profiles are random two-way requests. Our
experiments included 10 randomly generated passenger profiles for each type of
traffic for atotal of 30 passenger tests. Thetotal number of ssmulationswe ran were
2 elevator architectures x 70 configurations per elevator x 30 passenger profiles per
configuration = 4200.

Although thisis a small number of configurations compared to the total number
of possiblevalid system configurations, we can extrapol ate these resultsto the space
of system configurations because it is largely constructed of components that are
replicated per floor. The dispatcher and car call and hall call button subsystems are
mainly responsible for the elevator's performance and functionality. These
components are strongly decoupled and provide equal utility contributions to the
system per floor. If wetest enough failure combinationsthat account for thefailures
of each button individually, as well as the dispatcher component, we should have
enough data to determine how well the system gracefully degrades.

The simulated passengers in this system are predictable in that they will wait
indefinitely for the elevator to service their requests. They will not take the stairsif
the wait istoo long, and they will never exit the elevator if it does not stop at their

destination floor. Since we are only concerned with testing how the elevator can
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compensate for its own failures, we did not implement passenger behavior that
would bypass elevator failures. Work on examining how users can improve system

dependability can be found in [Latronico2001].

5.4.2 Original versus Gracefully Degrading Elevators

We can compare the origina and gracefully degrading elevator systems by
measuring how many passengers each system delivered during the smulation runs.
The average number of passengers delivered per configuration was calculated by
taking the mean of the number of passengers delivered for all 30 passenger profiles
for each configuration and dividing by 50 (number of passengers per simulation
test) to get the average percentage of passengers delivered per simulation. Every
configuration of the gracefully degrading elevator delivered 100% of its passengers
for each simulation test. The original elevator system frequently stranded
passengers both in the car and on each floor waiting to be serviced when any of the
car call and hall call buttons were broken.

Figure 5.8 shows a bar graph of the average percentage of passengers delivered
per simulation for each configuration of the original elevator system. Only three
configurations successfully delivered all passengersin every simulation run. These
configurations corresponded to situations in which only the passenger feedback
lightswerefailed (car position indicator in configuration |D #4, and the car lanterns
and car positionindicator in configuration | D #5), and the configuration in which no
components were failed (configuration ID #69). Only one test out of all of the

simulations run for the other configurations managed to deliver al 50 of its
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Figure 5.8. Average % Passengers Delivered for the Original Elevator System.

passengers (one of thetwo-way test profilesfor configuration ID #30). Many of the
configurations could not deliver any passengers at all because the drive controller
could not move the elevator due to the fact that the dispatcher was one of the failed
components.

For one of the configurations, the original system violated a safety condition and
triggered the emergency brake in al of its ssmulation runs. This configuration
corresponds to when several of the AtFloor sensors were failed (configuration ID
#70). Thisisnot surprising given that these are critical sensorsrequired by thedrive
controller to safely operate the elevator, and the origina system has no safeguards

against their failure beyond the safety monitor.
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5.4.3 Validation of our Utility M odel

The result in the previous section shows that our gracefully degrading system can
tolerate combinations of component failures that would prevent the original system
from satisfying itsrequirements. It iscertainly more fault-tolerant than the original
system, and displays some level of graceful degradation. However, we would like
to evaluate how well our system model accurately predicts the relative change in
system utility due to component failures. We can analyze the relative performance
of each of the configurations of the gracefully degrading system to observe whether
the system exhibits agradual drop in utility as componentsfail. We should also be
able to examine discrepancies between the model utility predictions and the utility
measured in the system implementation to improve the system’'s ability to
gracefully degrade.

In general, system utility should be a measure of how well the system fulfillsits
requirements, and could incorporate many system properties such as performance,
functionality, and dependability. An elevator system’'s primary function is to
efficiently transport people to their destinations, minimizing how long passengers
must wait for and ridein the elevator. Therefore, in our simulation experiments, we
use the elevator’s average performance per passenger as a proxy for measuring
system utility. We track how long it takes for each passenger to reach his or her
destination, from thetimethey first arrive to use the elevator to the time they step off
the elevator at their intended floor. Thisisarelatively simple performance metric,
and could be modified to account for worst case passenger travel timesin additionto
average passenger travel times. However, sincethisisasimulated environment and

the passengers have simple behavior patterns, modifying the performance metric
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Figure 5.9. Average Elevator Performance vs. Model Utility for Two-Way Profiles.

did not seem necessary. Inthe datawe examined, changing the performance metric
did not significantly affect the relative order of the configurations tested.

We measured the average performance of each system configuration for each
simulation test, and grouped the results according to the type of passenger profile
tested. Then we took the mean of the average passenger delivery timesfor each of
the three passenger profile types. two-way, down-peak, and up-peak, for each
configuration. If our model accurately predicts system utility, we should see
configurations that have higher utility measures achieve better average
performance. Figures 5.9, 5.10, and 5.11 graph the utility of the tested system
configurations versus the average elevator performance per passenger per
simulation for each of the three profile types. In these graphs, better elevator

performance translates to lower average passenger delivery times. The system
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configurations on the horizontal axisare ordered by utility, sothe measured average
passenger delivery time should decrease as utility increases to indicate better
performance for system configurations that provide more utility. Appendix E lists
al 70 configurationstested with adescription of which componentsarefailed in that
configuration, itsspecified utility value, and the datafor each of the simulation tests.

For the random two-way traffic profiles (Figure 5.9), the data indicates that the
model accurately approximates relative system utility for the configurations tested.
The configuration with the most components failed and the least utility (ID #1) has
the longest average passenger delivery time at about 898 seconds per passenger.
The configuration in which no components have failed (ID #69) has the shortest
time with about 203 seconds per passenger. There is some variance in the
performance measurements for configurations with similar utility values, but there
is clearly a general trend of better average performance for systems with higher
utility values. The configurations in the middle of the graph differ by which
combinations of car call and hall call buttons have failed, and this can have a
significant effect on elevator performance depending on the particular passenger
requests.

For the down-peak traffic profiles (Figure 5.10), a similar trend of increasing
system performance with increasing utility is visible. However, there are severd
outlying data pointsin the range of utility values of about 0.30 to 0.60 for which the
configurations perform much better on the down-peak traffic profiles than their
utility scores would seem to indicate. After investigating these configurations, we

found that the major difference between them and the other configurations was that
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Figure 5.10. Average Elevator Performance vs. Model Utility for Down-Peak Profiles.

they had aworking car call button for floor 1. Down-peak traffic ischaracterized by
having 90% of all passengers request floor 1 astheir destination.

One feature of our simulator is that the passenger behavior is such that they will
continue to press their desired button until it either lights up or the elevator arrives
ontheir desired floor. Also, thedoorswill reopen when abutton pressisdetected on
the desired floor, reducing the likelihood of the passenger being delayed by a door
reversal. For configurationsinwhich their desired button isbroken, they will waste
time pressing the button before exiting the elevator, and the doors will not respond
to button presses, which can cause delays when multiple passengers are trying to
exit the elevator on the samefloor. Sincethe car call button for floor 1 isespecialy
important to the elevator’ s operation on down-peak traffic, its presence or absence

has a disproportionate effect on the system’ s performance, and is not accounted for
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Figure 5.11. Average Elevator Performance vs. Model Utility for Up-Peak Profiles.

in our utility model. Thus, configurations in which the car call button is working
will perform much better than their utility values indicate.

For the up-peak traffic profiles (Figure 5.11), the model does not seem to be as
accurate at predicting relative system performance. Many configurations that
supposedly have higher utility values and more working components perform much
worse than configurations with low utility values. Thisis also due to an unforseen
interaction between the characteristics of the up-peak traffic profiles and the
graceful degradation mechanismsimplemented in the system. Since up-peak traffic
is characterized by 90% of the passengers arriving on the first floor to use the
elevator, the drive controller’ sdefault algorithm for visiting floorsis actually better

suited for thistraffic than the dispatcher’s high performance algorithm.
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The default drive controller starts at floor 1, stops at every floor until it reaches
thetop floor, and then returnsto thefirst floor to repeat the process unlessit receives
an override destination from the dispatcher. For up-peak traffic, this will be very
efficient since most passengersarrive on thefirst floor and exit on other floors. The
dispatcher’s algorithm will only perform reasonably well for up-peak traffic if the
first-floor hall call buttonisworking. If thefirst-floor hall call button isbroken, the
dispatcher will visit floor 1 periodically, but it will not process the first floor as
frequently asit should for maximum performance, given that 90% of the passengers
arrive there. All of the extreme outlying points in Figure 5.11 were traced to
configurations in which the dispatcher was working but the first-floor hall call
button was not.

Our utility specification gave equa weights to the utility contributions from all
hall call buttonsand most car call buttons. Wedid givethe car call button for floor 1
more relative utility value than the other car call buttons, but this did not take into
account its interaction with the door controller. Our experiments indicate that the
utility model was relatively accurate for the general case of random two-way
elevator traffic patterns, but was less accurate for the down-peak and up-peak traffic
profiles. Thiswas partially due to the fact that efficiently processing the up-peak
and down-peak passenger profiles heavily depends on processing the first-floor
button requests. When thefirst-floor hall call and car call buttonsfail, the system’s
performance is severely degraded, and our utility model does not account for this.
These tests indicate that additional hardware redundancy should be added to these
first-floor buttons since they are critical to system performance for the up-peak and

down-peak passenger profiles.
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Figure 5.12. Average Elevator Performance vs. Model Utility for Down-Peak Profiles
with HW Redundant First-Floor Buttons.

We reran the up-peak and down-peak passenger profile simulations with
modified test configurations in which al the components in the original
configurations were failed except for the first-floor car call and hall call buttons.
These configurations represent situations in which the first-floor buttons have
redundant hardware backups that mask a single button failure. Figures 5.12 and
5.13 show theresults of these experiments. Oncethefirst-floor buttons are removed
from the possible failure configurations, our model more closely matches the
performance of the elevator on the up-peak and down-peak passenger profiles.
Additionally the performance of nearly al of the configurations significantly
improves, as al of the average passenger delivery times for all configurations are

less than 1,200 seconds, compared to the previous experiments in which some
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Figure 5.13. Average Elevator Performance vs. Model Utility for Up-Peak Profiles
with HW Redundant First-Floor Buttons.

configurations had average passenger delivery times as bad as 5,000 or 6,000
seconds.

The dispatcher was designed to optimize performance for the random two-way
passenger profiles, so the model does not completely match the observed
performance for the up-peak and down-peak profiles, even with the first-floor
buttons always working. One way to overcome this might be to specify utility
functionsthat directly address these specific traffic patterns by giving more weight
to the utility contributions from subsystemsthat particularly affect the performance
under the special conditions. Then we could use multi-attribute utility theory
[Keeney76, Keeney92] to combinethe utility measuresfromthethreetraffic profile

types based on which of these traffic types were considered more important to the
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system’s operation. It might also be feasible to design a different dispatching
algorithm for each traffic profile. This would also require that the elevator have
some mechanism for switching modes based on the current traffic pattern.
Another solution might be to build a separate system utility function for each
system mode of behavior that significantly changes utility measures. Each of these
utility functions generates a system utility attribute. For each utility function, anew
set of utility specification parameters would be generated for the system. Then
general system utility would be a linear combination of the different utility
attributes. This effectively multiplies the number specifications required for a

complete utility function, but does not cause an exponential explosion.

5.5 Conclusions

We applied our system model and graceful degradation techniques to an elevator
control system architecture to evaluate how well our model can measuretherelative
utility of system configurations, and whether the techniques we propose actually
improve the system’s ability to gracefully degrade. Since individual component
failures simply transform the system from one configuration to another, we can
evaluate how well the system gracefully degrades by observing the utility
differencesamong valid system configurations. Inthe elevator system, we used our
system model to generate acomplete system utility function for all 8.54* 10% valid
system configurations by only examining 424 subsystem configurations.

The experiments on a simulated implementation of the elevator control system

produced several interesting results. The original elevator design could only
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tolerate failures in the car position indicator and car lanterns without failing to
deliver passengers. However, our gracefully degrading elevator design could
withstand up to aloss of 75% of the system’ scomponentsand still provide serviceto
al passengers, albeit at greatly reduced system performance. Every system
configuration tested on the gracefully degrading elevator delivered all passengersto
their destinations in al simulation tests, satisfying the minimum elevator system
requirements despite aloss of system functionality. We also showed that the utility
model was a good approximation for relative system utility among system
configurations when the elevator traffic was random.

Our utility model did not account for how the elevator’s performance would
depend on particular components for up-peak and down-peak traffic profiles.
Specifically, the first-floor hall call and car call buttons are necessary for the
elevator to provide acceptable utility in these traffic profiles. Since our utility
model assumed that each button subsystem per floor provided an equal contribution
to the overall system utility, this affected our model’s accuracy. This seems to
indicate that even though replicated subsystems may be similarly designed and may
appear homogeneous, system architects should also pay attention to how these
subsystems are used in different system operating modes when evaluating their
utility contribution. In our elevator system model, it would be reasonable to give
moreweight to the utility values of thefirst-floor hall call and car call button feature
subsets relative to the other button feature subsets because they have alarge impact
on elevator performance in the up-peak and down-peak modes. In cases where

multiple subsystems are affected by changing system modes, it may be necessary to
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specify multiple utility functions based on the different characteristics of these
modes' operational profiles.

