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Abstract

Embedded control networks commonly use checksums to detect data transmission errors. However,

design decisions about which checksum to use are difficult because of a lack of information about the

relative effectiveness of available options. We study the error detection effectiveness of the following

commonly used checksum computations for embedded networks: exclusive or (XOR), two’s complement

addition, one’s complement addition, Fletcher checksum, Adler checksum, and cyclic redundancy codes

(CRC). A study of error detection capabilities for random independent bit errors and burst errors reveals

that XOR, two’s complement addition, and Adler checksums are suboptimal for typical application use.

Instead, one’s complement addition should be used for applications willing to sacrifice error detection

effectiveness to reduce compute cost, Fletcher checksum for applications looking for a balance of error

detection and compute cost, and CRCs for applications willing to pay a higher compute cost for further

improved error detection.

Index Terms

Real-time communication, networking, embedded systems, checksums, error detection codes.
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I. I NTRODUCTION

A common way to ensure network message data integrity is to append a checksum. While it is well

known that Cyclic Redundancy Codes (CRCs) are effective at error detection, a great many embedded

networks employ less effective checksum approaches to reduce computational costs in highly constrained

systems. (Even high-volume embedded applications cannot typically afford to have custom hardware

built for CRC support.) Sometimes such cost/performance tradeoffs are justified. However, sometimes

designers relinquish error detection effectiveness without gaining commensurate benefits in computational

speed increase or memory footprint reduction.

Controller Area Network (CAN) [1], FlexRay [2], and TTP/C [3], among others, use a CRC to ensure

data integrity. However, use of less capable checksum calculations abounds. One widely used alternative is

the exclusive or (XOR) checksum, used by HART [4], Magellan [5], and many special-purpose embedded

networks (e.g., [6], [7], [8]). Another widely used alternative is the two’s complement addition checksum,

used by XMODEM [9], Modbus ASCII [10], and some proprietary communication protocols (e.g., [11],

[12]).

Beyond these options, ostensibly better alternate checksum approaches are commonly used in the non-

embedded networking community. The non-embedded checksum examples we consider as alternatives

are the one’s complement addition checksum in the Transmission Control Protocol (TCP) [13], the

Fletcher checksum used as a TCP alternate checksum [14], and the Adler checksum [15]. These alternate

checksums would appear to offer potential improvements for embedded applications, but are not widely

used in embedded applications yet.

Despite the fact that checksum techniques have been in widespread use for decades, there is surprisingly

little information available about their relative performance and effectiveness. While using improved

alternate checksums could achieve better error detection performance in new protocols, the amount of

improvement possible is unclear from the existing literature. Because new embedded network protocols

are continuously being created for various applications, it is worth knowing which checksum approaches

work best.

This thesis examines the most commonly used checksum approaches in embedded networks, and

evaluates their comparative error detection effectiveness as well as cost/performance tradeoff points.

Checksums examined include: XOR, two’s complement addition, one’s complement addition, Fletcher

checksum, Adler checksum, and CRC. (We use the term “checksum” loosely in describing the CRC,

but this usage is consistent with common use of the generic term “checksum” to mean a function that
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computes a Frame Check Sequence (FCS) value, regardless of the mathematics actually employed.) We

describe checksum performance for random independent bit errors and burst errors. In addition, we

describe the types of data and error patterns that are most problematic for each type of checksum based

on examinations of both random and patterned data payloads.

Our results indicate that some common practices can be improved, and some published results are

misleading. We conclude that one’s complement addition checksums should be used for very lightweight

checksums, that Fletcher checksums should be used instead of Adler checksums for most intermediate-

complexity checksums, and that CRCs offer performance that provides much superior error detection to

a Fletcher checksum for many embedded networks that can afford the computational cost.

Contributions. Concretely, the contributions of this thesis are (1) a quantitative comparison of the

error detection effectiveness of the most common checksum algorithms, namely, XOR, two’s complement

addition, one’s complement addition, Fletcher checksum, Adler checksum, and CRC, (2) formulas for

computing the percentage of undetected two-bit errors for XOR, two’s complement addition, and one’s

complement addition checksums, (3) causes of undetected errors for the various checksums, and (4)

corrections of some common misconceptions regarding error detection effectiveness, Fletcher checksum,

Adler checksum, and CRCs.

II. BACKGROUND AND RELATED WORK

A checksum is an error detection mechanism that is created by “summing up” all the bytes or words

in a data word to create a checksum value, often called a Frame Check Sequence (FCS) in networking

applications. The checksum is appended to the data word (the message payload) and transmitted with

it. Network receivers recompute the checksum of the received data word and compare it to the received

checksum value. If the computed and received checksum match, then it is unlikely that the message

suffered a transmission error. Of course it is possible that some pattern of altered bits in the transmitted

message just happens to result in an erroneous data word matching the transmitted (and also potentially

erroneous) checksum value. There is a tradeoff between the computing power used on the checksum

calculation, size of the FCS field, and probability of such undetected errors.

