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Abstract

Safety-critical distributed embedded systems often have strict dependability requirements that are influenced

by other properties such as cost and size constraints, or the system architecture. For example, an automobile brak-

ing system might be required to tolerate a single fault in any component, as well as maintain some level of system

availability. One fault-tolerance strategy might be to distribute processes over multiple nodes, use redundant brake

hardware, and isolate the braking system’s communication network from other components in the automobile. If

this same system, however, is prohibited by cost and weight constraints from using redundant hardware, a different

strategy must be used.

When cost and efficiency concerns require some safety-critical distributed embedded systems to use a single

network for both critical and non-critical messages, particular care must be taken to ensure that faults in the

non-critical components do not corrupt critical nodes. One threat to system dependability in this type of system is a

software defect masquerade fault, where a software defect causes one node or process to send a message as having

come from another node or process. The first chapter of this report outlines what software defect masquerade

faults are and why they are often ignored in current embedded systems. It also includes preliminary research into

methods to prevent them in embedded system design. The second chapter describes six successively more expen-

sive levels of protection against masquerade faults. In addition, it presents a technique for preventing arbitrary,

non-malicious masquerade faults that uses lightweight digital signatures based on CRCs. This technique is a

lower-cost alternative to expensive, full-strength cryptographic security.

Some safety-critical distributed embedded systems may need to use centralized components to achieve certain

dependability properties. The difficulty in combining centralized and distributed architectures is achieving the po-

tential benefits of centralization without giving up properties that motivated the use of a distributed approach in the

first place. The third chapter of this report examines the impact on fault tolerance of adding selected centralized

components to distributed embedded systems, and possible approaches to choosing an appropriate configuration.

It analyzes the proposed use of a star topology with centralized bus guardians in the Time-Triggered Architecture

by modeling systems with different levels of centralized control in their star couplers, and comparing fault toler-

ance properties in the presence of star-coupler faults.
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Chapter 1. Software Defect Masquerade Faults in Distributed Embedded Systems

J. Morris and P. Koopman. “Software Defect Masquerade Faults in Distributed Embedded Systems”,
In IEEE Proceedings of the International Conference on Dependable Systems and Networks Fast
Abs, San Francisco, June 2003, pp. B50-B51.

Distributed embedded systems often consist of multiple nodes that communicate over a shared network. For

such systems, dependable message delivery among nodes is crucial to overall system dependability. One threat to

this dependable message delivery is a software defect masquerade fault, where a software defect causes one node

or process to send a message as having come from another node or process. Unfortunately, many embedded sys-

tem designs do not address this particular failure mode. This chapter outlines what software defect masquerade

faults are and why they are often ignored in current embedded systems. It also presents preliminary research into

methods to prevent them in embedded system design.

1.1. What is Software Defect Masquerading?

A masquerade is “in authentication, the pretense by an entity to be a different entity” [1.1]. In distributed em-

bedded systems, masquerading usually occurs when one node or process sends a message across the embedded

network that only another node or process is authorized to send. Although masquerading in distributed embedded

systems can be intentional (i.e., a malicious attack from an intruder), it may also result from a defect in the system

itself. This usually occurs at the application level because resource constraints in many distributed embedded sys-

tems require the use of either a very simple operating system or none at all. In these systems the messages are con-

structed and sent directly by the application software.

In event-triggered networks that use a header field to identify the message sender, a node or process may mas-

querade by sending a message with a header field of another node or process. Time-triggered networks do not nec-

essarily require headers if each node or process is allocated a particular transmission slot. In these networks,

masquerading may occur if one node or process sends a message in the transmission slot of another node or pro-

cess.

1.2. Why is it Overlooked?

Traditionally, masquerading has been viewed as a malicious attack, rather than a fault tolerance problem. [1.2]

looked at malicious masquerade attacks in open distributed agent-based systems and suggest strong cryptography
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as a method for preventing such attacks. Embedded systems, however, are typically closed (i.e., their networks are

not accessible to outside intruders) and usually do not include security methods for preventing malicious attacks.

In fact, most fault tolerance techniques used in embedded systems not only fail to prevent masquerading, but also

assume fault models in which masquerade faults do not occur. For example, the Byzantine fault model discussion

in [1.3] assumes that the identity of each general is correct. If software defects within the system itself cause mas-

querading that invalidates these assumptions, then the fault tolerance techniques may or may not work.

Even if software defect masquerade faults are included in an embedded system design’s fault model, the current

methods for combating malicious masquerade attacks are often not practical to implement in most embedded sys-

tems. Authentication techniques such as strong digital signatures, which are designed to withstand malicious at-

tacks and cryptanalysis, provide more security than is required to protect against inadvertent software defect

masquerade faults, but require high processing and network overhead. Cost-focused embedded system designs of-

ten do not have enough resources for such strong cryptographic protection. For example, the eight bit

microcontrollers that are prevalent in embedded systems are simply not designed to accommodate the complicated

computational algorithms required to produce strong digital signatures.

1.3. How Can it be Prevented?

Although the assumption of a closed network is reasonable for most distributed embedded systems, a depend-

able embedded system should still provide protection against masquerading caused by software defects. The chal-

lenge is to find a method that will not add an unreasonable burden to product cost.

Many embedded systems developers attempt to mitigate the effects of software defects by dividing the embed-

ded software into critical and non-critical components. Critical software is developed with an expensive, rigorous

design process and is presumed to function correctly, whereas non-critical software is developed with a less expen-

sive, less rigorous design process and is presumed to function incorrectly (for the purposes of safety cases). This

approach provides adequate protection against software defect masquerade faults in the critical components, pro-

vided that the critical and non-critical software are not transmitting messages over the same network. On a shared

network, however, non-critical software masquerading of critical nodes and processes might still occur.

One way to prevent software defect masquerade faults on time-triggered networks is to use a bus guardian. Bus

guardians are modules connected to each node on the network that prevent the node from sending messages outside

of its designated transmission slot. Even if a node has a software defect that causes it to send messages in another
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node’s time slot, the bus guardian will prevent the message from being sent at the wrong time. Masquerading may

still occur if there is a defect in the bus guardian (incorrect synchronization, guarding the wrong time slot, etc.);

however this method provides more protection than relying solely on the node itself to transmit correctly.

Another possible solution is to create a lightweight digital signature that uses relatively few system processing

and bandwidth resources, yet is powerful enough to prevent software defect masquerade faults. Security research

traditionally focuses on creating strong cryptographic protection. However, embedded systems, which have a

more relaxed fault model but more rigid resource constraints, could benefit from lightweight cryptographic tech-

niques for non-malicious fault scenarios.

One preliminary technique we have developed is to use a modified cyclic redundancy check (CRC) as a light-

weight digital signature. Many distributed embedded system designs utilize an application-level CRC to verify

message integrity. Although CRC's are useful at providing protection against random bit errors due to hardware

malfunction or environmental interference, a CRC in its usual form has inadequate software defect masquerade

coverage. In most implementations, the same CRC polynomial is used for multiple nodes on the network. For ex-

ample, an embedded network for automotive or rail applications may use one or more CRC's for each message, but

every message will use the same CRC polynomial(s) to generate the frame check sequence (FCS). If every node or

process uses the same polynomial to generate the CRC, then the sender of a particular message cannot be

distinguished by the CRC alone.

The CRC is converted into a lightweight digital signature by using a different CRC polynomial or a different

seed value for each node to generate the CRC. The seed value is the initial value of the CRC register used in the cal-

culation (all ones or all zeros in most CRC implementations). By setting this number to a distinct value for each

node, the resulting CRC may be used as a lightweight digital signature, ensuring that software from any particular

node cannot forge CRC values to masquerade as a different node. Further details on this method can be found in

Chapter 2.

1.4. References
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Chapter 2. Critical Message Integrity Over a Shared Network

J. Morris and P. Koopman, “Critical Message Integrity Over a Shared Network”, In Proceedings of
the 5th IFAC International Conference on Fieldbus Systems and their Applications, July 2003, pp.
145-151.