For graceful degradation in the elevator system we designed the software
components to have a default behavior based on their required inputs, and to treat
optional inputs as “advice” to improve functionality when those inputs are
available. For example, the Door Control and Drive Control components can listen
to each other’ s command output variables in addition to the Drive Speed and Door
Closed sensorsto synchronize their behavior (open the doors more quickly after the
car stops), but only the sensor values are necessary for correct behavior. Likewise,
the Drive Control component has a default behavior that stops the elevator at every
floor, but if the Desired Floor system variable is available from the output of the
Dispatcher component, then it can use that value to skip floors that do not have any
pending requests. Also, the Door Control component normally opensthe door for a
specified dwell time, but can respond to button presses to reopen the doors if a
passenger arrives.

We did not explicitly design failure recovery scenarios for every possible
combination of component failures in the system, but rather built the individual
software components to be robust to a loss of system inputs. The individua
components were designed to ignore optional input variables when they were not
available and follow adefault behavior. Thisisafundamentally different approach
to system-wide graceful degradation than specifying al possible failure
combinations to be handled ahead of time. Properties of the software architecture
such as the component interfaces and the identification and partitioning of critical

system functionality from the rest of the system seem to be key to achieving
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system-wide graceful degradation. This case study demonstrates the applicability
of our model and techniques to adding graceful degradation to distributed

embedded system designs.
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6  Case Study: Autonomous Robot Navigation System

Now that we have demonstrated that we can apply our graceful degradation
techniques to an existing system design, we will use our system model to guide
building a gracefully degrading system from scratch. The CMU Mobot (Mobile
Robot) competition [Mobot2003] provides a rich problem domain in autonomous
vehicle navigation that has severa opportunities for graceful degradation
mechanisms. We decided to build a gracefully degrading mobot that could tolerate
multiple sensor and softwarefailuresand still complete arace course within our lab.
This chapter details our attempt to build a gracefully degrading mobot system
using our methodology. Section 6.1 describes the mobot navigation problem in
detail. Section 6.2 showshow we used our system model for graceful degradation to
drive our system architecture design and the techniqueswe used. Section 6.3 details
our implementation and how we built the graceful degradation mechanismsinto the

system. Sections 6.4 and 6.5 conclude with the results of our case study.

6.1 Mobot Navigation Problem

The mobot competition involves designing an autonomous robot that can
successfully navigate arace course in the shortest amount of time. The race course
ison an outdoor concrete sidewalk with awhite line painted on light gray concrete
pavement. Thereare several gates placed at different points on the course which the
mobot must passthrough in sequential order. At the end of the coursethe whiteline
hasforksin several directions, and the mobot must pick the path that passes through

the gatesin the correct order. Contestants are given the locations of the gates prior
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to running the race so they can program the mobot ahead of time to follow the
correct path. Each mobot is timed individually and runs the course alone without
interference until it either completes the course or stops making progress.

At first look this seemsto be a straightforward line following problem. With the
appropriate sensorsand agood line-following algorithm, the only design challenge
would seem to be detecting the points in the course where the line diverges and
taking the correct path. However, there are several features in the environment of
the course that make this problem more interesting. Most mobot designs use some
sort of visual sensor to track the line, such as infrared sensors or an embedded
camera. Since the mobot course is outdoors, the ambient lighting conditions can
vary greatly depending on the weather. Also, the contrast between the white line
and light gray sidewalk pavement isnot very large, and the cracks between blocksin
the sidewak disrupt the continuity of the line. These conditions make line
following moredifficult, and the mobots are susceptibleto frequently losing track of
thelinein the course.

In order to explore graceful degradation opportunities, we generalized the line
following problem to anavigation problem. Theline can betreated asahigh quality
accurate source of position information that a general navigation system uses to
complete the course. Other sources of location information could include tracking
the cracks in the pavement as the mobot passes over them, and using shaft encoders
on the wheels to measure distance traveled. A navigation algorithm that can take
advantage of the course layout and keep track of its position could anticipate curves
in the line and make more accurate turns to finish the course more quickly.

Additionally, the navigation algorithm should be ableto tolerate line sensor failures
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and continue to complete the course. If parts of the navigation system fail, the
default line following algorithm can still take over and attempt to complete the
course.

We constructed a smaller mobot course in our lab to run graceful degradation
tests. The lab course uses semi-white masking tape for the line, which contrasts
with the multicolored carpet. Although we do not have to deal with ambient light
changesin thelab, distinguishing the carpet from thelineisstill achallenge because

the carpet is composed of speckles of colors from near- white to black.

6.2 System Architecture Design

Our goa was to explore software design techniques for graceful degradation.

Rather than compl etely design the robot hardware, we selected a hardware platform
that provided some of the basic sensors and actuators, could easily accommodate
additional sensor devices, and used a processor that had accessible software
programming support. The basic hardware we started with was an ARobot mobile
robot kit [Arrick2003] with a Basic Stamp 2 processor [Parallax2003]. The robot
consisted of achassiswith three wheels. The front wheel axle has adrive motor for
movement with a shaft encoder for position measurement. The rear wheels are
connected to a servo motor that provides rear wheel steering. The front of the
chassis has two whisker sensors for front collision detection. An embedded
coprocessor on the robot controls the drive motor, servo motor, and encoder, and
communicatesviaseria /O to the Basic Stamp processor on therobot. Thewhisker

sensors are directly connected to the Basic Stamp’s1/O channels. The Basic Stamp
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can be programmed to send commands to the coprocessor to control the motors and
read encoder values, and read the values of the whisker sensors. The additional 1/0
channels on the Basic Stamp can be used to connect additional sensing devices to
the robot.

With this basic hardware platform, we focused on building a navigation system
that could gracefully degrade when sensors and parts of the navigation system fail.
We took a top down approach and started by specifying the actuators, system
variables and software subsystems that are required for the navigation system.
Figure 6.1 shows the feature subset diagram for the main navigation system.

The Navigation feature subset provides logica movement commands to the
Actuator Control feature subset, which is responsible for moving the mobot to
complete the course. Within the Navigation feature subset, the navigator software
component receives data from the Line Follower, Direction, and Collision
Detection feature subsets, which are derived from sensor subsystems built on the
mobot that are described in the next section. These sensor subsystems can provide
enough data to the navigator to reliably follow the linein the course, and also avoid
obstaclesthat are sensed by the collision sensors. Thisisthebasic functionality of a
typical mobot system. Having the Direction feature subset so that the mobot knows
what direction it is facing can prevent the mobot from making excessive turns that
could throw it off course. Without any other navigation functionality, if the mobot
ever lost track of the line, it would not be able to complete the course.

In order to compensate for a possible failure of the Line Follower feature subset,
the Navigator also receives data from the Path Planner feature subset. Thisfeature

subset contains a Path Planner software component that receives datafrom Location
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Figure 6.1. Navigation and Actuator Control Feature Subsets.

feature subsets and a Map Data component to synthesize the mobot’s current
position, and determine the best route for completing the course. The Map Data
component providesalist of waypoint coordinatesthat will take the mobot on apath
through the course. The Path Planner will then send a suggested location change
command relative to the mobot’ s current position, that the Navigator can interpret
into actual movement commands for the drive and servo motors. Thisnavigationis

based on using all available sensors to monitor the mobot’ s current location on the
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course, and doing a simple waypoint navigation based on knowledge of the course
geography.

Thisisan example of using heterogeneous redundancy (Section 4.3.3) to provide
graceful degradation for a critical subsystem (Section 4.3.2). The Navigation
feature subset can continue to provide utility with either ssmple line following
functionality, or high-performance location navigation.

The location data is split into separate subsystems for the X (axis parallel to
course' sdirection) and Y (axis perpendicular to the course’ sdirection). The X and
Y Location feature subsets use heterogeneous redundancy to provide graceful
degradation of the location data when sensors fail. Severa sensor subsystems

contributeto thelocation feature subsetsand provide utility to therest of the system.

6.2.1 Sensor Subsystems

We designed several sensors based on the hardware already availablein the ARobot
kit, and we al so mounted some new sensors on the chassis. One of the mgjor sets of
sensors we added wasthe line following sensor subsystem. This subsystem consists
of an array of infrared (IR) phototransistors and infrared light emitting diodes
(LED) mounted closeto the ground on the front of the mobot’ schassis. Each sensor
is a pair of one phototransistor and one LED. The LED shines IR light on the
ground, which isreflected back up to strike the phototransistor. More light will be
reflected from the white line than the rest of the carpet, so the change in the state of
the phototransistor can detect whether or not the sensor is passing over theline. Six

sensors are mounted an inch apart on the front of the mobot, to form an array that is
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normally perpendicular to theline when the mobot istravelling onthe course. If the
mobot starts to deviate from the line, it can be detected by the change in the IR
sensor values.

Using these IR sensors, we can to a certain extent detect the relative position of
the center of the mobot to theline. When the mobot isto theleft of theline, theright
sensors will sense the line, and when the mobot is to the right of the line, the left
sensors will sensetheline. Aslong at least one IR sensor is over the line, we can
estimate the mobot’s relative position, and the Navigator component can use the
Line Follower’ soutput to calculate aturn that bringsthe mobot’ s center closer to the
line. Figure 6.2 showstheLine Follower and IR Sensorsfeature subsets, along with
additional sensor subsystems we added.

In addition to using the IR sensors to follow the line, we can aso use them to
detect when the mobot has reached a decision point on the course. These decision
points are characterized by a fork in the line that will continue the path in two
directions. The IR sensors can detect this when both |eft and right sensors that are
on opposite sides of the mobot sense that they are on theline. Oncethisisdetected,
we can choose which path to take. The Decision Point software component can
maintain a list of decision points in the course and keep a history of how many
decision points have already been passed to makethe correct choice. Alternately, if
course map data and location information are available from the Map Data
component and X Location feature subsets, this will also provide reliable
information about the correct fork to take on the path.

In Figure 6.2 we also have the feature subset definitions for Collision Detection

and Crack Detection. The Collision Detector simply receives datafrom the whisker
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Figure 6.2. Line Follower, IR Sensors, Crack Detection, and Collision Detection
Feature Subsets.

sensors on the front of the mobot. These whiskers are metal wires that stick out in
front of the mobot’s frame. When the mobot strikes an object, these wires are
pushed backwards and touch terminals on the mobot that complete a circuit. The
middle of the course is free of obstacles, so when the mobot has a collision, this
indicates that mobot is moving off course, and must backtrack. This can also be

used as arough position measurement, asit is confirmation that the mobot is at the

edge of the course.
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The Pavement Crack Sensor is a metal wire that drags along the ground on the
back of the mobot. When the mobot passes over a crack, the wire dips lower,
causing ahook on the other end of the wire to touch aterminal on the mobot. Since
the sidewalk cracks are spaced at regular intervals on the course, this can be used as
another source of position data.

A shaft encoder is aready included on the front wheel’s axle for distance
measurements. We also added |ow resolution wheel revolution sensors on the rear
wheels. These sensorsconsist of IR sensors mounted on the back of the mobot, with
strips of white tape placed at regular intervals on the rear wheels' black tires. We
can sense wheel revolutions by counting the number of timesthe white stripson the
wheels pass under the IR sensors. These sensors are used for position tracking and

dead reckoning, which is described in the next section.

6.2.2 Dead Reckoning and L ocation Subsystems

The dead reckoning subsystem uses the position tracking wheel sensorsto estimate
the mobot’ s change in position. Figure 6.3 shows the details of this feature subset.
To calculate the mobot’s speed and direction, we can use the outputs of the
Command Resolver software component that sends the speed and direction
commandsto the actuators. Of course, this assumes that the actuators can precisely
execute commands from the Navigation subsystem without any error or inaccuracy.
Therefore, we can also use the wheel position sensors to estimate the mobot’'s
change of speed and direction, and compare it with the Command Resolver’s

outputs. The mobot’s speed and direction estimates are combined with the wheel
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Figure 6.3. Dead Reckoning and Related Feature Subsets.

position data to estimate the mobot’s location, which is output by the Dead
Reckoning Feature Subset as the XLocationData and YLocationData system
variables.

The Dead Reckoning Feature Subset provides location data to be incorporated
into the X and Y Location feature subsets. These feature subsets collect position
estimates from the multiple sensor subsystems and synthesi ze the | ocation data used
by the Navigation feature subset. Figure 6.4 displaysthe X and Y Location feature

subsets.
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Figure 6.4. X and Y Location Feature Subsets.

The software components that make up these feature subsets should be separately
designed based on how X and Y position can be estimated from each sensor’ s data.
For example, the line sensors can provide data about the mobot’s 'Y position based
ontheline’ slocation and the mobot’ spositionrelativeto theline. However, theline
sensors are of little use in calculating the mobot’s X position, except possibly at
pointsinthe coursewherethelineturns. The X andY Location Resolversmust deal
with the possible loss of outputs from these sensor subsystems, and may provide a
less accurate location estimate as a result.

The X and Y location estimates are coupled because they both rely on knowing
the mobot’ s current direction to estimate change in position. The mobot’s sensors
periodically record theincremental distancetraveled by the mobot, but knowing this

distance without knowing the mobot’s direction relative to the course cannot
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provide an accurate measurement of position change. Thus, the Direction feature

subset provides inputs to all of the location estimators.