Commonly used checksums generally fall into three general areas of cost/performance tradeoff. The

simplest, and least effective, checksums involve a simple “sum” function across all bytes or words in a

message. The three most commonly used simple “sum” functions are XOR, two’s complement addition,

and one’s complement addition. These checksums provide fairly weak error detection coverage, but have

very low computational cost. While error detection analysis of these checksums is not terribly difficult, we
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have not found a complete descriptive treatment of their error detection effectiveness in the literature. [16]

provides an analytic comparison of their error detection effectiveness, but does not provide quantitative

data.

The most expensive commonly used checksum is a CRC. Strictly speaking a CRC is not a sum, but

rather an error detection code computed using polynomial division. CRC computation can be a significant

CPU load, especially for very small processors typical of many embedded systems.

Because CRC computation is so expensive, two intermediate-cost checksums have been proposed

for use. The Fletcher checksum [17] and the later Adler checksum [15] are both designed to give

error detection properties almost as good as CRCs with significantly reduced computational cost. In

the late 1980s, Nakassis [18] and Sklower [19] published efficiency improvements for Fletcher checksum

implementations. While Fletcher and Adler checksum error detection properties are almost as good as a

relatively weak CRC, they are far worse than good CRCs for some important situations.

Although the checksums we consider have been known for years or decades, relatively little is published

about checksum error detection performance. Fletcher published error detection information in his original

paper [17]. [16] and [20], taken together, present an analytic comparison of all the checksums we

examine. Early CRC effectiveness studies were lists of optimal CRC polynomials for specific lengths

(e.g., [21][22][23]).

Stone, et al. [24][25][26] measured network checksum effectiveness of one’s complement addition

checksum, Fletcher checksum, and CRC. In their study, they found that one’s complement addition

checksum and Fletcher checksum had much higher probabilities of undetected errors than they expected,

and the reason they gave was non-uniformity of network data.

Koopman [27][28] investigated the CRC polynomials currently in use and proposed alternatives which

provided better performance. Those papers proposed a polynomial selection process for embedded net-

works and determined the optimum bounds for CRC-3 to CRC-16 for data words up to 2048 bits. We

use these results as the source of our CRC data.

McAuley [29] has proposed the Weighted Sum Codes (WSC) algorithm as an alternative to the Fletcher

checksum and CRC. Feldmeier [30] conducted a comparison of WSC against one’s complement addition

checksum, XOR checksum, block parity, Fletcher checksum, and CRC. He asserted that WSC is as good

as CRC in error detection and as fast as Fletcher checksum in compute speed. Because WSCs are not

commonly used, we leave an examination of that checksum to future work.

In the balance of this thesis we describe several algorithms for computing checksums in order of

increasing computational cost, from the XOR checksum to CRCs. We have evaluated error detection
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effectiveness via a combination of analysis and simulation results. Moreover, we give insight into the

strengths and weaknesses of each checksum approach, with an emphasis on particular vulnerabilities

to undetected errors based on data values and bit error patterns. We describe inaccuracies in published

claims or commonly held beliefs about the relative effectiveness of checksums, and examine the cost

effectiveness of various alternatives. We also confirm some cases in which commonly used checksum

approaches are good choices.

III. E FFECTIVENESSEVALUATION

A. Methodology

To carry out the experiments in this thesis, we implemented the various checksum algorithms in

C++. All experiments were carried out on Pentium machines running the Windows operating system.

Evaluation of the performance of each checksum algorithm was performed via simulated fault injection.

Each experiment consisted of generating a message payload (data word) with a specific data value, then

computing a checksum across that data word. The resultant code word (data word plus checksum) was

subjected to a specific number of bit inversion faults, simulating bit inversion errors during transmission.

The checksum of the faulty data word was then computed and compared against the (potentially also

faulty) FCS value of the faulty codeword. If the FCS value of the faulty code word matched the checksum

computed across the faulty data word, that particular set of bit inversions was undetected by the checksum

algorithm used. Identical data word values were used for all checksums, except for CRCs which are known

to be data-independent [27] (data word values do not affect error detection performance). The data used

in each experiment varied, including random data as well as all zeros, all ones, and repeated data patterns.

Burst error experiments were conducted in a similar manner to the bit error experiments except that

instead of subjecting the resultant code word to bit inversions, the code word was subjected to a specific

number of contiguous-bit burst errors. Non-contiguous-bit burst error experiments were not conducted

because these can be thought of as special cases of the bit error experiments.

To simplify comparisons, only data word lengths that were multiples of the checksum size were used

in this study, as is common in real applications. We refer to chunks of the data word the size of the

checksum as blocks. For example, for a two’s complement addition checksum, a 48-bit data word used

with a 16-bit checksum would result in a computation that divides the 48-bit data word into three 16-bit

blocks that are added to compute the 16-bit checksum, forming a48 + 16 = 64 bit code word.