Distributed embedded systems often contain a mixture of critical and non-critical software processes that need

to communicate with each other. Critical software is “software whose failure could have an impact on safety, or

could cause large financial or social loss” [2.1]. Because of the high cost of failure, techniques such as those for

software quality assurance described in IEEE Std 730-1998 [2.2] are used to assure that such software is suffi-

ciently defect free that it can be relied upon to be safe. However, such a process is expensive, and generally is not

applied to non-critical system components.

In a typical safety-critical transportation system, such as in the train or automotive industries, it is generally as-

sumed that critical components will work correctly, but that non-critical components are likely to have defects.

Defects in non-critical components could, if not isolated, compromise the ability of critical components to func-

tion. Thus, the simplest way to assure system safety is to isolate critical and non-critical components to prevent de-

fects in non-critical components from undermining system safety. Such separation typically involves using

separate processors, separate memory, and separate networks.

Separation of critical and non-critical networked messages (i.e., through the use of separate buses) can double

the required network costs, both in cabling and in network interface hardware. There is strong financial incentive

to share a single network between critical and non-critical message traffic. But, when such sharing occurs, it is cru-

cial that there be assurance that non-critical network traffic cannot disrupt critical network traffic. This chapter as-

sumes that non-critical network hardware is designed to be fail-safe. For example, in railroad signaling lack of

message delivery leads to a safety shutdown, so safe operation is viable with off-the-shelf networking hardware.

But other challenges remain to implementing such systems.

A significant challenge in mixed critical and non-critical networks is ensuring that a non-critical process is un-

able to masquerade as a critical message sender by sending a fraudulent critical message. Masquerading is consid-

ered malicious if an internal or external attacker intentionally represents itself as a different entity within the

system; however, masquerading may also occur due to non-malicious transient faults and design errors that inad-

vertently cause one node or process to send a message that is incorrectly attributed to another node or process.
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A software defect masquerade fault occurs when a software defect causes one node or process to masquerade as

another [2.4]. One example is a software defect that causes one process to send a message with the header identifi-

cation field of a different process. Another example is a software defect that causes one node to send a message in

another node’s time slot on a TDMA network. A software defect masquerade fault is not caused by transient

anomalies such as random bit flips, but rather is the result of design defects (e.g., the software sends the message

with the incorrect header x instead of the correct header y). Fault tolerance methods designed to catch random bit

flips may not sufficiently detect software defect masquerade faults.

This chapter describes six successively more expensive levels of protection that can be used to guard against

masquerade faults. Rather than limiting the analysis to malicious faults, the gradations presented recognize that

many embedded systems have reasonable physical security. Therefore it is useful to have design options available

that present tradeoff points between the strength of assurance against masquerading faults and the cost of providing

that assurance.

2.1. Fault Model

Network fault detection techniques vary from system to system. Some rely solely on a network-provided mes-

sage Cyclic Redundancy Code (CRC) or other message digest such as a checksum for error detection. Some criti-

cal applications add an additional application-generated CRC to enhance error detection. These techniques can be

effective at detecting random bit errors within messages, but they might not detect erroneous messages caused by

software defects that result in masquerading. This is especially true in broadcast-oriented fieldbuses in which ap-

plications have control over message ID fields and can send incorrect IDs due to component defects. In the worst

case, these erroneous messages could lead to masquerading of critical messages by non-critical processes or by

failed critical hardware nodes.

In order to determine the safeguards necessary to ensure correct behavior of critical components over a shared

network, we must first understand the types of failures that can occur, as well as their causes. The strongest fault

model, which includes malicious and intentional faults, assumes that an intruder is intentionally falsifying message

traffic and has significant analytic abilities available to apply to the attack. Such malicious faults can only be de-

tected by application of rigorous cryptographic techniques. Because a malicious attack is the most severe class of

fault, such measures would also provide a high degree of fault tolerance for software defect masquerade faults. But

full-strength cryptographic techniques are cost-prohibitive in many embedded systems. In systems for which ma-
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licious attacks are not a primary concern, lighter-weight techniques that protect against accidental (non-malicious)

faults due to environmental interference, hardware defects, and software defects are highly desirable.

The simplest accidental failures come from random bit errors during transmission. In general, these errors are

easy to detect using standard error detecting codes such as CRCs that already exist on most networks.

Errors due to software defects or hardware faults in transmitters are more difficult to guard against. They can re-

sult in undetectable failures in message content unless application-level error detection techniques are used be-

cause faults occur before the message is presented to the network for computation of a CRC. A particularly

dangerous type of error that could occur is an incorrect message identifier or application-level message source

field, which would result in a masquerading fault.

In an embedded system with both critical and non-critical processes, masquerading faults can occur in three dif-

ferent scenarios: (1) a critical process might be sending a critical message to another critical process; (2) a critical

process might be sending a critical message to a non-critical process; and (3) a non-critical process might be send-

ing a non-critical message to a critical process. Because critical processes are trusted to work correctly, critical

messages are assumed to have correct information, and messages from non-critical processes are suspect. Safety

problems due to masquerading can thus occur if a non-critical process sends one of the first two types of messages

(i.e., if a non-critical process sends a message falsified to appear to be a critical message). An additional situation

that is sometimes of concern is if a critical node suffers a hardware defect that causes it to masquerade as a different

critical node, resulting in a failure of fault containment strategies (designs typically assume not only that faults are

detected in critical nodes, but also that they are attributed to the correct critical node).

2.2. Protection Levels

Once the fault model has been defined, an appropriate level of masquerading fault detection can be implemented

based on the needs and constraints of the application. As with any engineering design, this requires tradeoffs in

cost, complexity and benefits.
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2.2.1. Level 0 - Network protection only

The first, baseline, level of protection is to rely solely on network error checking. Most networks provide some

mechanism to detect network errors. Ethernet and the Controller Area Network (CAN), for example, both use

CRCs.

The problem with relying on the network-level data integrity checks is that they only check for errors that occur

at the network link level. Errors due to software defects or some hardware defects in the network interface are not

detected. In addition, these detection techniques may not be very effective at detecting errors caused by routers and

other networking equipment on multi-hop networks. For example, Stone and Partridge [2.7] found high failure

rates for the TCP checksum, even when combined with the Ethernet CRC.

Though relatively effective at preventing random bit errors, Level 0 remains vulnerable to defects in networking

hardware that cause undetected message errors, software defects that result in masquerading by critical and

non-critical processes, and malicious attacks. In terms of bandwidth and processing resources, this level requires

no additional cost because it is already built into most networks.

2.2.2. Level 1- Application CRC

The next step in assuring message integrity is to apply an application-level CRC to the data and to include it in

the message body that is transmitted on the network. Stone and Partridge [2.7] strongly recommend using an appli-

cation-level CRC to help detect transmission errors missed by the network checks due to defects in routers and

other networking equipment.

It might be the case that some or all of the processes within a system use the same application-level CRC. If

non-critical processes use the same application-level CRC as critical processes, then the application CRC provides

no protection against masquerading by non-critical processes.

Level 1 provides additional protection against defects in networking hardware that cause undetected message

errors. However, it does not protect against critical message sources that falsify message source information due to

faults, defects that result in masquerading by critical and non-critical processes, and malicious attacks.

With respect to resource costs, Level 1 requires some additional bandwidth and processing resources, but not

much. For example, on a CAN network a 16-bit application CRC requires two of the eight available data bytes and

an additional few instructions per data bit of CRC. In critical systems application-level CRCs are not uncommon.
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2.2.3. Level 2 - Application CRC with secret polynomial/seed (symmetric)

The application-level CRC in Level 1 may be converted from a simple data integrity check into a lightweight

digital signature by using different CRC polynomials for different classes of messages. In this scheme, there are

three separate CRC polynomials used: one for critical messages sent between critical processes, one for

non-critical messages sent by the critical processes to non-critical processes, and one for messages sent by the

non-critical processes. It is important to select “good” polynomials with an appropriate Hamming Distance for the

lengths of messages being sent, of course [2.6].

The Level 2 approach is a “lightweight,” symmetric digital signature in which the secret key is the CRC polyno-

mial. It is symmetric because both the sender and receiver of a message need to know the same key, and must use it

to sign messages (by adding an application-level CRC using a specific polynomial), and verify signatures (by com-

puting the application-level CRC using an appropriate polynomial based on the purported message source and

comparing it to the frame check sequence (FCS) field of the message actually sent).