6.2.3 System Interface Design

We used our system model framework to guide how we partitioned the mobot’s
navigation system into subsystems. We used our system model’s feature subset
construct to define logical subsystems of components (as shown in this section),
which led to the definition of logical system interfaces. The components and
interfaces we defined are a result of our goal of making the system gracefully
degradable. The multiple IR line sensors provide functional redundancy (Section
4.3.2) since multiple sensors in the array can fail while the remaining sensors can
still provide line following utility. The X and Y Location feature subsets use the
heterogeneous redundancy (Section 4.3.3) of multiple sensors to synthesize
location information, and can continue providing utility until all of the sensor
subsystemsfail. The Navigation subsystem also usestwo different algorithms (line
following and position tracking) that require different sets of sensors to provide
heterogeneous redundancy.

Our component and interface definitions are presented in Table 6.1. The system
variable interfaces should, by design, facilitate graceful degradation. We broke the
system into severa logical subsystems based on sensor and actuator functionality,
and identified pieces of the system that could serve as redundant resources. As
specified in the feature subsets, we should design many of the components to treat

inputs as optional whenever possible. There are 42 components in the system,
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Table 6.1. Mobot Navigation System Component and Interface Specification.

Compon . .
Component ent Type System Variable Inputs System Variable Outputs
Steering Servo Motor Actuator | Raw Servo Control Data Environment
Drive Motor Actuator | Raw Motor Control Data Environment
IR Sensors 0..5 Sensor Environment IRSensorData 0..5
Pavement Crack Sensor Sensor Environment Raw Whisker Data
Left/Right Whisker Sensors | Sensor Environment Raw Whisker Data
Front Wheel Shaft Encoder | Sensor Environment Raw Encoder beats
Left/Right Rear Wheel IR .
Sensors Sensor Environment IRSensorData L/R
Servo Motor Controller Software | TurnCommand Raw Servo Control Data
Drive Motor Controller Software | SpeedCommand (Spd Cmd) Raw Motor Control Data
Command Resolver Software | NextDestinationCommand TurnCommand, Spd Cmd
RelativeLinePositon,
. DirectionData, L
Navigator Software DesiredLocationChange, NextDestinationCommand
CollisionSensorData
MapData, XLocationData, : ,
PathPlanner Software YLocationData DesiredLocationChange
Map Data Server Software | N/A MapData
Line Detector 0..5 Software | IRSensorData 0..6 LineData 0..5
: LineData 0..6, - .
Line Follower Software DecisionPointData RelativeLinePosition
- . LineData 0..6, MapData, - .
Decision Point Detector Software XLocationData DecisionPointData
Crack Detector Software | Raw Whisker Data CrackData
Collision Detector Software | Raw Whisker Data CollisionData
Encoder Counter Software | Raw Encoder beats EncoderCount
Left/Right Wheel .
Revolution Counters Software | IRSensorData L/R Left/RightRevCount
. SpeedCommand,
Speed Estimator Software EncoderCount, L/RRevCount SpeedData
- . TurnCommand, EncoderCount, Lo
Direction Estimator Software L/RRevCount DirectionData
SpeedData, DirectionData, .
Dead Reckoner Software EncoderCount, L/RRevCount X/YLocationData
X/Y Line Estimator Software R_elati\_/eLinePosition, X/YLocationData
DirectionData, MapData
XIY Crack/Collsion CrackData, CollsionData, .
Estimator Software DirectionData, MapData XYLocationData
X/Y Location Resolver Software | X/Y Location Data X/YLocationData
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meaning there are 2 (more than 4 * 10%) possible system component
configurations. We have used our system model to organize these componentsinto
24 feature subsets. The number of feature subset configurations for which utility
functions must be specified to generate the system utility function from our model is
156. Since only one feature subset provides outputs to actuators and encapsulates
al of the other feature subsets, it is not necessary to specify system capability
configurations. The system has one functional capability that drives the mobot to
move in the course, specified by the Actuator Control feature subset. Appendix F
details our utility model for the mobot system. The next section describes our
implementation of this software system and how the componentsare allocated to the

mobot’ s hardware.

6.3 Implementation

The mobot has very limited resources in terms of programming space. The Basic
Stamp 2 has only 2 KB for both code and data, and the ARobot’ s coprocessor is
already preprogrammed to control the shaft encoder, servo and drive motors, and
cannot be readily reprogrammed. The coprocessor provides an interface through a
seria 1/0 channel to the Basic Stamp to alow usto send serial commands that will
make the coprocessor operate the motors or read encoder data. Therefore, the Basic
Stamp processor must use its I/O to handle most of the sensorsin the system. This
leaves little room for navigation algorithms. We decided to use a general purpose
laptop PC to host all of the system’ s navigation algorithms. The PC communicates

with the Basic Stamp processor on the mobot via seria 1/0 interface. We
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Figure 6.5. Hardware Allocation of the Mobot Navigation System.

programmed the Basic Stamp to periodically sample the sensors and send this data
to the PC, which would then send navigation commands based on the mobot’'s
current state. The mobot is tethered to the PC with a serial cable, allowing it free
movement while periodically communicating with the PC.

We implemented the software components defined in our system model as
subroutines running on the Basic Stamp written in the its PBASIC programming
language and as objects in Java running on the PC that communicate via the serial
interface. Figure 6.5 shows the hardware allocation of the software componentsin
our mobot system. Most of the navigation components are allocated to the PC,
whilethe softwareto control the sensors and actuators are all ocated to the ARobot’ s
processors. The limitations of the hardware available prevented us from using a

more evenly distributed hardware system, but we can still observe how well the
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system gracefully degradesby injecting failuresfor individual software components

and sensors.

6.4 Experimental Results

We ran several tests of the mobot in our lab to evaluate how well the mobot
performed graceful degradation. The configurations we tested included ones in
whichthelinefollower software component and line sensorswere broken, aswell as
ones in which the location and dead reckoning components were broken. Since our
tests were run in the lab, and the course we used did not have decision points or
sidewalk cracks, we did not implement the Decision Point Detector or the Crack
X/Y Location Estimator componentsfor thesetests. The coursein our |ab was about
seven feet long by four feet wide. For each configuration, we measured the distance
the mobot went off track at the end of the course, as well as the time the mobot took
to complete the course. We ran 10 tests for each configuration.

Table 6.2 describes these configurations, as well astheir utility values predicted
by the model. The performance metric for each configuration is calculated by the
formula:

System Performance = 5/D + 1T

where D isthe average distance the mobot was off course and T isthe average time
the mobot took to complete the course in that configuration across the 10
measurements. These particular parameters are arbitrary, but we used this formula
to give heavier weight to the mobot’ s ability to stay on the track compared to how

fast it finished the course. Figure 6.6 graphically displays the results of our tests.

Mobot Case Study 137



Table 6.2. Mobot Configurations Tested.

Confi System Utility System
D g Components Failed Predicted by | Performance
the model Metric
None (except Decision Point Detector and Crack Location
1 Estimators) 0.97 221
2 | Line Sensors, Line Follower Component 0.72 1.69
Line Sensors, Line Follower Component, Front Wheel
3 Encoder Sensor 067 0.17
4 Dead Reckoner Component, X/Y Location Resolver 0.49 052
Component, Path Planner Component ' '
Dead Reckoner Component, X/Y Location Resolver
5 | Component, Path Planner Component, Front Wheel Encoder 0.46 0.32
Sensor
Dead Reckoner Component, X/Y Location Resolver
6 | Component, Path Planner Component, Front Wheel Encoder 041 0.23
Sensor, Direction Estimator Component

Graph 6.6-A plots the utility value of each configuration versus the measured
performance metric. Graph 6.6-B shows the time it took for each configuration to
complete the course. Graphs 6.6-C and 6.6-D show how far the mobot was off
course, both intermsof distance and percentage of the width of the course. For each
configuration in graphs 6.6-B,C and D, the line represents the range of the values
measured for the ten experiments run, and the middle bar represents the arithmetic
mean of the tests.

As shown in the graphs and table, the configurations with dead reckoning, and
combined dead reckoning and line following perform better than the other
configurations, matching our utility model’ s predictions. They arevery closeto the
line at the end of the course, and reach their goal quickly. The configuration that
only uses line following makes wide turns at the curves in the course, making it

more difficult to closely follow the line and lengthening the time it takes to finish.
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Figure 6.6. Mobot Configuration Experiment Results.

Oneinteresting data point is Configuration 3, which hasfailed line sensors and a
failed front wheel encoder sensor. In this configuration, the mobot must perform
dead reckoning navigation, but with only the rear wheel sensors for both position
and direction information. The rear wheels act as low resolution encoders that
provide less accurate position data, and skew the dead reckoner’ scalculations. The
result is that the Navigator computes that it has reached the waypoint at the end of
the course much more quickly because the position data is incorrect. Thus, the
mobot is actually much more off course than the other configurations, but its time

measurement appears to outperform the other configurations. This is why we
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Figure 6.7. Middle Portion of the Official Mobot Course (Adapted from an Image at
[Mobot2003]).

account for both accuracy and speed in evaluating the mobot’ s performance, with
accuracy being the relatively more important attribute.

The experiments indicate that rear wheel revolution sensors are not accurate
enough to serve as reliable data sources without any other source of position data.
They produce erroneous outputs, which breaks our fail-fast, fail-silent assumption.
Thus the configuration that only has these sensors available has a much lower
performance score compared to its utility value predicted by the model. This
analysis indicates that these sensors should be improved to provide more accurate
data or removed from the system so that they do not cause a system failure.

Wedid try running the mobot outdoors on the CMU Maobot course, but the results
were not as successful. The mobot was able to follow the line for a short distance,
but the turning radius of the robot made it difficult to track the line accurately.
Figure 6.7 displays a section of the official mobot course. The limitations of the
mobot’ s hardware made it difficult to implement more complex control algorithms

beyond simple bang-bang and proportional control.
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6.5 Summary

In this chapter we have demonstrated the use of our methodology to build a
gracefully degrading autonomous robot system. We started with a basic hardware
platform, added some sensor systems, and constructed a navigation system based on
the sensors available. We used our system model to guide the definition of
hierarchical feature subsets that use heterogeneous redundancy to provide graceful
degradation. Thisgraceful degradation allowed the mobot to successfully navigate
the course when subsystems fail. The component and interface definitions were
designed to provide graceful degradation by breaking the system into logical
partitions that could be decoupled from one another. We focused on designing the
system to tolerate multiple sensor failures since we were limited in the hardware to
one set of system actuators. Starting with feature subset definitions enabled us to
logicaly define the software components and interfaces to produce a gracefully
degrading navigation system.

Thiscase study illustrates how embedded software system design can be severely
constrained by the hardware resources. Ideally, we would prefer allocating the
software components across more hardware nodes, but we were limited by the
system’s hardware platform. Despite this limitation, we were able to build the
mobot’s software system such that it could tolerate multiple IR sensor failures.
Additionally, the mobot can tolerate aloss of the location navigation subsystem and

continue to complete the course with simple line following.
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7 Conclusions

This dissertation has presented a methodology for scalable specification, analysis,
and design of graceful degradation in distributed embedded systems. An ided
gracefully degrading system minimizes the cumulative loss of system utility as
successive system component failures occur. We designed a modeling framework
that reduces the exponential effort required to specify the relative utility of all 2"
system configurations of N components. We then applied this modeling framework
to some example embedded system architectures to identify some heuristic design
techniques that can enhance a system’s ability to gracefully degrade. We
demonstrated the scal ability of our system model and the applicability of our design
techniques on two representative distributed embedded system architectures.
Section 7.1 revisits the proposed contributions of this thesis from Chapter 1, and
summarizes how they have been fulfilled. Section 7.2 deals with the basic
assumptions we made for building our system model and design techniques. We
aso explore the relevant system issues that affect the applicability of our
methodology. Section 7.3 provides a discussion of future work and possible
extensions of thisresearch. Section 7.4 ends with adiscussion of the results of this

research.
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7.1 Summary of Contributions

Thisthesis proposed a system model, analysis technique, and design techniques for
scalable graceful degradation in distributed embedded systems. In the Introduction
(Chapter 1) we proposed four major contributions of this research:

* A structural model derived from the system’ s software architecture
specification that enables scalable specification of graceful degradation in
embedded systems, and expresses many current hardware and software
fault tolerance techniques in asingle framework.

» A proposed set of design principles that will promote system-wide graceful
degradation in distributed embedded systems that were identified as a result
of applying the system model.

» Ananalysistechnique that uses the model to provide hints to where to
focus design effort for improving graceful degradation and can validate that
the implementation achieves graceful degradation.

» Two case studies in which we applied our system model and design
techniques to representative distributed embedded system applications and
observed how well they could gracefully degrade.

Each of these contributions is discussed bel ow.

7.1.1 System Model for Specifying Graceful Degradation

Our system model alows scalable specification of graceful degradation by
exploiting the hierarchical partitioning of the system architecture that groups

system componentsinto subsystems. Our graceful degradation model uses utility as
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ageneral measure of the system’ s ability to satisfy its functional and dependability
requirements. We can generate a system utility function that specifies the relative
utility of all 2" possible system configurations of N components at the cost of
O(N*2") utility evaluations, where k is the maximum number of componentsin an
individual subsystem. This utility function allows us to evaluate how well the
system gracefully degrades, because we can directly see how component failures
(which ater the system configuration) affect system utility.