The Hamming Distance (HD) of a checksum is the smallest number of bit errors for which there

is at least one undetected case. For example, a CRC with HD=4 would detect all possible 1-, 2-, and
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3-bit errors, but would fail to detect at least one 4-bit error out of all possible 4-bit errors. With the

assumption of random independent bit errors in a binary symmetric channel, the main contributing factor

to checksum effectiveness for most embedded applications is the fraction of undetected errors at the

Hamming Distance, because the probability of more errors occurring is significantly less likely (e.g., 3-bit

errors are approximately a million times more common than 4-bit errors assuming a random independent

Bit Error Rate (BER) of10−6). Thus, analysis of undetected errors at the HD is performed to give insight

into experimental results.

For bit-error experiments, the faults injected in each experiment were either all possible 1-, 2-, or 3-bit

errors in the code word for each data word value examined. Where necessary, experiments with 4-bit

errors in the code word were also conducted. The total number of undetected errors for each particular

experiment was then noted. At least ten trials were made for each type of experiment and the mean for all

the trials was obtained. For example, ten experiments were performed where all possible 2-bit errors were

injected into a (504+8)-bit code word with random data and an 8-bit checksum size. (For experiments

where the ratio of the standard deviation to the mean was greater than five percent, we performed 100

trials. We determined the number 100 by determining the point at which the standard deviation to mean

ratio reached its asymptotic value.)

Some of the graphs in this thesis show the percentage of undetected errors (Pctud) which is the ratio

of undetected errors with respect to the total number of all possible errors for that particular bit-error

degree. Other graphs show the probability of undetected errors (Pud) for the HD at each code word

length.Pud is different because it uses the Hamming weight (HW) which is the number of undetected

errors at the HD of the checksum at that particular code word length, and multiplies this by a given BER.

Pud is often more useful than justPctud because it takes into account the BER and permits comparison

of codes with different HDs.Pud can be computed as follows

Pud = HW (BERx)(1−BER)n−x

wheren is the code word length in bits, andx is the number of random independent bit errors.

For burst error experiments, contiguous-bit burst errors starting from two bits up to at least(k+1) bits

(k=checksum size) were injected in the code word for each data word value examined. For a particular

burst-error degree, all possible contiguous-bit burst error values were injected. Using the same example as

above, all possible contiguous 9-bit burst errors were injected into a (504+8)-bit code word with random

data and an 8-bit checksum size. Most experiments were stopped as soon as there was one undetected

burst error for that burst-error degree. The exceptions to this were the experiments for Fletcher and Adler
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checksums. We performed experiments up tok +1 contiguous bit bursts even though there were already

undetected burst errors atk/2 contiguous bits (k=checksum size).

In some instances, we found it useful to perform comparisons of the probability of undetected errors

to the commonly held notion of checksum effectiveness being approximately equal to1/2k, wherek is

the checksum size in bits. The intuitive argument for this is that because there are2k possible checksum

values for ak-bit checksum, given more or less random data and random corruption, there is a1/2k

chance of the FCS just happening to match the corrupted data values by chance (e.g., a one-in-256

probability of undetected error for an 8-bit checksum).

B. XOR Checksum

Exclusive Or (XOR) checksums are computed by XOR’ing blocks of the data word together. The order

in which blocks are processed does not affect the checksum value. One can think of an XOR checksum as

a parity computation performed in parallel across each bit position of data blocks (biti of the checksum

is the parity of all block bitsi, e.g., bit 3 of the checksum is the parity of bit 3 of all blocks).

The XOR checksum is data-independent (error detection performance is not affected by data word

values). Because it is a parity computation, the XOR checksum has a Hamming Distance (HD) of 2,

detecting all one-bit errors, but not some two-bit errors. In particular, it fails to detect any even number

of bit errors that occur in the same bit position of the checksum computational block. It detects any

bit error pattern that results in an odd number of errors in at least one bit position, which includes all

situations in which the total number of bit errors is odd. It also detects all burst errors up tok bits in

length (k equal to the checksum size), because two bits must align in the same position within a block

to become undetected. Burst errors greater thank bits in length are detectable if they result in an odd

number of actual bits being inverted or if the inverted bits do not align in the same bit position in the

affected blocks.

For block size ofk and checksum sizek, in every pair of data blocks there are exactlyk possible

undetected two-bit errors (one undetected two-bit error for each bit of the block, in which errors happen

to occur to the same bit position in the two blocks). For ann-bit code word, we multiply by the number

of combinations ofk-size blocks in the code word taken two at a time. Thus, the number of undetected

two-bit errors is

k ∗

 n/k

2

 =
k(n/k)((n− k)/k)

2
=

n(n− k)
2k
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The total number of possible two-bit errors for ann-bit code word is n

2

 =
n(n− 1)

2

Dividing the number of undetected two-bit errors by the total number of two-bit errors gives us the

fraction of undetected two-bit errors as
n− k

k(n− 1)

wheren is the code word length in bits andk is the checksum size in bits.