A straightforward implementation involves using a different secret polynomial for each class of message: CRC1

for critical to critical messages; CRC2 for critical to non-critical messages; and CRC3 for non-critical message

senders. (Note that the case where non-critical processes omit an application-level CRC is equivalent to using a

null CRC for situation CRC3).

Use of three CRCs is required because this is a symmetric system. Thus, it is possible that any process possess-

ing a CRC polynomial might send a message using that polynomial due to a software defect. If CRC1 is only

known to critical processes, that means it is impossible (or at least probabilistically unlikely) that a non-critical pro-

cess can falsify a message that will be accepted by a critical process as having come from another critical process.

In other words, CRC1 is a secret symmetric key, and only key-holders can generate signed messages. CRC2 is used

to provide assurance that critical messages are being sent either from critical processes or non-critical processes

(with software defects) that are receivers of critical messages. CRC3 is simply an application-level CRC for

non-critical messages. It might be the case that there is no point in distinguishing CRC2 from CRC3 depending on

failure mode design assumptions, because in either case at least one non-critical process would have access to the

secret key CRC2 for generating critical-process-originated messages.

With this scheme there is still a critical assumption being made about non-critical code. However, it is a much

narrower assumption than with the Level 1 approach, and is probably justifiable for many situations. The assump-
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tion is that CRC1 has been selected from a pool of candidate CRCs at random, and is unlikely to be used by

non-critical processes on a statistical basis. (One assumes that “well known” published CRCs are omitted from the

potential selection pool, of course.) For 24-bit or 32-bit CRCs this assumption is probably a good one, but there is

still a finite number of “good” CRC polynomials that are significantly fewer than all possible 24-bit or 32-bit inte-

gers.

A solution that is even better for these purposes is to use a “secret seed” for a given polynomial. Conventional

CRC calculations use a standardized starting value in the CRC accumulator, typically either 0 or -1. A secret seed

approach uses some different starting, or “seed” value for computation of the application-level CRC that varies

with the class of message. So instead of CRC1, CRC2 and CRC3 for the previous discussion, the technique would

involve using the same CRC with Seed1, Seed2, or Seed3, with each seed being a different secret number. Thus, the

seed value becomes the secret key for a digital signature.

Thus, the FCS of a message with a level of criticality i would be computed as follows. If CRC(M,S) takes a mes-

sage M with an initial CRC seed value S to compute a FCS, then:

FCSi = CRC(M,Si) (2.1)

Critical to critical process messages would be authenticated by having critical processes use S1 to compute and

compare the FCS field. Since no non-critical process would have knowledge of S1, it would be, for practical pur-

poses, impossible for non-critical processes to forge a correct FCS value corresponding to a critical message.

There would still be a chance of an accidental “collision” between the FCS values for two CRCs, but this is true of

cryptographically secure digital signatures as well, and can be managed by increasing the size of the FCS as re-

quired.

Combining a secret polynomial with a secret seed is possible as well, of course, but does not provide a funda-

mentally different capability. It is important to note that CRC-based digital signatures are readily attacked by

cryptanalytic methods and are not secure against malicious attacks. However, in a cost-constrained system it

might well be reasonable to assume that non-critical components will lack cryptanalytic attack capabilities, and

that software defects will not result in the equivalent of cryptanalytic attacks on secret CRC polynomials or secret

seeds.

Symmetric-key CRC lightweight digital signatures of Level 2 provide the same benefits as application-level

CRCs of Level 1. In addition, they provide protection against non-malicious masquerading by non-critical pro-

cesses that results in acceptance of fraudulent critical messages. However, Level 2 does not protect against
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non-malicious masquerading of critical message sources by other critical message sources due to faults, and is in-

adequate protection against malicious attacks. The benefit of Level 2 is that it requires no additional processing or

bandwidth to upgrade from Level 1.

2.2.4. Level 3 -Application CRC with secret polynomial/secret seed (asymmetric)

Symmetric CRC-based signatures ensure that non-critical processes cannot send critical messages to critical

processes by accident. However, a software defect could still cause a non-critical process to masquerade as a criti-

cal process sending a non-critical message. (This is true because all noncritical processes possess the symmetric

key information for receiving such messages). Additionally, Level 2 assumes that all critical processes are de-

fect-free, providing no protection against masquerading by a critical process in the event of a hardware failure or

software defect.

A further level of protection can be gained by using asymmetric, lightweight authentication. In this approach

every process has a secret sending key and a public receiving key. The public receiving key is known by all pro-

cesses, but only the sending process knows the secret sending key. In such a scheme every process retains the pub-

lic receiving keys of all processes from which it receives messages (in general, this means it has the public keys of

all the processes). But because each process keeps its transmission key secret, it is impossible for one process to

masquerade as another.

Because embedded systems tend to use broadcast messages heavily, an implementation of full public-key en-

cryption is impractical, so the method proposed here is tailored to a broadcast environment. Additionally,

CRC-based authentication is used which is of course not secure against a cryptanalytic attack.

One way to implement a private/public signature scheme is the following, using secret polynomials. This

method may also be used in addition to the use of distinct CRCs or seeds for FCS computation as outlined in Level

2. If desired for cost and simplicity reasons, all non-critical to non-critical messaging can use a single standard

polynomial, and only critical message sources need use the private/public key approach.

Each critical process has two CRC polynomials: CRC1 and CRC2. CRC1 is a publicly known polynomial,

whereas CRC2 is a secret private polynomial. Every CRC1 in the system is distinct per process. Every CRC2 is the

inverse of the corresponding CRC1. Thus, the secrecy of CRC2 depends on there being no code to compute an in-

verse polynomial in the system. Because computing inverse polynomials is performed using a bit-reverse opera-

tion (with adjustments to account for an implicit 1 bit within the polynomial in most representations), the validity
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of the assumption of secrecy is one that must be made in the context of a particular system design. However, com-

puting inverse polynomials off-line and putting them in as constants within the system code avoids the presence of

inverse polynomial code, and might well be a reasonable approach for systems that cannot afford the cost of

full-strength cryptography. (The creation of stronger, but efficient, methods for asymmetric signatures is an open

area for future research.)

A sending process S appends a signature X to a critical message M and its FCS field (X is not included in the

FCS computation), where “|” denotes concatenation:

M | FCS | X (2.2)

where:

X = CRC2(FCS) (2.3)

Receiving processes then verify the authenticity of the transmission by ensuring that:

FCS = CRC1(X) (2.4)

What this is doing is “rolling back” the FCS using an inverse CRC, CRC2, to compute a signature that, when

rolled forward through CRC1, will yield the FCS. Because only the sending process knows the inverse CRC for its

public CRC, no other process can forge messages.

This method protects against software and hardware defects that cause a process to send a message that should

not be sent (e.g., forged source field or incorrect message identifier/type information).

This method is vulnerable to the following: malicious attacks using cryptanalysis (even without knowledge of

the public CRC polynomial); software defects involving CRC code that computes CRCs “backwards” from the

critical CRC computation (e.g., right-to-left CRC computations when the critical code is using a left-to-right

shift-and-xor computation); and software defects in critical or non-critical software that compute the bit-reverse of

a public polynomial and then use that as the basis for signing a message. While some of these defects could proba-

bly happen in real systems, the specificity of the defects required would seem to provide a higher degree of assur-

ance than not using such a technique. As stated previously, this is an example of a simple lightweight signature

technique; it is possible that future research will yield even better approaches to fill this niche in the design space.

If the system is originally designed at Level 1 or Level 2 with an application CRC, then there is an additional

cost to compute and transmit the signature X. In a CAN network with a 16-bit signature X, this would be an addi-

tional handful of instructions per CRC bit and two bytes of the remaining six available data bytes.
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2.2.5. Level 4: Symmetric cryptography

Levels 1 through 3 all use some form of CRC to detect masquerading errors due to defects in the non-critical

software, and provide no credible protection against malicious faults. The next higher level of protection can be

achieved through the use of cryptographically secure digital signatures. Although designed primarily for mali-

cious attacks, such digital signatures can also prevent defective non-critical software components from forging

critical messages. This can be accomplished via use of a Message Authentication Code (MAC), which is a keyed

one-way hash function. A detailed description of MACs appears in Section 18.14 of Schneier [4.5].