Our view of red-time embedded software systems consists of software
components that represent periodic tasks that recelve sensor data or state
information, process this data and provide outputs to the rest of the system. The
sensors are the data sources for the system, and the actuators are the data sinks that
provide functionality based on the datavalues sent by their software controllers. At
the architectural level, the traditional component and connector view captures
relevant data dependencies among the software components. In hardware, these
tasks are distributed across several processor nodes connected by a rea-time
broadcast network. The tasks communicate by periodicaly sending network
messages that contain their output data.

In our model’s software view, the components are represented as software
components, sensors, and actuators, and the connectors are represented as system
variables that represent data values passed among the components. We then
partition the data flow graph of the software system into feature subset graphs that
represent logical subsystems. These feature subsets are in general not digoint and
can share logical components across subsystems. This is necessary to capture the

logica software dependencies in the system architecture without making
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assumptions about how components are alocated in hardware. For example, a
single sensor could provide data to multiple subsystems by transmitting it on the
network, or each subsystem could have its own redundant sensor. We also annotate
the system variable connections between components based on dependency. A
component can depend strongly or weakly on a system variable input, or treat that
input as an optional “enhancing” input. We use these dependency relationships to
identify all of thevalid component configurations of all feature subsets, and then use
their hierarchical organization to compose the overall system utility function.

The hardware view of our model is orthogonal to the software view and provides
the allocation information about which components are running on which processor
nodes. Thisview also identifies which components are replicated in hardware for
reliability, and enables traditiona reliability analysis techniques that account for
hardwarefailures. A set of identical replicated components represents one software
component in the software view. We can examinethe effect of hardwarefailureson
system utility by removing all of the componentsthat were running on afailed node
(provided there are no replicas running on other nodes) from the software

configuration, and recalculating the utility.

7.1.2 Design Techniquesfor Graceful Degradation

We applied our system model to a hypothetical distributed embedded system

architecture that was designed to provide graceful degradation to identify
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organizational propertiesthat should enhance graceful degradation. The properties
we identified include:

Specifying well-defined interfaces that decouple software components in the
system. The interfaces among components determine the system variables in our
model and thus how feature subsets are partitioned. The architecture should have a
set of interfaces that represent intermediate computational steps that alow logical
decoupling of subsystems. Our techniques for graceful degradation concentrate on
making components robust to input failures, and providing redundant sources of
system variables to tolerate subsystem failures. If the architecture does not have
interfaces that promote hierarchical decoupling of its subsystems, these techniques
may become cost prohibitive. If a system has few defined system variables, this
would imply that feature subsets are large, monoalithic, and complex, making them
more difficult to design so that they can tolerate input errors and satisfy the fail-fast
fail-silent fault assumption. If asystem has many feature subsets that require many
different system variables, it will be difficult to provide enough redundant resources
to output these system variables and tolerate subsystem failures.

Adding limited redundant resources to critical subsystems that are necessary
for system functionality. One of the benefits of our system model isthat we can use
the dependency relationships among components to immediately identify which
components and feature subsets are required for the system to provide any utility at
al. We can concentrate fault tolerance design effort and redundant resources on
preserving these parts of the system, rather than replicating every component in the

system for dependability. Aslong asthe system obeysour initial fault assumptions,
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then components that are identified as non-critical cannot adversely affect the
operation of critical components and subsystems.

Exploiting heterogeneous system resources to provide auxiliary redundancy
through common system interfaces. Many embedded systems are designed to
optimize resourcesto provide alarge set of features and functionality. Many of the
system resources that provide these features can be viewed as functionally
equivalent and actually provide a redundant backup when a component failure
occurs. For example, multiple sensorsthat provide different levels of accuracy for a
measurement, or measure different aspects of the same environmental phenomena
can provide redundant data sources when combined with a software component that
transforms the sensor data to a common system variable interface. This technique
exploits redundancy inherent in the system architecture and does not require
additional system resourcesto tolerate afailure.

Designing componentswith default behaviorsthat take over when inputsfrom
other componentsarelost. Asacomplementary approach to providing redundant
sources of system variable inputs, we also propose designing components to treat
their inputs as optional whenever possible to reduce their dependency on inputs.
Our initial approach to accomplishing this is to identify the minimum service a
component must provide and the minimum inputsit requires for this service. Then
we design a behavior that can satisfy this minimum functionality requirement in
addition to the component’ s normal behavior. The component will provide its full
functionality when all of itsinputs are available, but if an input failure is detected,
the component will switch to its simple backup behavior until the input is restored.

If there are multiple inputs that can potentially fail, the component can be designed

Conclusions 147



with multiple algorithms depending on the amount of design effort that can be

gpared to make this component robust to input failures.

7.1.3 Analysisfor Validating Graceful Degradation

We can use our system model to analyze the system architecture to target which
components and feature subsets should receive graceful degradation support. We
use the scalable system utility function generated from the system model and
evauate system configurations to identify which components and feature subsets
contribute significantly to overall system utility. We then target these parts of the
system for graceful degradation improvements using the design technigueswe have
aready identified. Any components or feature subsets that are single points of
failure or drastically reduce system utility when not available should be targeted for
graceful degradation mechanisms.

The model anaysis provides information about which feature subsets and
components are critical to system utility, allowing us to target these parts of the
system for graceful degradation mechanisms. Choosing which techniques to
implement requires an analysis of the tradeoffs between the resources available in
the system and the level of dependability required. Our scalable specification
framework should enable these tradeoffs to be explicitly identified with the utility
model and information about the resources required for system components and
feature subsets.

In addition to using the model at design time to determine where graceful

degradation mechanisms should be applied in the system, the model can aso be
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used to validate whether or not the system implementation achieves the level of
graceful degradation predicted. In genera the utility model should reflect each
component and feature subset’ s contribution to system utility. If we have a utility
metric that incorporates some or all of the desired system properties defined in the
system’s requirements, and these attributes can be measured in the system
implementation, then the relative differences between the utility of system
configurations predicted by the model should match the actual measured utility
differences of these configurations in the implementation. If there are
configurations that do not fit the expected rankings, they may indicate either an
inaccuracy in the system model, a dependability problem in the system
implementation, or aviolation of the model’ s assumptionsin the system design. We
can use this analysis iteratively to both refine the system model and identify

dependability bottlenecks in the system implementation.

7.1.4 Case Studiesthat Illustrate the M ethodology

We presented two case studiesin which we applied our system model, analysis, and
design techniquesto develop agracefully degrading embedded system architecture.
The first was an existing, detailed elevator system architecture that was
implemented in a discrete event simulation. The elevator architecture and
implementation had already been thoroughly exercised through several iterations
on a distributed embedded systems class design project. When we applied our

model and graceful degradation techniques to this elevator system, the
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implementation was abl e to tol erate many more component failuresthan the original
elevator design.

The magor improvements we made to the system included adding software
components that could synthesize floor sensor messages from the car speed and
position sensors (adding heterogeneous redundancy to critical subsystems), thus
providing a backup for failed floor sensors; modifying the dispatcher software
component to periodically synthesize floor requests for floors that had failed
buttons (designing components to be robust to input failures); and modifying the
drive controller to follow adefault pattern of periodically visiting al floorswhen the
dispatcher input islost (designing componentsto be robust to input failures). These
changesrequired very little extracode in the implementation (a9% increase in total
lines of code of the control system) and made the system resistant to up to 75% total
system component failures.

We also ran experiments to measure how well our system utility model predicted
the relative utility values of different elevator configurations, in terms of
minimizing average passenger travel time. We ran tests on the three major types of
elevator traffic: normal two-way traffic, up-peak traffic, and down-peak traffic. Our
model was relatively accurate for the two-way traffic cases, but was significantly
less accurate with the up-peak and down-peak traffic profiles. Thiswas due to the
fact that up-peak and down-peak traffic are heavily dependent on the operation of
the first-floor buttons to provide efficient service, and our utility model did not
account for that. Our conclusion is that replicated subsystems that are similarly
designed do not always have an equal effect on system utility. Special casessuch as

the first-floor hall call and car call buttons should be given different weightsin the
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utility model to account for their impact on system utility. In caseswherethe system
has multiple operating modes that affect the utility contributions of many
subsystems, it might be necessary to develop multiple utility parameters for utility
models in the system based on the system’s operational profiles, and design a
multi-attribute utility function that gives more weight to the utility values based on
more likely or more important scenarios.

The second case study involved the design of agracefully degrading autonomous
mobot (mobile robot). The mobot must navigate a race course without getting lost
by following a white line. We started with an off the shelf robot kit with three
wheels, a motor, encoder, servo, whisker collision sensors, and two embedded
processors, and added several sensor systems such as infrared line sensors, a
pavement crack detector, and rear wheel revolution sensorsto provide opportunities
for graceful degradation. We used our system model to build asoftware system that
can gracefully degrade when combinations of sensors fail. We were successful in
that the robot could separately tolerate both afailure of the line sensors, aswell asa
failure of the navigation subsystem and still complete atest course we designed in
thelab. Thiscase study also demonstrated that hardware constraints and limitations
can have an affect on the implementation of the “ideal” software system as

envisioned in our system model.

7.2 Assumptionsand System Design | ssues

The applicability of our system model and graceful degradation techniques is

predicated on several assumptions about the system being designed. We have
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narrowed our focus to distributed embedded real -time systems and specified afault
model. There are also some design issues that are not addressed in this thesis that
will affect how this methodology can be applied to embedded system architectures,
such as the feasibility of designing all software components to be robust to input
failures, and exactly how designers construct their system and feature subset utility

evauations.

7.2.1 Embedded System Architecture and Fault Model

Our system model was specificaly designed to be applicable to distributed
embedded system architectures. We focus on the software architecture of the
application, and make some assumptions about the system’ s hardware and network
organization. We assume the network uses broadcast communi cation among nodes
so that the software architecture is decoupled from the system communication
mechanisms. We also assume that there are sufficient hardware resources available
to satisfy memory, bandwidth, and real-time requirements. Our graceful
degradation techniques emphasi ze how to modify the components that make up the
software system to tolerate component failures.

Our model assumes afail-fast, fail-silent fault model with perfect fault detection.
However, we can relax this assumption based on how we constrain the system
architecture and the distributed nature of the system. For graceful degradation we
are more concerned with the effects a fault produces rather than the source of the
fault. Inorder to minimizethefailuresafault can produce, aswell asminimizefault

propagation, we constrain our system architecture to only allow communication
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among software components via system variables. Aslong as the implementation
adheres to the architecture and does not provide hidden communication channels
among software components, faults can only be propagated through the defined
system variables.

We believe the fail-fast, fail-silent fault model is a reasonable assumption
because we are only concerned with faults that cause corruption of the system
variables state, and this corruption can be readily detected by the system variables
receivers. We do not envision a centralized failure detection infrastructure, which
itself could be asingle point of failure, but rather software componentsthat validate
their system variable inputs as they are updated and only use those inputs if they
pass the validation tests. Simple checks on the input variables can catch many
errors, and scale with the number of inputs per software component. This fault
model can cover several types of the component failures described below.

A software component could fail to update a system variable at the appropriate
time; a system variable could be corrupted to an invalid state either by the sender,
receiver, or communication medium; or the system variable could be corrupted to a
valid but incorrect state. 1n areal-time system, failure to update a system variable
can be detected asitsdeadlinesare missed. If asystem variablebecomesstale, i.e. it
hasn’'t been updated for several periods, then the receivers of that variable can
assume that the sender has failed or is unreachable. If receivers detect invalid data
in asystem variable for multiple consecutive periods, then they can assume that the
sender hasfailed. The most difficult failure to detect iswhen asystem variable has

valid but incorrect data. Thesefailurescannot be easily distinguished from acorrect
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system variable that is manifested by an exceptional condition occurring in the

environment.

7.2.2 Generating the System Utility M odel

Specifying the utility model is still a challenging problem. A comprehensive
guantitative utility model that accounts for all relevant functionality and
dependability propertiesis a significant undertaking. We have built a framework
that reduces the number and scope of utility analyses to be within individual
subsystems. A system designer can qudlitatively rank the component
configurations of individual feature subsets, so that we can approximate utility
functions by generating linear functions for each configuration based on the
component utilities. We assume that the system is decoupled so that the form of the
utility function of each feature subset is only dependent on the component
configuration rather than each component’ s utility value.

We must also relate feature subset utility to overall system utility. We use the
functional capability definitions to accomplish this, and they are based on the fact
that most architectures are decomposed into major subsystems that each provide
functionality. Atthesystemlevel, thesefunctional capabilitieseach contain feature
subsets that can contribute to their utility. The system utility function isthen based
on the configuration of functional capabilities, and the utility functions defined for
each configuration. The system utility function is heavily dependent on the
definition of thefunctional capabilities, which must be specified according to which

feature subsets provide which functionality.
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Thereisapossibility that our system model may achieve scalable utility analysis
at the expense of accounting for how interactions between components and
subsystems affect system utility. If componentsand subsystemsaretightly coupled,
it may be necessary to build a more complex utility model using multi-attribute
utility theory [Keeney 76, Keeney92] that explicitly accountsfor couplings between
system components. Designers may also want to develop a more detailed utility
model that explicitly identifies utility attributes, to analyze trade-offs among
competing system properties such as performance and dependability. An
architectural analysis method such as the Architecture Trade-off and Analysis
Method (ATAM) [Kazman98] that evaluates system quality attributes may aid

development of a multi-attribute utility model.