Fig. 1. Percentage of undetected errors over total number of two-bit errors for 8-, 16-, and 32-bit XOR, two’s complement

addition, and one’s complement addition checksums. Two’s complement addition and one’s complement addition data values

are the mean of 10 trials using random data.

From the above equation, we can see that asn approaches infinity, the percentage of undetected two-

bit errors becomes approximately1/k (k being checksum size), which is rather poor performance for

a checksum (i.e., 12.5% undetected errors for an 8-bit checksum, and 3.125% for a 32-bit checksum).

Simulation results confirm this analysis. (See Figure 1.) The XOR checksum has the highest probability

of undetected errors for all checksum algorithms in this study, and is not as effective as addition-based

checksums for general purpose error detection uses.

C. Two’s Complement Addition Checksum

The two’s complement addition checksum (“add checksum” for short) is obtained by performing an

integer two’s complement addition of all blocks in the data word. Carry-outs of the accumulated sum are

discarded, as in ordinary single-precision integer addition. The order in which blocks are processed does
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not affect the checksum value. The add checksum is data-dependent, with the probability of undetected

errors varying with the data word value. The add checksum detects all one-bit errors in the code word,

and has a Hamming Distance of 2 for all code word lengths.

An add checksum can be thought of as an improvement of XOR checksums in that bit “mixing”

between bit positions of the data blocks is accomplished via bit-by-bit carry-outs of the binary addition.

The effectiveness of mixing depends on the data being added, which determines the pattern of carry bits

across various bit positions.

A significant cause of undetected errors is when a pair of bit errors in different data blocks line up

at the same bit position within the blocks, and the data in those bit positions contains a 1 in one block

and a 0 in the other block. The resultant erroneous data blocks have a 0 in the first block and a 1 in the

other block, resulting in the same sum.

A second important source of undetected errors is when the most significant bit (MSB) positions of

any two data blocks are inverted, regardless of value. This type of error is undetected because the sum

remains the same and carry-out information from that position is lost during the computation, making it

impossible to detect a pair of ones changed to zeros or a pair of zeros changed to ones in the MSB.

A third source of undetected errors is a non-carry-generating bit being inverted in the data word and

the bit in the corresponding bit position in the checksum also being inverted.

Because data-dependent error detection vulnerabilities involve a concurrent inversion of 1 and 0 bits

in the same bit position, the add checksum performs worst when each bit position has an equal number

of zeros and ones. For this reason, random data gives very nearly the worst case for undetected errors

because it tends to have the same number of zeros and ones in each bit position. Given that random

data is often used to evaluate checksums, but real data sent in network messages often has a strong bias

toward zeros due to unused data fields, random data evaluation of add checksums can be considered

pessimistic for many cases. The add checksum performs best when data is all ones or all zeros, because

inverting a pair of identical bits causes a carry bit effect that is readily detected.

Even for worst case data, as can be seen from Figure 1, add checksum is almost twice as effective

as the XOR checksum for long data words. This is because the primary cause of undetected errors is

inverted bits that are both differing and in the same bit position, whereas XOR undetected errors also

occur for bit values that don’t necessarily differ.

For worst case data, add checksum has an undetected two-bit error percentage approximately equal

to (k + 1)/2k2, wherek is the checksum size. This equation can be arrived at by adding together the

undetected error percentages for each bit position. The MSB bit has an undetected error percentage equal
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Fig. 2. Percentage of undetected two-bit errors for 16-bit two’s complement addition and one’s complement addition checksums.

Data points for both checksums are the mean of 100 trials using random data. Worst case bound is from the given formula.

to that of XOR,1/k. All the other bits have an undetected error percentage half of XOR(1/2k) because

only 0-1 and 1-0 error combinations will be undetected. Multipying the two ratios by the number of bits

in each block and then adding them together gives us

1
k

(
1
k

)
+

1
2k

(
k − 1

k

)
=

1
k2

+
k − 1
2k2

=
k + 1
2k2

However, this equation is just an approximation because it does not take into account the third source

of undetected errors mentioned previously nor the fact that some of the 0-1 and 1-0 error combinations

will be detectable due to carry-bit generation. It is a useful approximation, however, and can be thought

of as a bound, as can be seen in Figure 2.

For long data words with all zero or all one data, add checksum asymptotically fails to detect

approximately1/k2 of two-bit errors, wherek is the checksum size in bits. (See Appendix I for formula

derivations.)

Figure 3 shows simulation results for exactly identical numbers of zero and one data (alternating 0xFF

and 0x00 values), all zeros, and all ones. Randomly generated data word values were very close to the

worst case as expected, and are omitted from the figure.