Symmetric digital signatures must be sufficiently long to preclude successful malicious attacks via crypta-

nalysis or brute force guessing. Additionally, they take significant computational capability beyond the means of

many embedded systems. However, a symmetric key approach is secure against malicious attacks unless the at-

tacker compromises a node possessing a secret key. In the case that the attacker compromised a critical code, it

would be possible to maliciously forge a message that apparently originated in any node in the system. Malicious

attacks aside, a Level 4 approach has the same strengths and weaknesses as a Level 2 approach in that it is a similar

general signature method, but using strong cryptography.

2.2.6. Level 5: Public-key digital signatures

Level 4 protection was analogous to Level 2 protection, but used cryptographically secure symmetric digital

signatures. Level 5 is, in turn, generally similar to Level 3 CRC lightweight public key signatures, but uses

cryptographically secure signature algorithms. Various public-key digital signature algorithms are described in

Section 20 of Schneier [4.5].

A Level 5 approach provides protection from forgery of message sources to the limits of the cryptographic

strength of the digital signature scheme used. Moreover, if a node is compromised by malicious attack, forgery of

messages can only be accomplished with compromised node(s) as originators, because each node has its own dis-

tinct secret signature key. However, public-key methods are much slower than symmetric cryptography [2.3].

2.2.7. Tradeoffs

Each of these methods provides a certain level of fault protection; however, they each have a commensurate

cost. The developers must decide what protection is required to attain safe operation, and adjust system design de-
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cisions on how much safety critical operation to delegate to

computers based on budget available to provide protection

against realistic masquerading threats. For example, a system

with a fault model that includes software defect masquerade

faults but excludes malicious attacks might chose Level 2 or

Level 3.

An additional burden that must be assumed when using any

masquerading detection technique is that of cryptographic key

management. Any technique discussed assumes that only a cer-

tain set of nodes have access to secret keys. This restricted ac-

cess results in significant complications in configuration

management, deployment, and maintenance, especially when

insider attacks are considered a possibility. (As a trivial example, every time a disgruntled employee leaves a com-

pany, it is advisable to change all cryptographic keys that the employee might have had access to if attacks by that

employee are a substantive threat.)

Figure 2.1 shows all of the levels, in order of effectiveness. In general, the stronger the protection, the more ex-

pensive the method. Levels 3 and 4 have a partial ordering, because the protection of Level 3 (asymmetric secret

CRC) might be more useful than the protection afforded by Level 4 (symmetric secure digital signature), depend-

ing on whether malicious attacks are a part of anticipated threats. However, it is expected that CRC-based signa-

tures will be substantially less expensive to implement than cryptographically secure digital signatures.

2.3. Conclusions

This chapter presents six levels of fault detection techniques that can be deployed against the possibility of mas-

querading faults on shared critical/non-critical fieldbuses. Level 0 (network-provided protection) provides no pro-

tection beyond what is included in the network protocol. For level 1 (published CRC), the application must be

modified to apply the application-level CRC before sending messages on the network, and after messages have

been received. Once an application-level CRC is present in the code, the polynomial or seed value used in the cal-

culation can be changed to achieve Level 2 (symmetric secret polynomial/seed) protection. A novel Level 3

(asymmetric secret polynomial/seed) approach is proposed to provide very lightweight digital signatures with a
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public key flavor that are suitable for broadcast bus applications, but that further assume malicious faults are not a

threat. Levels 4 and 5 complete the taxonomy and consist of using well known cryptographically secure ap-

proaches to guard against malicious masquerading faults.

Typical fieldbus systems today operate at Levels 0 and 1, and are not secure against masquerading faults. It

might be attractive in some applications to upgrade to a Level 2 or Level 3 capability to improve resistance to

non-malicious software defect masquerade faults without having to resort to the complexity and expense of

cryptographically secure Level 4 or Level 5 approach.
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Chapter 3. Fault Tolerance Tradeoffs in Moving from Decentralized to Centralized
Embedded Systems

J. Morris, D. Kroening, & P. Koopman “Fault Tolerance Tradeoffs in Moving from Decentralized to
Centralized Embedded Systems”, In IEEE Proceedings of the International Conference on Depend-
able Systems and Networks, Florence, Italy, to be published in June 2004.

Embedded systems designers consider many factors when choosing between distributed and centralized archi-

tectures. In some designs, centralized systems may be preferred for their manageability and consistency, whereas

in others, distributed systems may be more advantageous for scalability and modularity [3.1].

In the context of dependability, distributed and centralized systems each may be better suited to deliver certain

properties. A system with applications distributed across nodes that are physically separated may provide geo-

graphic fault isolation; one with a centralized controller may more easily maintain consistent timing and state in-

formation across all applications. A system with applications running on separate nodes must also ensure that

those nodes have a consistent view of system state. Centralized controllers can become a single point of failure for

all applications. The problem with choosing a design that is either strictly distributed or strictly centralized is that

one approach might experience problems in system dependability that the other resolves, and vice versa.

In order to achieve the “best of all possible worlds,” system architects may attempt to use a combination of cen-

tralized and decentralized components in one system. This approach has recently been seen in some designs based

on the Time-Triggered Architecture (TTA). Researchers at the Vienna University of Technology recently pro-

posed that the TTA with a star topology and central bus guardians, rather than a bus topology with guardians at

each node, would eliminate the occurrence of some fault modes that are not tolerated by the Time Triggered Proto-

col (TTP/C) [3.2]. In their design, the central bus guardian could have the authority to: a) stop all nodes from trans-

mitting outside of their assigned time slot to eliminate babbling idiot and masquerading faults, b) make

adjustments to signal strength and frame timing in order to eliminate slightly- off-specification (SOS) faults [3.3],

and c) perform semantic analysis of all frames transmitted on the network to prevent transmission of frames con-

taining incorrect controller state (C-State) information [3.2].

Augmenting the authority of some system components, such as the bus guardians in this example, may help the

system achieve certain dependability properties; however, faults in those more authoritative components may also

have a greater influence on system dependability. For example, suppose a bus guardian suffers a fault that causes it

to block transmission of all frames. In systems with decentralized bus guardians (e.g., each node has a separate bus

guardian), a fault of this nature in one bus guardian would only block frames from one node. The same fault in a
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central bus guardian would stop all nodes from sending frames on the channel. This particular fault mode is ad-

dressed in [3.2] by the use of redundant channels with separate central bus guardians. However, this example illus-

trates that changes in the behavior of one component may alter the way faults in that component affect system

dependability.

Adding centralized components to a decentralized system may impact system properties beyond dependability

as well. For example, suppose a central bus guardian is required to buffer some minimum number of bits of each

frame in order to filter traffic on the network, and this number is proportional to the longest frame. If this central

bus guardian is also prohibited from buffering all of the bits in the shortest possible frame, then the difference in

length between the longest and shortest frames is limited. It might not be possible to send extremely long frames

on the same network as extremely short frames.

Two questions that must be answered when centralization is added to a decentralized system are: “How much

authority should the centralized components be given?” and, “what is the impact of this added authority on other

parameters of the system?” To help analyze these questions we created a model in SMV (Symbolic Model Veri-

fier) [3.4] of the TTA star topology with redundant star couplers. In the star couplers we modeled feature sets with

varying amounts of centralized control. We also modeled the possible fault modes those features may exhibit. Our

objective was to analyze the system-design tradeoffs associated with the centralized authority by modeling the fail-

ure modes that can arise when central guardians have the ability to buffer frames, and by showing how limiting the

buffer size of a central guardian also limits the frame size and clock rates. Finally, we propose that critical systems

with an active centralized hub for communication, such as a TTP/C network with a star topology, are constrained in

clock speed by frame size, and vice versa.