7.3 FutureWork

Thisthesisis afirst step towards a general methodology for graceful degradation.
There are several challengesfor thisresearch that could be extensions of thiswork.
Some future extensionsinclude building atool to automatically generate the system
model and utility function from a system’s architectural specification, relaxing
some of the assumptions of our model and extending the model to be applicable to
other types of computer systems and software architectures, identifying other
graceful degradation design techniques, and using our view of system
configurations to build product family architectures.

Generating the system model from software component and interface

specifications is relatively straightforward, so building a semi-automated tool
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should be areasonable extension. The software dataflow graph can be generated by
connecting the input and output interfaces of software components, and the feature
subsets can be defined by creating subgraphs at each interface boundary. Valid
feature subset configurations can be identified by traversing input and output
dependency links between components and determining which components are
required for each feature subset to provide minimum utility.

We have had some success with building a prototype tool that can parse a text
specification that lists all system variables, components, and each component’s
input and output interface. Thisissufficient to generate asystem model with feature
subset definitions. The processisnot completely automated, asadesigner still must
verify that the feature subsets capture the subsystems he or she designed into the
system, specify the system’s functional capabilities in terms of which feature
subsets provide which system functionality, and generate the utility function
parameters for each feature subset configuration. It should be possible to build a
tool that can extract relevant information for our model from software architecture
specifications that are expressed in an architecture description language (ADL)
such as Acme[Garlan2000] that emphasizes component and connector definitions.

Currently our model makes several assumptions that narrow its applicability to
distributed embedded systems, and our design techniques for scalable graceful
degradation are predicated on these assumptions. Our model assumes that the
individual software components are strongly decoupled, and can only affect each
other though the defined communication interfaces. However, many software
systems may have hidden dependencies between components in their

implementation that can allow faults to propagate. For example, components that
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run in the same process may have accessto the same memory space, so that a defect
in one component may cause it to overwrite another component’s data and
subsequently cause errorsin other parts of the system. Our system model may still
be applicablein these situationsif amore sophisticated fault model that accountsfor
more pernicious failures due to software defects can be mapped to how component
failures affect the system’s configuration.

Since we have made system variables a key mechanism in our system
architecture, it may be desirable to specify how these variables represent their
accuracy or quality as apart of their system state. Thiswould aid utility evaluation
because a component and feature subset’s utility value could be mapped to the
quality of itsoutput variables. One approach would beto represent dataaccuracy as
arange of uncertainty or confidence interval. This might work well for numerical
data types and is flexible in that the accuracy of a system variable can be
dynamically updated while the system is running. However, this approach might
require a heavyweight analytical model for each producer of the system variable
that would be costly to implement. Additionally, this model would not work well
for non-numeric and categorical system variable data types.

Another approach would be to specify the quality of datafor the outputs of each
software component at design time. The system designers could rank software
components that produce the same system variables based on the algorithms they
use. This static ranking would then be used at run time by the receivers of the
system variables to determine which ones to use. Additionally, similar data from
different senders that have significant qualitative differences could be defined as

two separate system variables. This approach has the advantage of requiring fewer
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system resources to implement and is reasonable when there are not many
independent sources of the same system variable. The drawbacks of this approach
are that it is less flexible since changes in system variable quality during runtime
cannot be detected, and receivers of system variables have a heavier burden in
deciding which inputs to use.

Our view of the system is that components only communicate via data flow in
system variables, but there are many other architectural patternsin which control
flow rather than data flow is the mgor connection between components. To
generate feature subset definitions and valid component configurations, wefocuson
the dependency relationships among the components, which manifest as data flow
relationships in distributed embedded systems. It may be that we can still use our
model to represent dependency relationships, but they may represent different
connector mechanisms for different architectural patterns.

The graceful degradation design techniques we have proposed do not represent
all possible mechanisms, but rather what we identified using our model. The fact
that we are able to represent many current software fault tolerance techniques gives
us some confidence that this model can be used to identify other graceful
degradation opportunities. We have specifically focused on techniques that are
integrated into the software architecture to provide immediate failover mechanisms
when faults are detected, and do not depend on global fault detection and
reconfiguration to recover from errors. We view reconfiguration as a
complementary approach that can provide more recovery alternatives beyond our

failover approach, such as reallocating software components to different processor
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nodes and restarting failed components. There may also be other techniques that
can be developed from work in research in self-healing systems [WOSS2002].
Our model was initially designed to enable scalable specification of utility
differences between different software component failure configurations in a
system, but it can also be used as a view of a product family architecture. Each
product instance could be represented by a different component configuration. A
high-end product would have a configuration with most of the components present
and providing functionality, whilealow-end product’ s configuration may only have
enough components to provide minimum functionality. The parallel between a
gracefully degrading system and a product family architecture could be exploited to

provide systems that naturally gracefully degrade by design.

7.4 Concluding Thoughts

Graceful degradation mechanisms can offer improved system dependability with
few redundant resources, but at the cost of additional system design effort. Prior to
this work, comprehensive system-wide graceful degradation required an
exponential specification and design effort with respect to the system component
faults being covered. This thesis provides a methodology for evaluating and
designing scalable graceful degradation for distributed embedded systemsby taking
advantage of the hierarchical structure of these system’s architectures.

Graceful degradation is especially important for distributed embedded systems
because these systems typically cannot afford the additional system resources

required for fault tolerance mechanisms that maintain both system dependability
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and complete functionality. Graceful degradation is an alternative to brute force
redundancy that can potentially provide the same level of dependability at the
expense of reduced functionality when failures occur. This research indicates that
distributed embedded systems can exploit graceful degradation opportunities
because a significant portion of these systems is designed to provide enhanced or
auxiliary functionality above the functionality required to satisfy the system’s
primary mission.

Hierarchical decomposition is the best technique designers have for managing
functional complexity, and our model for specifying graceful degradation exploits
thisto achieve scalability. Building agracefully degrading system can increase the
system’s complexity, and our system model provides a mechanism for managing
this complexity without sacrificing graceful degradation opportunities. We restrict
our design techniquesto the component and subsystem level to limit the total impact
of these techniques on system complexity. As systems become more complex with
added features and functionality, techniques for scalable graceful degradation will
become increasingly important for managing system failure modes. Our model for
evaluating the utility of system configurations enables scalable analysis and design

of graceful degradation in distributed embedded system architectures.
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Appendix A - Acme Formal Specification of Our System Model

This is the formal specification of the architectural style for the software system

component view written in the Acme ADL:

Fam |y Gaceful _Deg Famly = {
i nvariant Forall conmp in self.Conponents |
Forall p in conp.Ports |
Forall conn in self.Connectors |
Forall r in conn.Roles |
(attached(r, p) == true) -> ((decl aresType(r,
Syst enVar Si nkRol eT) AND decl aresType(p, DatalnputPortT)) OR
(decl aresType(r, SystenWVar SourceRol eT) AND decl aresType(p,
Dat aCut put PortT)));

Component Type SensorT = {
Property SystenVarQutput : string;

Port SensorQutput : DataCutputPortT = new DataQutputPortT
extended with {

Property Required : bool ean = true;
Property SystenVarQutput : string;
i

Property SensorDescription : string;

invariant Forall p in self.ports |
Exists t in {DataQutputPortT} |
decl aresType(p, t);

i nvariant Forall p : port in self.Ports |
I decl ar esType(p, Datal nputPortT);

invariant size({Select p : port in self.Ports |
decl aresType(p, DataQutputPortT) }) >= 1;
}

Conponent Type ActuatorT = {
Property SystenVarlnput : string;

Port Actuatorlnput : DatalnputPortT = new Datal nputPortT
extended with {

Property SystenVarlnput : string;
Property Dependency : Enum {Strong, Weak, Optional } =
St rong;

b

Property ActuatorDescription : string;

invariant Forall p in self.ports |
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Exists t in {Datal nputPortT} |
decl aresType(p, t);

invariant Forall p : port in self.Ports |
I decl ar esType(p, DataCutputPortT);

invariant size({Select p : port in self.Ports |
decl aresType(p, DatalnputPortT) }) >= 1;

}

Conmponent Type Sof t war eConponent T = {
Property Conponent Description : string;

invariant size({Select p : port in self.Ports |
decl aresType(p, DataQutputPortT) }) >= 1;

invariant Forall p in self.ports |
Exists t in {Datal nputPortT, DataCQutputPortT} |
decl aresType(p, t) <vis-ports : bool ean = true;>;

}

Port Type Datal nputPortT = {
Property SystenVarlnput : string;

Property Dependency : Enum {Strong, Weak, Optional };

}
Port Type DataQutputPortT = {

Property SystenVarQutput : string;

Property Required : bool ean;

}

Connect or Type SystenVari abl eConnT = {
Property SystenVarData : string;

invariant size({Select r : role in self.Roles |
decl aresType(r, SystenWVar SourceRol eT) }) >= 1,

invariant size({Select r : role in self.Roles |
decl aresType(r, SystenVar SinkRol eT) }) >= 1;

invariant Forall r in self.roles |
Exi sts t in {SystenVarSi nkRol eT, SystenVar Sour ceRol eT} |
decl aresType(r, t);

}

Rol e Type SystemVar Sour ceRol eT = {
Property SystenVarData : string;
}

Rol e Type SystenVar Si nkRol eT = {
Property SystenVarData : string;
}
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Appendix B - Utility Specification for the Automobile Navigation System

VDCSpeed MM1Speed EngineSpeedEst Yaw Rate
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Figure B.1. Expansion of the Location Feature Subset.

This appendix contains all of the feature subset and utility definitions for the
automobile navigation system presented in Chapter 4. The numbers chosen in the
utility specification are an arbitrary representation of how a system designer with
knowledge of the system could assign utility values based on the functionality of
each subsystem. We start with the “low level” feature subsets that contribute to
providing location datain the navigation system. Figure B.1 showsthe hierarchical
definitions of these feature subsets, and Table B.1 shows the utility functions

generated for these feature subsets.
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Table B.1. Utility Specification for the Location and Related Feature Subsets.

Feature Subset

Configuration

Utility Function

VDC Speed {VDC Sensor, CvtWheelSpeed} Uwc =1
All other configurations Uvoc =0

MM1 Speed {MM1 Sensor, Speed Integratorl} Uwm =1
All other configurations Uwmt =0

Engine Speed Est | {Engine Speed Sensor, Speed Integrator2} Uengine = 1
All other configurations Uengine = 0

Any of the 15 combinations of {GPS1 sensor
(ugps), VDC Speed Feature, MM1 Speed

Uspeed = Max(1*Ugps1,

sensor or Compass sensor (Ucompass) is working

* *
Speed Feature, Engine Speed Est Feature} in which at 8'(73,‘?UUVF’C') 085 U,
least one is working 0 HEngine
All components failed Uspeed = 0
Any configuration in which either the Sbox _ " %
Yaw Rate SeNsor (Usbox) OF MM1 Sensor (Umms) is working Uraw = Max(1*Usbor, 0.8%mma)
{LWS sensor, Yaw Generator} Uvan = 0.6
All other configurations Uvaw =0
Direction Any configuration in which either the GPS1 Unir = Max(L*Ugps1, 0.9*Ucompass)

{Yaw Rate Feature, Dirlntegrator}

Upir = 0.2 + 0.6*Uvaw

All other configurations

Upir =0

Dead Reckoning

Any configuration with at least one dead
reckoning software component (Simple Dead
Reckoner (usar), Good Dead Reckoner (ugar),
Better Dead Reckoner (Unr), Best Dead
Reckoner (Unear)) and both Speed and Direction
Features

UDR = MaX(O.Z*Usdr, 0.4*Ugdr,
0.6*Ubtar, 0.7*Upear) + 0.2*Upir +
O.l*USpeed

Reckoning Feature}

All other configurations Upr =0
{GPS1 sensor, GPS Null Reckoner (Ugpsn)} or
Location {GPS1 sensor, GPS Null Reckoner, Dead ULocation = 1

{Dead Reckoning Feature, GPS Null Reckoner}
or {Dead Reckoning Feature, GPS1 Sensor}