The add checksum detects all burst errors up tok bits in length wherek is the checksum size. Burst

errors greater thank bits may or may not be detected depending on the number of bits inverted and

their bit positions. The same reasons for undetected bit errors apply to burst errors. Thus, if a burst error

greater thank bits occurs but the inverted bits do not have the same bit positions or otherwise do not fall

into any of the three categories of undetected errors mentioned earlier, then it is unlikely that the burst
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Fig. 3. Probability of undetected errors for 8-bit checksums using different data and a BER of10−5

error will go undetected.

D. One’s Complement Addition Checksum

The one’s complement addition checksum is obtained by performing an integer one’s complement

addition of all blocks of the data word. One’s complement addition can be performed on two’s complement

hardware by “wrapping around” the carry-out of the addition operation back into the checksum. In

particular, if adding a block to the running checksum total results in a carry-out, then the running

checksum is incremented. Speed optimizations are known for hardware that does not support carry bits

(e.g., [13]). The order in which blocks are processed does not affect the checksum value.

The main performance difference between one’s complement and two’s complement addition check-

sums is in the error detection capability of bit inversions affecting the MSB of blocks. Because the

carry-out information of the MSB is preserved via being wrapped around and added back into the least

significant bit, bit inversions that affect a pair of ones or a pair of zeros in the MSB are detected by

one’s complement addition checksums, but are undetected by two’s complement addition checksums.

([16] gives a similar explanation.) One’s complement addition checksums detect all burst errors up to

k − 1 bits in length, wherek is the checksum size in bits. Somek-bit burst errors are undetectable

because of the wrap-around of carry-outs back into the low bits of the checksum. Burst errors greater

than k bits in length will be undetectable if they fall into any of the categories of undetectable errors

previously described. Other than the error detection performance for MSB bits, the behavior of one’s and

two’s complement addition checksums is identical, with one’s complement addition checksum having a

slightly lower probability of undetected errors for random independent bit errors (Figure 3).
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At asymptotic lengths, the probability of undetected errors for all 0 and all 1 data approaches2/n

wheren is the code word length in bits. (See Appendix II for formula derivation.)

For worst case data at asymptotic lengths, approximately1/2k of all possible two-bit errors are detected.

This is half of the ratio of undetected errors for XOR checksum. The intuitive logic behind this is that

for each bit position only 0-1 and 1-0 error combinations will be undetected, unlike in XOR checksum

where 0-0 and 1-1 error combinations are also undetectable. Looking at Figure 1, it can be seen that

one’s complement addition checksum is as good as XOR checksum at half the checksum size for random

independent bit errors on random data.

E. One’s Complement Fletcher Checksum

The Fletcher checksum [17][14] is only defined for 16-bit and 32-bit checksums, but in principle could

be computed for any block size with an even number of bits. We use the one’s complement addition

version, which provides better error detection than the two’s complement addition version [18]. We

confirmed this experimentally. (Throughout this thesis “Fletcher checksum” means “one’s complement

addition Fletcher checksum.”)

A Fletcher checksum is computed with a block sizej that is half the checksum sizek (for example,

a 32-bit Fletcher checksum is computed with a block size of 16 bits across the data word, yielding a

32-bit checksum value). The algorithm used to compute the checksum iterating across a set of blocks

D0 to Dn is:
Initial values: sumA = sumB = 0;

For increasingi : { sumA = sumA + Di;

sumB = sumB + sumA; }
sumA andsumB are both computed using the same block sizej. The resulting checksum issumB

concatenated withsumA to form a checksum that is twice the block size. The accumulation ofsumB

makes the checksum sensitive to the order in which blocks are processed.

Fletcher checksum error detection properties are data-dependent. As with addition-based checksums,

the highest probability of undetected error occurs when data in each bit position of the blocks is equally

divided between zeros and ones. Random data word values also give approximately worst case error

detection performance due to a relatively equal distribution of zeros and ones in each bit position. When

data is all zero, the only undetected error is one in which all bits in a single block are changed from

zeros to ones. (Recall that 0xFF also represents zero in 8-bit one’s complement notation.)

The Fletcher checksum can detect all burst errors that are less thanj (or k/2) bits long, wherej is the

block size which is half the checksum sizek. As expected, it is vulnerable to burst errors that invert bits
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in a block from all zero to all one or vice versa (the Adler checksum has the same vulnerability). Our

experiments have verified that excluding this special type of burst errors, Fletcher checksum can detect

all burst errors less thank bits, wherek is the checksum size. [17] gives a more detailed explanation of

burst error detection properties.

The Fletcher checksum has HD=3 up to a certain, modulo-dependent, code word length and HD=2

for all remaining code word lengths. We have confirmed experimentally that two-bit errors are detected

for data word lengths less than(2k/2 − 1) ∗ (k/2) bits wherek is the checksum size and(2k/2 − 1) is

equal to the Fletcher checksum modulus. [17] states further that all two-bit errors are detected provided

that they are separated by fewer than(2k/2 − 1) ∗ (k/2) bits, k being the checksum size.