The remainder of this chapter is organized as follows: Section 3.1 presents background information and previ-

ous work; Section 3.2 presents our objective and approach; Section 3.3 presents detailed information about our

system model; Section 3.4 presents the results from modeling various star-coupler faults; Section 3.5 presents an

analysis of those results; and Section 3.6 presents our conclusions.

3.1. Background and Related Work

The TTA is a distributed system architecture designed for safety-critical embedded systems such as automo-

biles and jet aircraft that consists of a cluster of nodes communicating over a shared TTP/C network. This section
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provides background information about TTP/C and the TTA, including the motivation for using central bus guard-

ians in the star topology. We also describe our method for modeling these systems in SMV.

3.1.1. Overview of TTP/C and the TTA

The Time-Triggered Protocol (TTP/C) and the Time Triggered Architecture (TTA) were developed by re-

searchers at the Technical University of Vienna and TTTech Computertechnik AG for use in safety-critical distrib-

uted embedded systems that require dependable frame transmission for hard real-time guarantees. To meet these

requirements, TTP/C uses Time Division Multiple Access (TDMA), in which nodes send frames in specific time

slots. These slots are statically assigned prior to system start-up in the Message Description List (MEDL) [3.5].

TTP/C provides a number of services, including distributed clock synchronization, group membership, and

clique detection [3.5]. Clock synchronization is used by the protocol to enforce TDMA scheduling. Each node de-

cides when to transmit on the network based on its view of the time; if different nodes have different views of the

global time then the TDMA approach will fail. Group membership is provided as a safety service to allow host ap-

plications to monitor the operational states of other nodes on the network. The intention is that nodes that are not

operating correctly can be removed from membership in the protocol until they exhibit correct behavior. Clique

detection prevents multiple membership groups from forming.

These services are created by nodes generating and/or observing traffic on the network. Clock synchronization,

for example, requires each node to observe frames sent by other nodes and calculate the difference between each

frame’s actual arrival time and the expected arrival time. This allows the observing node to adjust its own internal

clock to bring it closer to the clocks of other nodes [3.5]. Group membership requires each node to verify that

frames sent by other nodes are both valid and correct. A valid frame starts and ends during the time slot, exhibits no

encoding rule violations, and is not interfered with by another transmission during the time slot [3.5]. Correct

frames are valid frames that also have a controller state (C-state) and cyclic redundancy check (CRC) that match

those of the receiving node [3.5]. The C-state information may be included in the frame explicitly or implicitly

through its inclusion in the CRC calculation. If no activity is observed on the channel during the time slot, the

frame is considered to be null (neither invalid nor incorrect).

The algorithms for deterministic message timing, group membership, and clique avoidance are claimed to be

correct, given a set of particular constraints [3.5]. The fault hypothesis of TTP/C allows for an arbitrary failure in a

single component of the system. The faulty component may be a single node, bus guardian, or channel. TTP/C as-
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sumes fail-silence in the time domain, meaning that a faulty controller will not be allowed to send frames outside of

its time slot. TTP/C does not guarantee correctness of the application data contained in the frame.

Ensuring that these requirements are met is handled at the architectural level, as specified by the

Time-Triggered Architecture (TTA). The TTA requires at least two independent buses (channels), between nodes.

It is assumed that these channels themselves do not generate frames on the network; however, the channels may

corrupt or drop frames. Bus guardians are also required in order to prevent faulty nodes from transmitting during

the wrong time slot. These bus guardians must be completely independent of the nodes (separate internal clocking

device, physical isolation, etc.) and may be allocated to nodes individually or centralized in a star topology. Fault

tolerance for Byzantine faults [3.6] requires at least four real member nodes with fully independent bus guardians.

3.1.2. Central Bus Guardians

The Time-Triggered Architecture (TTA) may be implemented using either a bus (Figure 3.1) or a star (Figure

3.2) topology. In order to compare the fault-handling ability of the two topologies, Ademaj et al. [3.7] performed

software implemented fault injection (SWIFI) and heavy-ion fault injection experiments on TTA systems with

both bus and star topologies.

The experiments in the system with the bus architecture revealed several ways that faults in a single node could

propagate to other, non-faulty nodes. First, slightly-off- specification (SOS) faults in the signal strength or timing

of a frame can cause nodes on the network to have differing views of the validity and/or correctness of some frames

[3.3]. A frame that is slightly outside of its time window or has a signal that is slightly below the acceptable range

may be judged valid and correct by some nodes and invalid or incorrect by others. This is the result of slight differ-

ences in hardware tolerances between nodes. This disagreement between nodes on a frame’s validity and/or cor-

rectness is an SOS fault.
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Group membership is determined by checking the validity of sent frames; therefore a disagreement between

nodes on the correctness of a frame could cause some nodes to expel that frame’s sender from the group and others

to keep the sender in the membership. If this occurs, the TTP/C clique detection algorithm detects the disagree-

ment in group membership and causes the nodes in the minority clique to enter a freeze state. Nodes that have been

frozen cannot regain membership and transmit on the network until they have been awakened by their hosts. This

is the correct behavior of the protocol; however, frequent SOS failures could lead to frequent shutdowns of

non-faulty nodes in the TTP/C cluster, which is unacceptable in most critical systems. Many of these critical sys-

tems, such as automobiles and jet aircraft, are fail-operational, and therefore require a high level of system avail-

ability.

Another fault mode in the bus architecture system is masquerading during cluster startup [3.7]. Prior to startup,

nodes in the cluster have not yet established the global time, and cold-start frames that signal the start of a TDMA

round do not arrive in a particular time slot; therefore, the sender of a cold-start frame cannot be verified by the ar-

rival time of the frame [3.2]. If a faulty node sends a cold-start frame with an incorrect sender round slot, other

nodes will attempt to integrate into the cluster at the incorrect time. If different cold-start frames arrive at different

times on the two channels, nodes may try to integrate on either channel, the cliques will be discovered by the

clique-detection algorithm, and nodes in the minority clique will go into the freeze state [3.2].

The fault injection experiments on the bus topology also revealed that frames with invalid C-states could cause

problems for nodes integrating into a running system [3.7]. If a faulty node sends a frame with an invalid C-state, a

non-faulty node that has already integrated determines that the frame is incorrect because the C-state of the frame

does not match the internal C-state of the receiving node. Nodes that have not yet integrated do not know the cor-

rect C-state of the system, and therefore cannot recognize the frame as incorrect. During integration, they adopt the

C-state of the first valid frame they receive and attempt to integrate using that C-state. If the C-state they adopt is

incorrect, the integrating node will not be allowed to enter the active state, thereby preventing the perfectly

operational node from integrating into the system.

In order to prevent SOS faults, masquerading during startup, and failures in integration arising from frames with

invalid C-states, Ademaj et al. [3.7] implemented a star topology with the central bus guardians. In the new de-

sign, bus guardians located at the central hubs of the star topology are authorized to perform “active signal reshap-

ing” of the transmitted frames [3.7]. The central bus guardians monitor frames on the network and boost signals

that are SOS in the value domain and delay or block signals that are SOS in the time domain. The central bus
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guardians also perform semantic analysis of frame content to prevent faulty nodes from masquerading as other

nodes during startup and/or transmitting frames with invalid C-states. Fault injection experiments of the new de-

sign showed that central bus guardians could prevent SOS faults from occurring. The experiments also showed

that the central bus guardians could prevent faulty nodes from transmitting incorrect cold-start frames and frames

with incorrect C-state [7].

3.1.3. Symbolic Model Checking

We use a symbolic model checker to analyze our formal models. Model checking is a systematic way to explore

the whole state space of a formal model. Previous work containing formal models of TTP/C focuses on proving

correctness of the protocol [3.8, 3.9,3.10]. This is done using an interactive theorem prover, which requires a con-

siderable amount of manual work. In contrast to that, model checkers, such as SMV, are fully automatic once the

model is written. The model presented in [3.10] contains more detail than the model we use. However, we are not

aware of any formal models addressing the issue of centralized vs. distributed bus guardians.

3.2. Objective

The fault injection experiments of [3.7] showed that the central bus guardian could be effective at stopping

faults on some nodes from propagating to other healthy nodes. However, these experiments did not analyze the be-

havior of the system in the presence of faults in the star couplers themselves. Once a component in a decentralized

system has been given increased authority over other system components, the system must be reevaluated to ensure

that unintended behaviors do not emerge when the centralized authority fails.