ULocation = 0.8*Upr

All other configurations

ULocation = 0

Figure B.2 shows the feature subsets that comprise the Map and two of the eight

Display feature subsets. Each Display feature subset requires|ocation and map data

to provide functionality. Figure B.3 givesthe feature subset diagrams for the other

six Display feature subsets.
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Figure B.2. Partial Expansion of Display Feature Subsets.
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Figure B.3. Diagrams of the Remaining Display Feature Subsets.
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Table B.2. Utility Specification for the Map and Display Feature Subsets.
Feature Subset | Configuration Utility Function
{MapDVD Sensor, Location Feature Subset, - X ,
Map Data Location Sentry, MapDataServer} Unapota = 0.7 + 0.3Uvocaton
All other configurations Umapbata = 0
RenderMap {Map Data Feature Subset, RenderMap} UrMap = 0.4 + 0.6*Uwmiappata
All other configurations Urmap = 0
RenderMap?2 {Map Data Feature Subset, RenderMap2} Urmap2 = 0.4 + 0.6*Umapbata
All other configurations Urmap2 = 0
Displavol {Location Feature Subset, RenderMap Feature Up1 = 0.5 + 0.2*ULocation +
piay Subset, Display Actuator, Map01} 0.3*Urmap
All other configurations Up1=0
Displav02 {Location Feature Subset, RenderMap Feature Upz = 0.5 + 0.2*ULocation +
piay Subset, Display Actuator, Map02} 0.3*Urmap
All other configurations Up2=0
{Location Feature Subset, RenderMap Feature - X ,
Display 03 Subset, Path Planner Feature Subset, Display g U 05 : (()) 12*8 Locaton ¥
Actuator, Map03} o VRMap T L L path
All other configurations Ups =0
{Location Feature Subset, RenderMap Feature - X ,
Display04 Subset, Path Planner Feature Subset, Display g U 0‘5: (()) 12*8 Locaton ¥
Actuator, Map04} o VRMap T L L path
All other configurations Upa=0
Displavos {Location Feature Subset, RenderMap2 Feature Ups = 0.5 + 0.2*ULocation +
piay Subset, Display Actuator, Map05} 0.3*Urmap2
All other configurations Ups =0
Displavos {Location Feature Subset, RenderMap2 Feature Ups = 0.5 + 0.2*ULocation +
piay Subset, Display Actuator, Map06} 0.3*Urmap2
All other configurations Ups =0
{Location Feature Subset, RenderMap2 Feature - . ,
Display07 Subset, Path Planner Feature Subset, Display g U 05 1%21%“‘*“"” ¥
Actuator, Map07} & RMepz T 1.2 L path
All other configurations Up7=0
{Location Feature Subset, RenderMap2 Feature - . ,
Display08 Subset, Path Planner Feature Subset, Display g U 05 1%21%“‘*“"” ¥
Actuator, Map08} & RMepz T 1.2 L path
All other configurations Ups =0

Table B.2 shows the utility specifications for the Display and Map feature

subsets. These feature subsets cannot tolerate component failures, but the feature
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Figure B.4. Expansion of Turn Signal and Speaker Feature Subsets.

subsets themselves are redundant backups for each other to provide the Display
actuator’ s functionality.

Figure B.4 diagrams the Path Planner, Turn Signal, Speaker, and related feature
subsets, and Table B.3 givestheir utility specification in our model. These feature

subsets represent the alternative functionality available in the navigation systemin
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Table B.3. Utility Specification for the Path Planner, Speaker, and Turn Signal
Feature Subsets.

Feature Subset Configuration Utility Function

Path Planner {User Interface Sensor, Map Data Feature Upatn = 0.5 + 0.2*Uptappata +
Subset, Location Feature Subset, Path Planner} | 0.3*ULocation
All other configurations Upath = 0
Any configuration with at least one turn info PN .

Turn Info software component (Turninfol (us1), Turninfo2 ggi"t';‘f" 6%'*6& Moaﬁﬁllj‘“)"l; 02+
(uiz), Turninfo3 (uis), Tuminfod () and both | [~ "% )~ 9
Location and Path Planner Features Path ™ 1. 7 Hlocation
All other configurations Ururinio = 0
Any configuration in which the Turn Info Feature

Sound Command | Subset, TurninfoCvt, and SpeechSynth are Usound = 0.6 * 0.4*Uruminfo
working
{Turn Info Feature Subset, TurninfoCvt2, —OE %) 4%
SpeechSynthSimple} Usoung = 0.5 * 0.4 Urumino
{Turn Info Feature Subset, SpeechSynthSimple} | Usound = 0.5 * 0.4*Uruminfo
{Turn Info Feature Subset, TurninfoCvt2} Usound = 0.3 * 0.4*Uuminfo
All other configurations Usound = 0
{Sound Command Feature Subset, Turn - .

Speaker Speaker Driver, Speaker Actuator} Uspeater = 0.3+ 0.7*Usound
All other configurations Uspeaker = 0

. {Turn Info Feature Subset, Turn Signal Driver, - X

Turn Signal Turn Signal Indicator Actuator) Urumsignat = 0.6 + 0.4*Uruminfo

All other configurations Utumsignal = 0

the event that the Display fails. Navigation information can still be communicated
to the driver through the Speaker and Turn Signal actuators.

With a complete specification for the utility of al feature subset configurations,
we can generate a system utility function using the utility values of the feature
subsets encapsulated in the system functional capabilities. Figure B.5 describes
these capabilities and the feature subsets they contain, and Table B.4 describestheir
utility functions along with the system utility function in terms of capability
utilities. For any system configuration, the utility value can be generated by
recursively evaluating the utility values of the functional capabilities and their

feature subsets based on which components are present in the configuration.
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Display Capability

Display01

Display05

Display02 Display03 Display04

Display06 Display07 Display08

Turn Signal Capability

Turn Signal
Feature Subset

Speaker Capability

Speaker
Feature Subset

Figure B.5. System-Level Functional Capabilities and their Feature Subsets.

Table B.4. Utility Specification for System Functional Capabilities.

System Capability

Configuration

Utility Function

Speaker {Speaker Feature Subset} Uspeakercapabiity = Uspeaker
Speaker Feature Subset failed Uspeaker = 0
Turn Signal {Turn Signal Feature Subset} Utumsignaicapabiity = Utumsignal
Turn Signal Feature Subset failed Utumsignaicapabiity = 0
_ Any of the 63 configurations in which there is at g%ipﬁézapsngJDy%X%&?
Display least of the eight Display Feature Subsets ' ' '

(Display01 - Display08)

0.6*Upz, 0.5*Upg, 0.4*Upa,
0.3¢Upe)

All Display Feature Subsets failed

UDispIayCapabiIity =0

System Utility

All Capability Configurations

Usystem = 0.6*Upisplaycapabiity +
O.Z*USpeakerCapabiIity +
0.1*UTumSignaICapabiIity
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Appendix C - Interface Specification for the Elevator System Components

This appendix contains the interface specification of the elevator system software
components, taken from the original elevator requirements document. For clarity,
wefirst provide the elevator sensor and actuator message descriptions from Chapter
5. In the following notation, the values within the “[ ]” brackets represent the
standard replication of an array of sensors or actuators, and the values within the“(
)” parentheses represent the values the sensor or actuator can output. For example,
the Hall call message type mapsto an array of sensors for the up and down buttons
on each floor outside the elevator that is f (the number of floors the elevator
services) by d (the direction of the button; Up or Down) wide, and each button
sensor can either have a value v of True (pressed) or False (not pressed). Unless
otherwise noted, “f” represents the number of floors the elevator services, “d”
representsavariablethat indicatesadirection of either Up or Down, “j” isavariable
that isavalue of either Left or Right (for the left and right elevator doors), and “v”
denotes a value that can be either True or False.
The sensor message types available in the system include:

» AtFloor[f](v): Output of AtFloor sensors that sense when the car is near a
floor.

o CarCall[f](v): Output of car call button sensorslocated in the car.

» CarLevelPosition(x): Output of car position sensor that tracks where the
car isin the hoistway. x = {distance value from bottom of hoistway in
millimeters}

o CarWeight(w): Output of car weight sensor that measures the aggregate

weight of all passengersinthe car. w ={ weight in car in pounds }
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» DoorClosed[j](v): Output of door closed sensors that will be True when
the door isfully closed.

* Door Openlj](v): Output of door open sensors that will be True when the
door isfully open.

» DoorReversal[j](v): Output of door reversal sensorsthat will be True
when door senses an obstruction in the doorway.

» HallCall[f,d](v): Output of hall call button sensors that are located in
hallway outside the elevator on each floor. Note that there are atotal of 2f -
2 rather than 2f hall call buttons since the top floor only has a down button
and the bottom floor only has an up button.

» HoistwayL imit[d](v): Output of safety limit sensorsin the hoistway that
will be True when the car has overrun either the top or bottom hoistway
[imits.

» DriveSpeed(s,d): Output of the main drive speed sensor. s = { speed value},
d ={Up, Down, Stop}

The actuator command messages available in the system are:

» DesiredFloor (f, d): Command from the elevator dispatcher algorithm
indicating the next floor destination. d ={Up, Down, Stop} (Thisisnot an
actuator input, but rather an internal variable in the control system sent
from the dispatcher to the drive controller)

» DesiredDwell(n): Command from the elevator dispatcher algorithm to the
door controllersindicating how long the doors should remain open when

stopped on afloor. n = { Integer dwell timein milliseconds} (Thisisalso
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not an actuator input, but an internal control system variable that allows the
dispatcher to affect the operation of the door motors)

» DoorMoator[j](m): Door motor commands for each door. m = { Open,
Close, Stop}

* Drive(s, d): Commands for 2-speed main elevator drive. s= {Fast, Slow,
Stop}, d = {Up, Down, Stop}

e CarLantern[d](v): Commandsto control the car lantern lights; Up/Down
lights on the car doorframe used by passengers to determine the elevator’s
current traveling direction.

e CarlLight[f](v): Commandsto control the car call button lights inside the
car call buttons to indicate when a floor has been selected.

» CarPositionlndicator (f): Commands for position indicator light in the car
that tells users what floor the car is approaching.

» HallLight[f,d](v): Commandsfor hall call button lights inside the hall call
buttons to indicate when passengers want the elevator on a certain floor.

» EmergencyBrake(v): Emergency stop brake that should be activated
whenever the system state becomes unsafe and the elevator must be shut
down to prevent a catastrophic failure.

Software Componentsin the Elevator:

Safety Monitor - Monitors system sensors and controllers to ensure safe
operation and trigger emergency shut down when necessary.

Inputs: AtFloor[1..f], DoorClosed[Left, Right], DoorReversal[Left, Right],
DriveSpeed, HoistwayLimit[ Up, Down], Drive, DoorMotor| Left, Right]

Output: EmergencyBrake
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Drive Controller - Controls drive motor to move elevator in hoistway.

Inputs:  AtFloor[1..f], CarLevelPosition, DoorClosed[Left, Right],
DoorMotor[ Left, Right], DriveSpeed, Hoistwaylimit{Up, Down], DesiredFloor,
EmergencyBrake

Output: Drive

Door Controller[j] - Controlsthe door motorsto operate the elevator doors. One
door controller class instantiated as two software door controller objects that each
control one door.

Inputs:  AtFloor[1..f], DoorClosed[j]. DoorOpen[j], DoorReversal[j],
DesiredFloor, DesiredDwell, DriveSpeed, Drive, CarCall[1..f], HallCall[ 1..f, (Up,
Down)]

Output: DoorMotor(j]

Car Call Controller[f] - Monitors car call button sensors to provide car button
information to the system and light the car button light. One car button controller
classisinstantiated f times for each button.

Inputs.CarCall[f] (from sensor), AtFloor[f], DoorClosed[ Left, Right]

Outputs: CarCall[f] (to the network), CarLight[f]

Hall Call Controller[f, d] - Monitors hall call button sensors to provide hall
button information to the system and light the hall button light. One hall button
controller classisinstantiated 2f - 2 times for each button.

Inputs. HallCall[f, d] (from sensor), AtFloor[f], DoorClosed[Left, Right],
DesiredFloor

Outputs: HallCall[f, d] (to the network), HallLight[f, d]
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Dispatcher - Determineselevator’ snext destination based on passenger requests

Inputs: CarCall[1..f], HallCall[ 1..f, (Up, Down)], CarWeight, Door Closed] Left,
Right], DriveSpeed, AtFloor[1..f]

Outputs: DesiredFloor, DesiredDwell

Lantern Controller[d] - Operate passenger feedback lights that indicate
elevator’'s travelling direction when the elevator is stopped on a floor. One
controller classisinstantiated as two software lantern controller objectsthat control
each light.

Inputs: DesiredFloor, AtFloor[ 1..f], Door Closed[ Left, Right]

Output: CarLantern[d]

Car Position Indicator Controller - Operates passenger feedback lights that
indicate next floor the elevator will reach asit travelsin the hoistway.

Inputs: AtFloor[1..f], DesiredFloor, DriveSpeed, CarLevel Position

Output: CarPositionlndicator

Virtual AtFloor Controller[f] - Software controller that outputs AtFloor
messages when an Atfloor sensor fails. One virtual atfloor controller class is
instantiated f times for each AtFloor sensor.

Inputs: AtFloor[f] (fromsensor to detect failure), DriveSpeed, CarLevel Position

Outputs: AtFloor|[f]
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Appendix D - Utility Specification for the Elevator System

This appendix lists the utility functions we specified for the elevator system in

Chapter 5.

Table D.1. Utility Specification for the Safety, Door and Drive Feature Subsets.