Fig. 4. Probability of undetected errors for 8-bit Fletcher and Adler checksums using random data and BER of10−5. Data

values for both Fletcher and Adler checksums are the mean of 10 trials. CRC-8 bound values are optimal values for all 8-bit

CRC polynomials.

We have also confirmed experimentally that an 8-bit Fletcher checksum has HD=2 for code word

lengths of 68 bits and above, with HD=3 below that length. A 16-bit Fletcher checksum has HD=2

starting at 2056-bit codeword lengths. According to the equation, a 32-bit Fletcher checksum is expected

to have HD=2 starting at a code word length of 1,048,592 bits.

Figure 4 shows the probability of undetected errors of the Fletcher checksum. In general, Fletcher

checksums are significantly worse than CRCs, even when both achieve the same HD. In particular,

Fletcher checksums have a significantly higher probability of undetected error than1/2k for long lengths,

while CRCs typically have a slightly lower probability of undetected error than1/2k, k being checksum

size. The significance of1/2k here is that it is a commonly held notion that all checksums have the same

error detection effectiveness equal to1/2k wherek is the checksum size. Further discussion of Fletcher



13

checksum performance is in Section IV-B. The CRC bound shown in the figure is the lowest probability

of undetected errors of any 8-bit CRC. Of all the checksum algorithms in this study, Fletcher checksum

has the next best overall error detection capability after CRC except for the special case of 16-bit Adler

checksum at short lengths.

F. Adler Checksum

The Adler checksum [15] is only defined for 32-bit checksums, but in principle could be computed

for any block size with an even number of bits. The Adler checksum is similar to the Fletcher checksum

and can be thought of in the following way. By using one’s complement addition, the Fletcher checksum

is performing integer addition modulo 255 for 8-bit blocks, and modulo 65535 for 16-bit blocks. The

Adler checksum instead uses a prime modulus in an attempt to get better mixing of the checksum bits.

The algorithm is identical to the Fletcher algorithm, except sumA is initialized to 1 and each addition is

done modulo 65521 (for 32-bit Adler checksum) instead of modulo 65535. As with a Fletcher checksum,

the result is sensitive to the order in which blocks are processed.

Although the Adler checksum is not officially defined for other data word lengths, we used the largest

prime integers less than24 = 16 and less than28 = 256 to implement 8- and 16-bit Adler checksums for

comparison purposes. Because the algorithm is similar to that for Fletcher checksums, Adler checksums

have similar performance properties. (See Figure 4.) We have confirmed experimentally that two-bit errors

are detected for data word lengths less thanM ∗ (k/2) bits wherek is the checksum size andM is

equal to the Adler checksum modulus. Our experiments show that Adler-8 has HD=3 below 60 bits

(using modulo 13 sums), and that Adler-16 has HD=3 below 2024 bits (using modulo 251 sums). From

the equation, Adler-32 is expected to have HD=3 below 1,048,368 bits. For code word lengths greater

than those mentioned above, Adler checksum has HD=2. As with Fletcher checksums, the worst case for

undetected error probability is with an equal number of zeros and ones in each data block bit position,

meaning that random data has nearly worst-case undetected error performance.

Adler-8 and Adler-16 can detect all burst errors that are less thanj (or k/2) bits long wherej is the

block size which is equal to half the checksum sizek. Adler-32 detects all burst errors up to 7-bits long.

([15] defines Adler-32 blocks to be 1 byte or 8 bits wide with 16-bit running sums soj = 8 for Adler-32.)

Excluding burst errors that change data in the data blocks from all zero to all one or vice-versa, all burst

errors less thank−1 are detected. This is one bit less than Fletcher checksum, which is unexpected. ([20]

states that Adler checksum has a higher probability of undetected burst errors than Fletcher checksum

but does not explicitly state that burst error detection is one bit less.) The reason for this is that Adler
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checksums use a prime modulo which is less than2k − 1 whereas Fletcher checksums use a modulo

equal to2k − 1, k being checksum size. A comparison of Fletcher and Adler checksum performance is

given in Section IV-C.

G. Cyclic Redundancy Codes (CRCs)

The simplest version of a CRC computation uses a shift-and-conditional-XOR approach to compute

a checksum [31]. Faster methods of computation are available (e.g., [31][32][33] based on complete or

partial lookup tables), but are still slower than the other checksum techniques discussed. The selection

of a good generator polynomial is crucial to obtaining good error detection properties, and is discussed

in [28].

Fig. 5. Bounds for probability of undetected errors for all 8-bit CRCs and all 16-bit CRCs (BER =10−5)

All CRCs are data-independent and have a Hamming Distance of at least 2 for all code word lengths.

Most polynomials have HD=3 or higher for some lengths less than2k wherek is the checksum size. Also,

some polynomials detect all odd-bit errors, at the expense of worse error detection ability for even-bit

errors. All burst errors are detected up tok bits in length wherek is the checksum size in bits. Figure 5

shows the bounds for the lowest probability of undetected errors for 8-bit CRCs and 16-bit CRCs.