For example, TTP/C assumes that faults in either of the two channels are passive. That is, a channel will either

corrupt or drop frames, but it will not generate frames. However, this may no longer be a valid assumption if the

central bus guardian is given certain authorities. For example, if the central bus guardians have the ability to buffer

entire frames, a fault in the central guardian could cause it to transmit frames outside of their intended time slots. If

this occurs, the assumption of passive faults in the guardian no longer holds, because the bus guardian is essentially

“generating” frames on the network.

In their analysis of failure mode assumption coverage in the TTA, Bauer et al. [3.11] assert that in order to main-

tain the fault assumption of passive faults in the channels, the active star couplers must not be given the capability
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to store frames and transmit them at a later time. They do not, however, explain why frame buffering should be

prevented, nor do they explore the system-level implications of that constraint.

In the requirements for the central bus guardian Bauer et al. [3.2] specify the minimum number of bits that must

be buffered in order to perform semantic analysis of frames. Semantic analysis is used to stop masquerading dur-

ing startup and problems in integration due to transmission of frames with invalid C-state. This minimum buffer

size is proportional to the number of bits in the longest frame, as well as the difference in clock rates between the

nodes and the star coupler. No analysis of the effects of these restrictions on other system parameters, such as

frame length and clock rates, is given.

Our objective in this research is to examine the engineering tradeoffs of adding centralized authority to a decen-

tralized system by modeling a system based on the TTA with star topology and central bus guardians. We demon-

strate why certain restrictions on the central authority are necessary by assessing the impact on fault-tolerance of

full-frame buffering. We also analyze how added centralized authority can limit other system properties by show-

ing that limiting buffer length also restricts maximum frame size and clock rates.

3.3. TTA Star Topology Model

In order to demonstrate why a central buffer should not be allowed to buffer an entire frame, we compare the

fault-handling capabilities of TTA systems with frame buffering at the central bus guardian with systems contain-

ing star couplers with less authority.

3.3.1. Star-coupler Feature Sets

The four types of star-coupler authority we model are:

• Passive:

� does not stop frames

� does not shift frames in time

• Time windows:

� can open/close bus write access to nodes

� does not shift frames in time

• Small shifting:
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� same authority as time windows

� also can make slight adjustment to frame timing (e.g., shift slightly ahead to fit window)

• Full shifting:

� same authority as small shifting

� also can buffer frames to make large adjustment to frame timing (e.g., save frames to send out at a later

time)

3.3.2. The Formal Model

In order to investigate the behavior of TTP/C in the presence of central star coupler faults, we create a synchro-

nous model of the channel, the couplers, and the nodes. Formally, we define a (finite) set of states S, a set of initial

states I, and a transition relation R. The transition relation relates two states x, x' � S if and only if there is a transi-

tion from x to x'.

In order to obtain a tractable model, we abstract the behavior by merging all transitions that correspond to a sin-

gle time slot in the TDMA schedule, i.e., one transition of our model corresponds exactly to one TDMA slot. As the

slots may have different lengths, a transition in our model may correspond to different interval in real-time, de-

pending on the particular slot.

The set of states S is the set of possible valuations of the state variables. The state variables consist of the vari-

ables the nodes use to store their states and the variables used for the two star couplers. SMV allows specifying I

and R using a list of constraints for each. The constraints are conjuncted to form I and R, respectively.

3.3.3. Modeling a Node

We model the following parts of the state of a single TTP/C node:

• The TTP/C standard describes a state machine with nine states that governs the behavior of the node: freeze,

init, listen, cold_start, active, passive, test, await, and download. Initially, all nodes are in the freeze state.

The variable used to store this state is denoted by state.

• We record the number of correct and bad frames received by the node during a TDMA round. This data is for

the benefit of the clique avoidance algorithm. The names of the variables are agreed_slots_counter

and failed_ slots_counter, respectively.
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• Each node has a variable slot containing the current slot number in the TDMA schedule.

• In order to implement the ''big bang'' cold start algorithm, each node stores a flag big_bang that is set if a

cold start frame is seen while the node is in the listen state.

• The listen state requires a timeout counter, which is modeled using a state variable for each node. In order to

simplify the model, we count the number of TDMA slots using the variable listen_ timeout.

All other parts of the state of a node are not modeled. This includes, in particular, the application data.

We define the following constraints on the transition relation R. The unprimed variables denote the value of the

state variable before the transition, the primed variables denote the value of the state variable after the transition.

Furthermore, let slots denote the number of slots in the TDMA schedule.

3.3.3.1. FREEZE and INIT. From the freeze state, the node may make a transition into one of the states init,

await, or test. From init, it may transition back into the freeze state or may proceed to the listen state. We model

these choices nondeterministically.

state=freeze � state’ � { freeze, init, await, test }

state=init � state’ � { freeze, initialize, listen }

No further constraints are imposed on the variables if the node is in the freeze or init state.

3.3.3.2. LISTEN. In the listen state, the controller watches the channels for frames to integrate on. The control-

ler may integrate on frames with explicit C-state or on cold start frames. Let the frame type on channel 0 be denoted

by channel0_frame, and the frame on channel 1 be denoted by channel1_frame. Each can be one of

none, denoting silence, cold_start, denoting a cold start frame, c_state, denoting a frame with explicit

C-state, bad_frame, denoting a bad frame, or other, denoting a regular frame without explicit C-state.

As described above, nodes do not integrate on the first cold start frame received, but on the second. The variable

big_bang is used in order to distinguish the first and second cold start frame.

big_bang’=

if state� listen then false

else if big_bang then true

else if channel0_frame=cold_start � channel1_frame=cold_start then true

else false

endif
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Let integrating_on_cold_start denote a shorthand for the condition for integrating on the cold start

frame currently on the channel:

integrating_on_cold_start=

state=listen � (channel0_frame=cold_start � channel1_frame=cold_start)

� big_bang

In contrast to cold start frames, frames with explicit C state are used for immediate integration. Let inte-

grating_on_C_state denote a shorthand for the condition for integrating on a C-state frame that is currently

on the channel:

integrating_on_C_state=

state=listen � (channel0_frame=c_state � channel1_frame=c_state)

The node integrates if either condition is true:

integrating=integrating_on_C_state � integrating_on_cold_start

If the node is integrating, the time slot counter is set to the value found on the bus plus one. This value is denoted

by id_on_bus. Thus,

(state=listen � integrating) � slot’=

if id_on_bus=slots then 1

else id_on_bus+1

endif

For startup, the node maintains a timeout counter for the listen state. This counter is initialized with the number

of slots plus the number of the slot that is assigned to the node. This slot is denoted by node_id. The timeout is re-

set also if a good frame is seen on the channels. If no correct frame is received, the node counts down the listen

timeout counter.

listen_timeout’=

if (state� listen � state’=listen) � channel0_frame=cold_start �

channel1_frame=cold_start � channel0_frame=other �

channel1_frame=other then node_id+N

else if listen_timeout� 0 then listen_timeout-1

else 0

endif
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If the node is integrating, the node transitions into the passive state. In case of a timeout, it transitions into the

cold_start state. If there is a cold start frame on either channel that is not used for integration, the node stays in

the listen state even if the timeout counter just reached zero.

state=listen � state’=

if integrating then passive

else if channel0_frame=cold_start � channel1_frame=cold_start then

listen

else if listen_timeout=0 then cold_start

else listen

endif

3.3.3.3. COLD START. Upon entering the cold start state, the node initializes the slot counter with its own slot

number.

(state� cold_start � state’=cold_start) � slot’=node_id

As a shorthand, let next_slot denote the number of the next TDMA slot. This is slot+1 if slot <

slots, and 1 otherwise. During cold start, the node maintains the slot counter as if integrated.

(state=cold_start � state’=cold_start) � slot’=next_slot

(state=cold_start � state’=active) � slot’=next_slot

During cold start, the node monitors the frames on the buses. Once one TDMA round is finished, and traffic is

observed, the node performs the clique avoidance test. If it succeeds, it transitions into the active state. Otherwise,

it transitions back into the listen state.