Feature Subset

Configuration

Utility Function

Any configuration in which at least one of the two

Hoistway Limit sensors: Hoistway Limit Up Sensor (Unoistwayup), Uoistway = 0.5*Unoistwayup +
Sensors Hoistway Limit Down Sensor (Unoistwaydown) IS 0.5*Unoistwaydown
working
Both Hoistway Limit Sensors Failed Uoistway = 0
Door Closed Any configuration in which at least one of the two
Sensors sensors: Left Door Closed Sensor (Ui), Right Uboorclosed = 0.5*Uige + 0.5*Urdc

Door Closed Sensor (urdc) is working

Both Door Closed Sensors Failed

Uboorclosed = 0

Door Reversal
Sensors

Any configuration in which at least one of the two
sensors: Left Door Reversal Sensor (uigr), Right
Door Reversal Sensor (urar) is working

Uboorreversal = 0.5*Uigr + 0.5*Urgr

Both Door Reversal Sensors Failed

Uboorreversal = 0

Safety Monitor

{Safety Monitor Controller, Emergency Brake
Actuator, Drive Speed Sensor, Drive Control
Feature Subset, Door Control Feature Subset,
Hoistway Limit Sensors Feature Subset, Door
Reversal Sensors Feature Subset, Door Closed
Sensors Feature Subset, AtFloor Sensors
Feature Subset}

USafety =1

All other configurations

USafety =0

Drive Control

Any configuration with all of these components:
{Drive Controller, Drive Motor, Drive Speed
Sensor, Safety Monitor Feature Subset,
Hoistway Limit Sensors Feature Subset, Door
Closed Sensors Feature Subset, AtFloor
Sensors Feature Subset} and any combination
of: Car Positon Sensor (ucps), Desired Floor
Feature Subset (Upesiredrioor), Door Control
Feature Subset (Upoorcontrol)

UDrive = 01 + O.Z*UCpS +
0.65*UpesiredFioor +
0.05*Upoorcontrol

All other configurations

Ubrive = 0

Left/Right Door
Control

Any configuration with all of these components:
{Left/Right Door Controller, L/R Door Closed
Sensor, L/R Door Open Sensor, L/R Door
Reversal Sensor, L/R Door Motor, Drive Speed
Sensor, AtFloor Sensors Feature Subset} and
any combination of: Drive Control Feature
Subset, DesiredFloor Feature Subset, Car Call
Buttons Feature Subset (Ucarcar), Hall Call
Buttons Feature Subset (Unaica)

Uteftooor = 0.6 + 0.1*Ucarcan +
0.2*Unaican + 0.05*Upesiredrioor +
O-OS*UDrive

Urightpoor = 0.6 + 0.1*Ucarcan +
0.2*Unaican + 0.05*UpesiredFioor +
O-OS*UDrive

All other configurations

ULettpoor = 0; Urightboor = 0
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Table D.2. Utility Specification for the Desired Floor, Car Call, and Hall Call Feature

Subsets.

Feature Subset

Configuration

Utility Function

Door Control

Any configuration in which at least one of the
two Feature Subsets: Left Door Control, Right
Door Control is working

Uboorcontrol = 0.5*ULeftpoor +
O-S*URightDoor

Both Door Control Feature Subsets Failed

Uboorcontrol = 0

Desired Floor

Any configuration with all of these components:

{Dispatcher Controller, Drive Speed Sensor,
AtFloor Sensors Feature Subset, Door Closed
Sensors Feature Subset} and any combination
of: Car Weight Sensor (Ucws), Hall Call Buttons
Feature Subset, Car Call Buttons Feature
Subset

Ubesiredrioor = 0.09 + 0.01*Ucws +
0.3*Ucarcai + 0.6*Unaical

All other configurations

UbesiredFioor = 0

Car Call Floor 1..f

Any configuration with all of these components:

{Car Call Floor f Controller, Car Call Floor f
Button Sensor} and any combination of: Car
Call Floor f Button Light (uce 1), AtFloor Floor f
Sensor Feature Subset (Uatrioor 1), Door Closed
Sensors Feature Subset

Ucarcall f = 0.6 + 0.2%Uc 1 +
0.1*Untrioor_f + 0.1*Upoorciosed

All other configurations

UCarCaIIj =0

Car Call Buttons

Any configuration in which at least one of the
Car Call Floor Feature Subsets is working

Ucarcal = 0.4*Ucarcai 1 +
0.6*(UCarCaII72 + Ucarcall 3 + ... +
UCarCaIU)/ (f' 1)

All Car Call Floor Feature Subsets Failed

Ucarcal = 0

Hall Call Up/Down
Floor 1..f

Any configuration with all of these components:

{Hall Call Up/Down Floor f Controller, Hall Call
U/D Floor f Button Sensor} and any
combination of: Hall Call U/D Floor f Button
Light (unet_ud 1), AtFloor Floor f Sensor Feature
Subset, Door Closed Sensors Feature Subset,
Desired Floor Feature Subset

Utalicall_uid f = 0.6 + 0.2*Unel_wd £+
0.667*(Upesiredrioor + UpoorClosed +
UAIFIoorj)

All other configurations

Uhalicall_uwd f =0

Hall Call Up/Down
Buttons

Any configuration in which at least one of the
Hall Call Up/DownFloor Feature Subsets is
working

Uhatical_up = (UHalicall up. 1 + ... +
Unancan_up_t1)/(f-1)

UHaliicall_down = (UHalicall_ down_2 + ..
+ UHalcal_down 1)/(f-1)

All Hall Call Up/Down Floor Feature Subsets
Failed

UHaiicall_up = 0; UHaicall_down = 0
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Table D.3. Utility Specification for the AtFloor, Car Position Indicator, and Car

Lantern Feature Subsets.

Feature Subset

Configuration

Utility Function

AtFloor Floor 1..f

Any configuration with the AtFloor Floor f

Sensor working Unoor 1= 1
{Virtual AtFloor Floor f Controller, Drive Speed U -1
Sensor, Car Position Sensor} AtFloorf

All other configurations UntFioor =0

AtFloor Sensors

Any configuration in which at least one of the
AtFloor Floor Feature Subsets is working

Uatrioor = 0.4*Uatrioor 1 +
0.6*(Uatrioor_2 + UatFioor 3 + ...
UAIFIoorj)/ (f' 1)

All AtFloor Feature Subsets Failed Uairioor = 0
{Lantern Up/Down Controller, Car Lantern
Lantern Control Up/Down Light, Door Closed Sensors Feature U -1
Up/Down Subset, Desired Floor Feature Subset, AtFloor | — "¢
Sensors Feature Subset}
All other configurations ULantem_ud = 0

Car Lantern

Any configuration in which at least one of the
Lantern Control Feature Subsets is working

Ucartantern = 0.5*ULantern_u +
O.S*ULanternid

Both Lantern Control Feature Subsets Failed

UcarLantern = 0

Car Position
Indicator

Any configuration with all of these components:
{Car Position Indicator Controller, Car Position
Inidcator Lights, AtFloor Sensors Feature
Subset} and any combination of: Car Position
Sensor, Drive Speed Sensor, Desired Floor
Feature Subset

Ucarposind = 0.7 + 0.3*(UpesiredFioor
+ Ugps + Udrivespeed)

Table D.4. Utility Specification for the Elevator System.

Feature Subset

Configuration

Utility Function

System Utility

Any configuration with all of these Feature
Subsets: {Safety Monitor, Drive Control, Door
Control} and any combination of: Hall Call
Buttons, Car Call Buttons, Car Lantern, Car
Position Indicator

Usystem = 0.5*Uprive +
0.2*Upoorcontrol + 0.1*Unaiican +
0.1*Ucarcal + 0.05*UcarLantem +
0.0S*UCarPoslnd

All other configurations

USystem =0
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Appendix E - Data for the Elevator Configuration Experiments

These tables list the data for each configuration tested in the elevator case study

(Chapter 5). The configuration utility values and the average passenger delivery

times refer only to the gracefully degrading elevator system.

Table E.1. Elevator Experimental Data for Configurations 1 - 11

Ava % Avg % Avg Avg Avg
Confi System Deli\?ered Delivered in| Delivery | Delivery | Delivery
ID#g Failed Components | Utility in Original Gracefully | Time for | Time for | Time for
Value Elevgtor Degrading | Two-Way | Down-Peak | Up-Peak
Elevator (secs) (secs) (secs)
all hall call buttons, all
car call buttons, car
lantern up, down, car
1 position indicator. 0.196 0.00 100| 897.95 6329.55| 1109.97
dispatcher, car position
sensor
all hall call buttons, all
2 car call buttons 0.430 0.00 100| 271.66 1729.31| 418.83
all hall call buttons, all
car call buttons, car
3 |lantern up, down, car 0.296 0.00 100 43461 2455.47| 539.14
position indicator,
dispatcher
4 | car position indicator 0.950 100.00 100| 246.58 351.46| 663.43
car lantern up, down,
5 car position indicator 0.900 100.00 100| 397.26 369.99| 425.85
all hall call buttons, all
6 | car call buttons, 0.346 0.00 100| 366.46 2457.92| 457.02
dispatcher
hall call up 1, 2, 3, hall
7| calldown 5, 6, 7, car 0.683 30.27 100| 284.38 1038.35| 1363.50
call1,2,6,7
hall call up 1, 2, 3, hall
8| call down 5, 6, 7, car 0.720 33.73 100| 381.69 499.70| 3837.16
call 2,3,5,6
hall call up 2, 3, 4, hall
9| calldown 4,5, 6, 7, car 0.681 49.47 100| 356.51 856.46| 648.86
call1,2,7
hall call up 2, 3, hall call
10 | down 5, 6, car call 1, 2, 0.688 38.93 100| 301.83 935.91| 74047
3,5,6,7
hall call up 1, hall call
11 |down 3,4, 5,6, 7, car 0.683 25.20 100| 303.65 950.48 | 1399.64
call1,2,6,7
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Table E.2. Elevator Experimental Data for Configurations 12 - 25

Config
ID#

Failed Components

System
Utility
Value

Avg %
Delivered
in Original

Elevator

Avg %
Delivered in
Gracefully
Degrading

Elevator

Avg
Delivery
Time for
Two-Way

(secs)

Avg
Delivery
Time for

Down-Peak
(secs)

Avg
Delivery
Time for
Up-Peak

(secs)

12

hallcallup 1,2,3,4,5
hall call down 7, car call
1,2,6,7

0.683

42.53

100

309.44

1122.50

1290.20

13

hall call up 2, 3, 6, hall
calldown 5, 6, 7, car
call,2,5,6

0.683

35.73

100

330.30

703.94

672.42

14

hall call up 1, 2, 6, hall
calldown 5, 6, 7, car
call1,2,3,7

0.683

31.20

100

315.11

961.52

1012.70

15

hall call up 2, 3, 6, hall
call down 2, 5, 6, car
calll,2,6,7

0.683

36.33

100

298.80

1049.98

650.73

16

hall call up 1, 2, 3, hall
calldown 4,5, 6, 7, car
call3,4,5

0.718

32.60

100

403.14

524.33

3669.11

17

hall callup 1, 2, 3, 4,
hall call down 4, 5, 6, 7,
carcall2,3,4,5,6

0.636

21.87

100

441.04

578.91

4194.87

18

hallcallup 1, 2, 3, 4,
hall call down 4, 5, 6, 7,
carcall1,2,5,6,7

0.599

22.80

100

355.82

967.27

1274.87

19

hall callup 2, 3, 4, 5,
hall call down 3, 4, 5, 6,
carcall2,3,4,5,6

0.636

15.87

100

324.98

494.95

770.50

20

hall call up 2, 3, 4, hall
calldown 4,5, 6, 7, car
call1,3,4,56,7

0.601

23.40

100

348.44

875.25

740.55

21

hall call up 2, 3, 4, 5,
hall call down 2, 3, 4,
6,carcall 1,4,7

(3 K=l

0.59%4

43.07

100

399.05

1206.21

641.91

22

hallcallup 1, 2, 4, 5,
hall call down 3, 4, 6, 7,
carcall1,2,4,5,7

0.599

20.73

100

327.21

923.25

1184.14

23

hall call up 2, 3, 4, 6,
hall call down 2, 3, 4, 5,
6,carcall1,3,4,7

0.597

26.20

100

361.89

1224.72

673.52

24

hall call up 1, 3, 4, hall
calldown 2, 3,5, 7, car
call1,2,3,4,57

0.601

18.87

100

355.61

1257.76

1591.40

25

hall callup 2, 3, 4,5, 6,
hall call down 2, 3, 4, 5,
6, carcall 3,4,5

0.631

16.53

100

366.38

598.23

668.94
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Table E.3. Elevator Experimental Data for Configurations 26 - 39

Config
ID#

Failed Components

System
Utility
Value

Avg %
Delivered
in Original

Elevator

Avg %
Delivered in
Gracefully
Degrading

Elevator

Avg
Delivery
Time for
Two-Way

(secs)

Avg
Delivery
Time for

Down-Peak
(secs)

Avg
Delivery
Time for
Up-Peak

(secs)