IV. REVISITING CHECKSUM SELECTION CHOICES

In this section we examine some published and folk wisdom misconceptions about checksum perfor-

mance in light of our experiments. Of course there will be individuals who do not hold, and publications

which do not contain these misconceptions, but we have observed these issues to arise often enough that

they warrant specific attention.
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A. Effect of Data Value & Error Value Distributions on Effectiveness

When data is uniformly distributed, it is common for an assumption to be made that all checksum

algorithms have the same probability of undetected errors(Pud) of 1/2k, wherek is the checksum size in

bits. The intuitive argument is that because there are2k possible checksum values for ak-bit checksum,

given more or less random data and random corruption, there is a1/2k chance of the FCS just happening

to match the corrupted data values by chance (e.g., a one-in-256 probability of undetected error for an

8-bit checksum). While this is true for completely random data and corruption, most data isn’t really

random, and neither do many types of corruption result in total random data scrambling. More often,

checksum effectiveness is controlled by the limiting case of patterned data, and corruption that is patterned

or only affects a few bits.

As an example, Stone et al. [25] studied the behavior of one’s complement addition checksum (which

they examined in the context of its use as the TCP checksum), Fletcher checksum, and CRC across real

network data. They observed that one’s complement addition checksum and Fletcher checksum had aPud

which was far worse than the value of1/2k that they expected. They theorized that the reason for this

was because of the non-uniform distribution of the data they were using, and in their Corollary 8 claim

that if data had been uniformly distributed, the IP and Fletcher checksums would have been equivalently

powerful. [20] furthers this point of view in its analysis. While this may be true, the explanation is not

necessarily useful in predicting the effectiveness of checksums operating on non-random data. Moreover,

we think that it is also important to consider the effectiveness of checksums at detecting small numbers

of corrupted bits even on data with randomly distributed values such as encrypted data or compressed

data (e.g., streaming video).

We have found it productive to look at the effectiveness of a checksum in terms of how much the

checksum value varies based on relatively small changes to the data value used as input. One way of

looking at this is evaluating the effectiveness of a checksum computation in terms of its effectiveness as

a pseudo-random number generator. The better the generator, the more likely that multiple bits of the

output will be affected by even a single bit change in input value. An XOR checksum, for example,

changes only one bit of computed FCS value for a one bit change in data value. One’s complement and

twos’ complement addition change only one bit of FCS value for a single bit of data value changed in

the worst case (when there are no carries changed) and many bits of data value in the best case. Fletcher

and Adler checksums typically change several bits in the FCS for a single bit data value change, with

the changes more pronounced in the high half of the FCS. A single bit change in the data value for a
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CRC in typical cases has the potential to affect all the bits of the FCS.

Fig. 6. Performance of 16-bit checksums with random data and random independent bit errors (BER of10−5). Data values

for one’s complement addition, Fletcher, and Adler checksums are the mean of 10 trials.

The results of effectiveness can be seen when examining performance for small numbers of bit errors.

Figure 6 shows different checksum algorithms applied to the same uniformly distributed random data. The

graph clearly shows thatPud is dependent on the algorithm used. XOR and one’s complement addition

checksums perform the worst, while CRC performs the best. (Two’s complement addition checksum is

not included here for clarity of presentation.) This is a result of the different effectiveness of checksums

at generating different outputs for small changes in input. Fletcher, Adler, and CRC algorithms attain

better than1/2k for short messages due to their mathematical properties, but only a good CRC does

better than1/2k for all data lengths.

The worst case for a weak checksum algorithm is a small number of bit errors that don’t mix the results

very much. As the number of bit errors in a single code word increases, then all checksums converge to

the1/2k limit value, making the choice of checksum algorithm moot. So, to the degree that corruption of

data does not result in totally random erroneous data, the selection of checksum algorithms is important.

Pud is further influenced by the data word content when data-dependent checksums such as add,

one’s complement addition, Fletcher, and Adler are used. Data-dependent here means thatPud for these

checksums varies depending on the data word content, unlike in XOR checksum and CRC wherePud

remains the same regardless of data word content. The percentage of undetected errors is least when

the data is all zero or all one. The percentage increases when the number of zeros and ones in each bit

position in the data is more equal. In view of this, the highest percentage of undetected errors usually

occurs for random data having an even number of ones and zeros in every bit position.
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Fig. 7. Probability of undetected errors for 8-bit one’s complement add checksum (BER of10−5) using different data patterns.

Data patterns were of the form XX-00 where XX was varied from 00 to 0xFF.

Fig. 8. Probability of undetected errors in random data for a 64-bit data word using 8-bit checksums and a BER of10−5.

Data values are the mean of 100 trials.