(state=cold_start) � state’=

if next_slot=node_id then

if agreed_slots_counter’<=1 � failed_slots_counter’=0 then cold_start

else if agreed_slots_counter > failed_slots_counter then active

else listen

endif

else cold_start

endif
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3.3.3.4. ACTIVE. In the active state, the controller maintains the slot counter:

(state=active � state’=active) � slot’=next_slot

(state=active � state’=passive) � slot’=next_slot

It may nondeterministically transition to freeze or passive:

state=active � state’ � { freeze, active, passive }

Let frame_sent denote a shorthand for the frame that is sent by the node:

frame_sent=

if state=active � slot=node_id then c_state

else if state=cold_start � slot=node_id then cold_start

else none

endif

3.3.3.5. The Star Couplers. Each of the two couplers may have one of the following error states: none, corre-

sponding to error-free operation, silence, which replaces any frame that is sent on the channel belonging to the

coupler by silence, bad_frame, which places a bad frame or noise on the bus, regardless if a frame was sent or

not. Furthermore, the out_of_slot fault corresponds to re-sending the last frame received by the coupler.

The fault state of the coupler is denoted by fault, i.e., the full names of the variables are coupler0.fault

and coupler1.fault, respectively. The out_of_slot fault occurs only if the couplers are configured for

full time shifting. All other faults may be caused by any configuration. In accordance with the TTP/C fault hypoth-

esis, we require that at most one coupler has a fault at a given time:

couplerA.fault=none � couplerB.fault=none

In order to model the behavior of the bus system in case of an out-of-slot error, we add a state variable for each

coupler containing the id and type of the frame that was received last. The variable for recording the id is called

buffered_id, the variable for the type is called buffered_frame. The variables are initialized with 0 and

none respectively.

Let channel_id denote the id on the channel belonging to the coupler. Let channel_frame denote the

frame type. Then,

buffered_id’=
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if channel_id=0 then buffered_id

else channel_id

endif

buffered_frame’=

if channel_id=0 then buffered_frame

else channel_frame

endif

The frame currently on the channel is

channel_frame=

if fault=silence then none

else if fault=bad_frame then bad_frame

else if fault=out_of_slot then buffered_frame

else if node[i].node_is_sending then node[i].frame_sent

else none

endif

The id on the channel is defined analogously.

3.4. Experimental Results

3.4.1. Property Checked

We use the following correctness criterion: As the nodes are modeled not to fail, no single fault may prevent any

node from integrating or losing membership. The TTP/C standard requires that the affected node makes a transi-

tion into the freeze state in this situation, i.e., we check that

(state=active � state=passive) � state’� freeze

holds on all reachable states.
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3.4.2. Results

For the passive, time windows, and small shifting couplers we verify that the property above holds. For the con-

figuration that allows any star coupler to buffer full frames and replay them in a later time slot, we obtain counter

examples from the model checker that demonstrate a failure.

If a property does not hold, the SMV model checker produces a trace from any initial state to a state in which the

property does not hold. SMV produces the shortest possible trace. However, the shortest error trace contains four

out-of-slot errors. As one might argue that such an accumulation of errors is unlikely, we add a constraint to the

model which limits the number of out-of-slot errors to one.

This results in a slightly longer trace, but still produces an error that is caused by a duplicated cold start frame:

1) Initially, all nodes are in the freeze state.

2) In the next state, all the nodes transition into the init state.

3) Node A makes a transition into the listen state. The other nodes remain in the init state.

4) The listen timeout counter of node A decreases down to zero. Node B finishes its initialization and transitions

into the listen state.

5) Node A sends a cold start frame on the bus. Node B ignores the frame due to the ''big bang'' requirements. The

nodes C and D make a transition into the listen state.

6) A faulty star coupler replays the previous cold start frame. Node B integrates on it, in compliance with the

''big bang'' requirements.

7) Node A sends another cold start frame. Nodes C and D use this frame to integrate on. Then transition into the

passive state.

8) Node C sends a C-state frame. Node B considers this frame a faulty frame.

9) Node D sends a C-state frame. Node B considers this frame a faulty frame.

10) Node B freezes due to a clique avoidance error.

The error may also be triggered by duplicating a C-state frame. We obtain such a trace by adding a constraint

which prohibits the duplication of cold start frames:

1) Initially, all nodes are in the freeze state.

2) In the next state, all the nodes transition into the init state.
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3) Node A makes a transition into the listen state. The other nodes remain in the init state.

4) The listen timeout counter of node A decreases down to zero. Node C finishes its initialization and transitions

into the listen state.

5) Node A sends a cold start frame on the bus. Node C ignores the frame due to the ''big bang'' requirements.

Node B makes a transition into the listen state.

6) Node A sends another cold start frame. Node C integrates on the frame, and transitions into the passive state.

Node B ignores it according to the ''big bang'' requirements. Node D makes a transition into the listen state.

7) A faulty star coupler replicates the previous frame into the next slot. Node D integrates on it, making a transi-

tion into the passive state. The other nodes consider the frame to be faulty.

8) In the next three frames, the nodes A, B, and C each send a C-state frame. Node D considers all to be a faulty

frames.

9) Node D freezes due to a clique avoidance error.

Both traces are generated in less a than a minute on a 1.5 GHz AMD machine.

3.5. Analysis

The results from our model show that faults that cause frames to be transmitted outside of their assigned time

slot can lead to failures during the startup and integration phases of protocol service. Central bus guardians that are

allowed to buffer an entire frame are susceptible to these types of faults, even in systems with independent, redun-

dant central guardians. If one bus guardian becomes faulty and sends frames in the wrong time slot and the other

bus guardian is behaving correctly, receiving nodes that have already integrated into the cluster will recognize that

the frame on the channel with the faulty bus guardian is incorrect because the frame’s C-state (which contains the

incorrect global time and slot position) does not match its own C-state. These nodes will use the correct frame on

the non-faulty channel, or no frame at all if none is transmitted in that time slot. However, nodes that are integrat-

ing, either during a cold-start or into a running cluster, are not able to determine that the frame is incorrect, and may

use the faulty frame.

It is important to show the problems with system dependability that arise when a central guardian is allowed to

buffer an entire frame because there are several reasons why a system architect might be tempted to buffer an entire

frame. One reason is cost and ease of implementation. A central guardian could use the same controller as the
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nodes to receive frames, buffer them, and send them out again on the network. This design would also violate the

requirement that the central guardian be prohibited from knowing how to generate a frame (including a valid

CRC); however, a central guardian that just receives frames and sends them out again (without re-creating them)

would similarly be a simple solution that requires buffering. The addition of new functionality to the central guard-

ian could also lead to buffering of frames. For example, an active central guardian that keeps "mailboxes" with re-

cent data values could help provide data continuity if frames are corrupted by providing slightly stale values

instead of no value. A central guardian could also provide prioritized message service (e.g., CAN emulation) if it

were allowed to buffer frames and send them in a specially reserved time slice, in priority order. Both of these en-

hanced functions would require buffering full frames.

In addition to examining the importance of restricting buffer size, it is also useful to analyze the effects of this

restriction on other system properties. For example, in the TTA with star topology and central bus guardians, ac-

tive signal reshaping (in the time and value domains) and semantic analysis of the C-state require the guardian to

buffer a minimum number of bits of a frame [3.2], which is determined from the maximum frame length and the

relative difference in rates between the guardian and the nodes.