26

hallcallup 1,2,3,4,5
hall call down 2, 4, 5, 6,
7,carcall2,5,6

0.631

16.40

100

419.75

541.25

5221.57

27

hall call up 1, 2, hall call
down 6, 7, carcall 1, 2,
7

0.768

38.40

100

273.62

937.29

910.99

28

hall call down 2, 6, 7,
carcall 2,3,5,7

0.807

54.13

100

266.21

481.73

687.95

29

hall callup 1, 2, 3, 4,
hall call down 3, car call
1,2,5,7

0.712

44.80

100

320.94

938.92

1142.01

30

hallcallup 1, 2, 5, 6,
hall call down 3, 6, 7

0.798

51.27

100

387.62

511.00

4397.82

31

hall call up 5, 6, hall call
down 2, 6, 7, car call 2,
6

0.802

53.47

100

301.84

463.37

616.40

32

hall call up 1, 2, 6, hall
calldown 2, 6, 7, car
call 7

0.800

39.33

100

327.28

447.05

4077.63

33

hall call up 1, 2, 3, hall
calldown 3, 6, 7, car
calll

0.763

35.53

100

380.30

896.67

962.00

34

hall call up 1, 2, 6, hall
call down 4, 6, car call
2,5

0.802

49.00

100

326.25

488.35

3079.36

35

hall call up 2, 5, hall call
down 3, 6, car call 2, 4,
5

0.804

57.07

100

295.24

535.12

674.32

36

hall call up 1, 2, 6, hall
call down 3, 7, car call
1,2,4,7

0.712

36.27

100

277.30

799.63

1200.30

37

hall call up 1, 2, 3, hall
call down 5, 6, 7, car
call1,2,6,7,
dispatcher

0.451

0.00

100

340.65

2462.69

44572

38

hall call up 1, 2, 3, hall
call down 5, 6, 7, car
call 2, 3,5, 6,
dispatcher

0.487

0.00

100

337.15

391.11

439.13

39

hall call up 2, 3, 4, hall
call down 4,5, 6, 7, car
call 1, 2, 7, dispatcher

0.452

0.00

100

336.25

2458.62

416.42
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Table E.4. Elevator Experimental Data for Configurations 40 - 50

Config
ID#

Failed Components

System
Utility
Value

Avg %
Delivered
in Original

Elevator

Avg %
Delivered in
Gracefully
Degrading

Elevator

Avg
Delivery
Time for
Two-Way

(secs)

Avg
Delivery
Time for

Down-Peak
(secs)

Avg
Delivery
Time for
Up-Peak

(secs)

40

hall call up 2, 3, hall call
down 5, 6, car call 1, 2,
3,5, 6, 7, dispatcher

0.449

0.00

100

334.11

2450.25

415.14

41

hall call up 1, hall call
down 3, 4,5, 6, 7, car
call1,2,6,7,
dispatcher

0.451

0.00

100

332.14

2458.01

44499

42

hallcallup 1,2,3,4,5
hall call down 7, car call
1,2, 6, 7, dispatcher

0.451

0.00

100

326.31

2471.80

442.27

43

hall call up 2, 3, 6, hall
call down 5, 6, 7, car
call1,2,5,6,
dispatcher

0.451

0.00

100

328.92

2464.17

413.32

44

hall call up 1, 2, 6, hall
call down 5, 6, 7, car
call1,2,3,7,
dispatcher

0.451

0.00

100

338.21

2461.80

447.78

45

hall call up 2, 3, 6, hall
call down 2, 5, 6, car
call1,2,6,7,
dispatcher

0.451

0.00

100

326.15

2454.97

410.60

46

hall call up 1, 2, 3, hall
call down 4,5, 6, 7, car
call 3, 4, 5, dispatcher

0.488

0.00

100

332.97

403.39

418.08

47

hall callup 1, 2, 3, 4,
hall call down 4, 5, 6, 7,
carcall 2,3,4,5,6,
dispatcher

0.453

0.00

100

361.00

399.65

445.30

48

hall callup 1, 2, 3, 4,
hall call down 4, 5, 6, 7,
carcall1,2,5,6,7,
dispatcher

0.416

0.00

100

341.54

2462.21

449.50

49

hall call up 2, 3, 4, 5,
hall call down 3, 4, 5, 6,
carcall 2,3,4,5,6,
dispatcher

0.453

0.00

100

357.16

405.93

414.13

50

hall call up 2, 3, 4, hall
calldown 4,5, 6, 7, car
call1,3,4,5,6,7,
dispatcher

0.415

0.00

100

340.94

2455.32

431.08
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Table E.5. Elevator Experimental Data for Configurations 51 - 62

Config
ID#

Failed Components

System
Utility
Value

Avg %
Delivered
in Original

Elevator

Avg %
Delivered in
Gracefully
Degrading

Elevator

Avg
Delivery
Time for

Two-Way
(secs)

Avg
Delivery
Time for

Down-Peak
(secs)

Avg
Delivery
Time for
Up-Peak

(secs)

51

hall call up 2, 3, 4, 5, 6,
hall call down 2, 3, 4, 5,
6, carcall 1, 4,7,
dispatcher

0.418

0.00

100

334.67

2451.13

416.31

52

hallcallup 1, 2, 4, 5,
hall call down 3, 4, 6, 7,
carcall1,2,4,5,7,
dispatcher

0.416

0.00

100

354.53

2462.28

441.34

53

hall call up 2, 3, 4, 6,
hall call down 2, 3, 4, 5,
6,carcall1,3,4,7,
dispatcher

0.417

0.00

100

338.24

2447.57

421.48

54

hall call up 1, 3, 4, hall
calldown 2, 3,5, 7, car
call1,2,3,4,5,7,
dispatcher

0.415

0.00

100

334.41

2468.34

453.04

55

hall call up 2, 3, 4, 5, 6,
hall call down 2, 3, 4, 5,
6, car call 3, 4, 5,
dispatcher

0.338

0.00

100

343.72

413.43

408.79

56

hallcallup 1,2,3,4,5
hall call down 2, 4, 5, 6,
7,carcall 2,5, 6,
dispatcher

0.455

0.00

100

340.57

406.00

429.50

57

hall call up 1, 2, hall call
down 6, 7, car call 1, 2,
7, dispatcher

0.485

0.00

100

330.35

2462.56

440.10

58

hall call down 2, 6, 7,
carcall 2,3,5,7,
dispatcher

0.521

0.00

100

310.00

401.24

410.10

59

hall callup 1, 2, 3, 4,
hall call down 3, car call
1,2, 5,7, dispatcher

0.462

0.00

100

329.23

2471.40

442.28

60

hall callup 1, 2, 5, 6,
hall call down 3, 6, 7,
dispatcher

0.525

0.00

100

314.90

419.41

401.57

61

hall call up 5, 6, hall call
down 2, 6, 7, car call 2,
6, dispatcher

0.523

0.00

100

310.03

404.35

402.30

62

hall call up 1, 2, 6, hall
call down 2, 6, 7, car
call 7, dispatcher

0.524

0.00

100

325.08

409.13

415.39
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Table E.6. Elevator Experimental Data for Configurations 63 - 70

Ava % Avg % Avg Avg Avg
Confi System Deli\?ered Delivered in| Delivery | Delivery | Delivery
ID#g Failed Components | Utility in Original Gracefully | Time for | Time for | Time for
Value Elevgtor Degrading | Two-Way | Down-Peak | Up-Peak
Elevator (secs) (secs) (secs)
hall call up 1, 2, 3, hall
63 | call down 3, 6, 7, car 0.487 0.00 100 324.88 2456.74| 434.88
call 1, dispatcher
hall call up 1, 2, 6, hall
64 | call down 4, 6, car call 0.523 0.00 100 330.22 396.73| 416.54
2, 5, dispatcher
hall call up 2, 5, hall call
65 | down 3, 6, car call 2, 4, 0.522 0.00 100 342.18 409.34| 405.99
5, dispatcher
hall call up 1, 2, 6, hall
66 | call down 3, 7, car call 0.462 0.00 100 321.46 2471.46| 436.75
1,2, 4,7, dispatcher
car lantern up, down,
67 | car position indicator, 0.554 0.00 100| 364.62 412.84| 47042
dispatcher
68 | dispatcher 0.604 0.00 100 296.40 404.78 | 389.84
69 | no failed components 1.000 100.00 100| 203.19 343.38| 580.87
70| &tioorsensor2,3,4.5, 11 000 0.00 100| 20319  34338| 580.87
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Appendix F - Utility Specification for the Mobot System

This appendix lists the utility functions we specified for the mobot navigation
system in Chapter 6. The system utility can be evaluated directly from the utility of

the Actuator Control feature subset.

Table F.1. Utility Specification Navigation, Line Following, and Path Planner

Feature Subsets.

Feature Subset

Configuration

Utility Function

{Command Resolver, Servo Motor Controller,
Drive Motor Controller, Steering Servo Motor,

combination of: X Location Feature Subset
(Uxwocation), Decision Point Detector (Udecision), Map
Data Server (Umapdata)

. L = 0.2 + 0.8*UnNavigati

Actuator Control Drive Motor, Navigation Feature Subset Unctuator = 0.2 + 0.8*Unavigation

(UNavigation)}

Al other configurations Unctuator = 0

Any configuration in which at least one of the two

feature subsets: Line Follower Feature Subset Uniavicaton = 0.2*UeineFolouer +

o (UineFollover), Path Planner Feature Subset (Upa) o 40 T U ot

Navigation is working and any combination of: Collision 8'(15*8':?““ * 0.1 Ucaltson

Detection Feature Subset (Ucaiisen), Direction = pteton

Feature Subset (Upireciion)

All other configurations UNavigation = 0

Any configuration in which at least one of the two

components: Line Follower, Line Detectors Uinefoloner = 0.1 +

. . . Inerollower — V.

Line Follower Feature Subset (ULinebetectors) iS working and any 0.6*Utinedstesiore + 0. 1*Ugecision +

0.1*Umapdata + 0.1*Uxvocation

All other configurations

ULineFoliower = 0

Line Detectors

Any configuration in which at least one of the
Line Detector Feature Subsets (ULineo .. ULines) is
working

ULinepetectors = (ULineo + ... +
ULineS)/G

All Line Detector Feature Subsets failed

ULinebetectors = 0

Line Detector
0.5

{Line Detector Component L, IR Sensor L}

ULinet =1

All other configurations

ULinet =0

Path Planner

{Path Planner, Map Data Server, X Location
Feature Subset (Uxiocation), Y Location Feature
Subset (UYLocation)}

Upath = 0.2 + 0.4*Uxvocation +
O.4*UYLocation

All other configurations

Upath = 0
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Table F.2. Utility Specification for the X/Y Location and Sensor Feature Subsets.

Feature Subset

Configuration

Utility Function

Any configuration in which the X/Y Location
Resolver and at least one of the feature subsets:
Dead Reckoning Feature Subset (Upead), Line

Uxrviocation = 0.1 + 0.5*Upead +

combination of: Direction Feature Subset, Map
Data Server

XIY Location XIY Estimator Feature Subset (Utineexi), 0.3*ULineexsy + 0.1*Uccexiy
Crack/Collision X/Y Estimatior Feature Subset
(Uccexy) are working
All other configurations UxivLocation = 0
Any configuration in which the Line X/Y
: Estimator component and the Line Follower
Line X/Y . Utineexiy = 0.1 + 0.3*ULineroliower
Estimator Feature Subset are working and any +0.2*Umapdata + 0.4*Ubirection

All other configurations

ULineexiy = 0

Crack/Collision

Any configuration in which the Crack/Collision
Sensor X/Y component, Crack Detection Feature
Subset, and Collision Detection Feature Subset

Uccexry = 0.1 + 0.2*Ucrackpetector
+ 0.1*Ucoliision + 0.2* Umapdata +

XIY Estimator are working and any combination of: Direction 0.4*Upirection
Feature Subset, Map Data Server
All other configurations Uccexy =0
Front Wheel {Front Wheel Shaft Encoder Sensor, Encoder U -1
Encoder Counter} Frontiheel
All other configurations UFrontwheet = 0
{Left Wheel IR Sensor, Left Wheel Rev Counter,
E:gg}ﬁltrilgﬁls Right Wheel IR Sensor, Right Wheel Rev Urearwheel = 1
Counter}}
All other configurations Urearwheel = 0

Crack Detection

{Pavement Crack Sensor, Crack Detector}

Ucrackpetector = 1

All other configurations

Ucrackpetector = 0

Collision
Detection

Any configuration in which the Collision Detector
and at least one of the two sensors: Left Whisker
Sensor (Uetwhisker), Right Whisker
Sensor(Urighwhisker) is working

Ucolision = 0.5*Ureftwhisker +
0.5*Urightwhisker

All other configurations

Ucolision = 0
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Table F.3. Utility Specification for the Dead Reckoning Feature Subset.

Feature Subset

Configuration

Utility Function

Dead Reckoning

Any configuration in which the Dead Reckoner
and at least one of the feature subsets: Front
Wheel Encoder Feature Subset (Urronwneel), Rear
Wheel Revolutions Feature Subset (Urearwneel),
Speed Feature Subset (Uspeed), Direction
Feature Subset (Upirection) are working

Ubead = 0.4*UFrontwheel +
0.2*Urearwneel + 0.1*Uspeed +
0.3*Ubirection

All other configurations

Ubead = 0

Any configuration in which the Direction
Estimator and at least one of the components:

Upirection = 0.1 + 0.3*Ucommand +

Resolver, Front Wheel Encoder Feature Subset,
Rear Wheel Encoder Feature Subset is working

Direction Command Resolver (Ucommand), Front Wheel X %
Encoder Feature Subset, Rear Wheel Encoder | -5 Urronheel + 0.3 Ureaninel
Feature Subset is working
All other configurations Upirection = 0
Any configuration in which the Speed Estimator

Speed and at least one of the components: Command Uspeed = 0.1 + 0.3*Ucommand +

0.3*Urrontwheel + 0.3*Urearwheel

All other configurations

USpeed =0
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