The restriction on the maximum buffer size (less than the smallest frame) corresponds to a restriction on the re-

lationship between frame lengths and clock rates. If the clock rates of the sending node and the central guardian are

different, the central guardian must buffer some part of a frame before it can begin forwarding it. If the central

guardian is faster, it must wait to send the frame to ensure that it does not run out of bits to send during the transmis-

sion. If the central guardian is slower, it must buffer some of the bits until it has time to send them. This corre-

sponds to the idea of a “leaky bucket” where the fill rate is not equal to the drain rate. The minimum buffer size Bmin

is given by:

Bmin = � le + �	 * fmax (3.1)

where � le is the number of bits required for line encoding, and fmax is the maximum frame size. �	 is the relative dif-

ference in clock rates of the faster 	 max and the slower 	 min:

�	 = ( 	 max - 	 min ) / 	 max (3.2)

Bauer et al. [3.2] find that the �	 * fmax term was multiplied by a factor of 2, however the assumptions in the chap-

ter that lead to that conclusion are unclear. Therefore, we use equation (3.1) for this analysis.
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It has been shown that a central bus guardian must be prohibited from buffering an entire frame; therefore, the

maximum buffer size Bmax is limited by the smallest frame transmitted on the network, such that:

Bmax = fmin - 1 (3.3)

where fmin is the number of bits in the smallest frame. If bmin, � le, and �	 are known the largest allowable frame,

fmax, is found by setting Bmin = Bmax:

fmax = (fmin - 1- � le) / �	 (3.4)

The maximum frame size, therefore, is inversely proportional to the relative difference in clock rates between

the nodes and guardian. Suppose the nominal clock rates of the star coupler and all of the nodes are equal. Even in

this case, variations in the manufacturing process could lead to slight variations in the actual clock rates of the

nodes and, although very small, �	 will not be zero. For example, a typical commodity crystal oscillator may have

a clock rate that varies by approximately 100ppm. If we assume that in the worst-case scenario the clock in the star

coupler is 100ppm fast and the node is 100ppm slow, the difference in clock rates between the two is:

�	 = 2 * (0.0001) = 0.0002 (3.5)

According to the TTP/C Bus-Compatibility Specification [3.12], the shortest frame in TTP/C, an N-frame with

no application data and an implicit CRC, is 28 bits long (4 bits for the mode change request and frame type and 24

bits for the CRC). The minimum cold-start frame requires 40 bits (1 bit for the frame type, 16 bits for the global

time, 9 bits for the round-slot position, and 24 bits for the CRC)[3.5, 3.12]. The minimum frame with explicit

C-state is an I-frame with 48 bits (4 for the mode change request and frame type, 16 bits for the global time, 16 bits

for the MEDL position, 16 bits for membership, and 24 bits for the CRC) [3.12]. Although our model showed that

only cold-start frames and frames with explicit C-state caused failures when an out-of-slot fault occurred, the sys-

tem should be designed to prevent any frame from being transmitted outside of its assigned time slot; therefore, this

analysis assumes a maximum buffer length that is less than 28 bits long.

Using the values fmin = 28, 	 = 0.0002, and � le = 4 we get:

fmax = (28 - 1 - 4) / (0.0002) = 115,000 bits (3.6)

The longest allowable frame size for TTP/C is 2076 bits (an X-frame with 4 bits for mode change request and frame

type, 96 bits for C-state, 1920 data bits, 48 bits for two CRCs, and 8 bits for CRC padding) [3.12]. In this example

longest allowable frame size of 115,000 bits is much larger than the number of bits in the largest allowable frame.
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This calculation is for nodes and central bus guardians with the same nominal clock rate. What happens if the

nominal clock rates of the nodes and the central guardian are not equal? It is possible to calculate the maximum al-

lowable difference in clock rates, given set values of fmin and fmax, by rearranging equation (3.3):

�	 = (fmin - 1- � le) / (fmax) (3.7)

The smallest possible value of fmax is the size of the largest frame required for protocol operation. This is an

I-frame of length 76 bits (4 bits for the mode change request and frame type, 16 bits each for global time, MEDL

position, and membership, and 24 bits for CRC). If we set fmax = 76 bits, � le = 4,and fmin = 28 we get:

�	 = (28 - 1 - 4) / (76) = 0.3026 (3.8)

This means that in order to achieve minimal protocol operation, the relative difference in clock rates between the

bus guardian and the slowest node can not be more than 30.26%.

Now suppose nodes are allowed to send X-frames of maximum length, the longest frames in the protocol. With

fmax = 2076, the limit of �	 becomes:

�	 = (28 - 1 - 4) / (2076) = 0.0111 (3.9)

In this scenario, a system that utilizes the maximum possible frame size cannot have a relative difference in clock

rates between the bus guardian and the slowest node that is greater than 1.11%. The situation becomes more con-

strained if the protocol is altered to allow longer frames, or if the equation in [3.2] is used.

This dependancy between clock rates and frame lengths is not limited to the TTA with a star topology and cen-

tral bus guardian, but rather, it is a fundamental property of any decentralized system with a centralized supervision

of communication that is prohibited from buffering complete frames. Whenever the clock rate of the central super-

visor differs from the clock rate of any one of the supervised components, this central supervisor must buffer some

part of the communication and the minimum size of this buffer Bmin is proportional to the difference in clock �	

and the maximum frame size fmax. In order to maintain system dependability, the maximum size of this buffer Bmax

must be less than the minimum frame size fmin. In other words if the difference between the minimum and maxi-

mum buffer is large, the difference in clock between the central authority and the guarded nodes cannot be. From

equations (2) and (7) we can calculate the ratio of 	 max / 	 min:

	 max / 	 min = (fmax) / (fmax - fmin + 1+ � le) (3.10)
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Figure 3.3 depicts this relationship for � le = 4, where the

range of possible values lie below the curve. This graph

shows that systems with a wide range of frame lengths

cannot also have a wide range of clock rates. The same is

true for systems with a short maximum frame size. It is in-

teresting to note that if the maximum and minimum frame

size are both 128 bits the ratio of 	 max / 	 min is not equal to

fmax, but rather is fmax / 5 = 25. This is due to the 1 + � le term

in equation (3.10). This is a significant limit at high clock

ratios when the transmission time of a frame at the high

clock speed approaches the � le time at the low clock speed.

One simple way to comply with this restriction is to

simply require all nodes and bus guardians to have the

same clock rate. However, there are several reasons why a system architect might choose to have some nodes have

different connection speeds to the hub. Slow, inexpensive nodes (that need a few short frames) might use slow, in-

expensive links, whereas fast, capable nodes (that usually generate and consume more network traffic) might have

fast links. Different clock rates may also be desirable if the hub is designed to filter traffic. From a TDMA point of

view, each frame could get the same size time slice. Frames that are readable to slow nodes would have only a few

bits. Frames with more bits would have to run at a higher bit rate, and would only be readable by faster, more capa-

ble nodes. An active central guardian could allow faster nodes to exchange longer frames, while at the same time

preventing these unreadable frames from being sent to the slower nodes. Unfortunately, it may not be possible to

safely implement these systems because the restrictions on buffer size might not allow significant differences in

clock rates.

3.6. Conclusion

We have demonstrated that allocating some types of authority to the central bus guardian can lead to the same

failures the authority was intended to prevent. In particular, systems that are allowed to stop transmission of

frames with invalid C-states or invalid cold-start frames and have the authority to buffer entire frames can experi-
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ence the same problems in startup and re-integration when faults occur in a star coupler as systems without cen-

tralized control that experience faults at individual nodes.

The example presented in this chapter focused on a synchronous system, the TTA. However, the same effect

could also be observed in asynchronous systems. The failures described above were essentially masquerading fail-

ures caused when the centralized authority introduced invalid frames containing erroneous identification informa-

tion onto the network. The same type of masquerading failures could occur in a distributed, asynchronous system

because the underlying issue is not timing, but rather identification. A central authority with access to the other

nodes’ knowledge (e.g., identification methods) may have the ability to introduce masquerading failures into a de-

centralized system, whether that system is synchronous or asynchronous.

In addition, we have shown that restrictions on the authority of a central buffer correlate to increased restrictions

on other system parameters. In the case of the TTA with a star topology and central bus guardians, the restrictions

on buffer size in the star coupler lead to increased restrictions on frame size and clock rates. In this example, the re-

strictions are primarily due to the fact that frame senders are partially identified by the frame timing. The problem

is not limited to synchronous systems, however, because some of the failures occurred with cold-start frames,

which are used in normal operation before the system has synchronized .

System architects may be tempted to add centralized authority to a decentralized system in order to increase the

efficiency, dependability, or functionality of the system. Our results show that this additional authority must be

scrutinized to ensure that it does not negatively affect other properties of the system.
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