Figure 7 shows this effect for one’s complement add checksum. In this experiment, the different values

were alternated with 0x00 bytes. In the figure, the effect of increasing the number of bit positions where

there is an equal number of ones and zeros can be clearly seen. It can also be noted that the worst case

bound coincides with the line for the 0xFF-0x00 data pattern. Figure 8 shows the resultingPud when

the number of randomly-placed ones in the data word is increased from 1 to 63 in a 64-bit data word

message. The probability of undetected errors increases from when data is 100% zeros or ones to when

data is 50% zeros and 50% ones in every bit position in the data word.
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B. Fletcher Checksum Compared to CRCs

Some previous work (e.g., [17][15]) has claimed that Fletcher checksum and Adler checksum are

comparable to CRC in error detection capabilities. However, in all cases CRC is substantially better

at the same HD, and in many important cases achieves better HD. [20] computed the undetected error

probabilities for some CRC-32 polynomials and Fletcher-32 and Adler-32 checksums for a length of 8KB

or 65536 bits. Their results show that CRC outperforms both Fletcher-32 and Adler-32.

Fig. 9. Probability of undetected errors for 16-bit Fletcher checksum and two 16-bit CRCs at a BER of10−5. Data values for

Fletcher checksum are the mean of 10 trials using random data.

[17] states that for asymptotically long code words, the one’s complement addition Fletcher checksum

detects1/(2k/2−1)2 of all possible errors, which is only slightly less than1/2k (k = checksum size). “All

possible errors” here seems to mean all bit errors regardless of number, and all burst errors regardless of

length - in effect, this is similar to the random data argument (Pud is always equal to1/2k) we mentioned

earlier under which any checksum performs about that well.

Most embedded systems have code word lengths that are much shorter than2k bits, k being checksum

size. Even the Ethernet Maximum Transmission Unit (MTU), for example, is only 1500 bytes (or 12,000

bits) which is much shorter than 65535 bits. At these lengths CRCs often have distinct advantages. By

using Fletcher and Adler checksums at these lengths, error detection capability is considerably suboptimal

- at least one bit of HD in error detection capability is effectively being given up.

Figure 9 shows a comparison of Fletcher checksum to two CRC polynomials, the common CCITT-16

and the 0x8016 polynomial which performs better than CCITT-16 starting at 32Kbits where it has HD=3

compared to CCITT-16’s HD=2. For short code word lengths, the Fletcher checksum is at least 1 bit of

HD worse than CRCs. The dips in the figure mark the points where CCITT-16 changes from HD=4 to
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HD=2 at 32Kbits, and where 0x8016 changes from HD=3 to HD=2 at 64Kbits.

Fig. 10. Probability of undetected errors for some common CRCs and Fletcher-8 at a BER of10−5. Data values for Fletcher-8

are the mean of 10 trials using random data.

We would like to reiterate what was said in [28], that the selection of the best CRC polynomial for

the desired checksum size is of utmost importance. Figure 10 shows that incorrect selection of a CRC

polynomial can result in worse error detection perfromance than the Fletcher checksum. Applications that

use DARC-8 would be better off using Fletcher-8, while, applications that use CRC-8 and ATM-8 but

don’t use code words shorter than 128 bits would get comparable performance to Fletcher-8. However,

polynomial 0xA6 would be a better choice for applications that want to use an 8-bit CRC above a 128-bit

data word length.

Fig. 11. Probability of undetected errors for Fletcher-16 and CRC bounds for different CRC widths at a BER of10−5. Data

values for Fletcher-16 are the mean of 10 trials using random data.



20

Comparison of Fletcher checksum effectiveness to CRCs was also performed on CRC checksum sizes

less than the Fletcher checksum size (see Figure 11). Optimal CRC bounds from 8-bit CRC to 12-bit

CRC were plotted against the 16-bit Fletcher checksum. The resulting graph shows that it is possible for

an optimal CRC polynomial with a smaller checksum size to outperform the Fletcher checksum. CRC-8,

CRC-9, and CRC-10 all perform better than Fletcher-16 for code word lengths less than 128, 256, and

512 bits, respectively. CRC-11 performs better than Fletcher-16 for code word lengths less than 1024

bits, performs worse for greater than 1024 but less than 2048 bits, and then performs comparably for

lengths greater than 2048 bits. CRC-12 consistently outperforms Fletcher-16 for all code word lengths.

Optimal CRCs with more than 12 bits will perform better than Fletcher-16, and thus, are omitted from

the graph.

C. One’s Complement Fletcher checksum compared to Adler checksum

The Adler checksum has been put forward as an improvement of Fletcher checksum [15], and it is

commonly believed that the Adler checksum is unconditionally superior to the Fletcher checksum (e.g.,

[34][35]). (In private communication, Mark Adler stated that what [15] meant was that Adler-32 is an

improvement over Fletcher-16. At that time, he was not aware of Fletcher-32, but this point is not widely

known and is not apparent in [15].)

Fig. 12. Comparison of 8-, 16-, and 32-bit Fletcher and Adler checksums using random data at a BER of10−5. Data point

values are the mean of 10 trials.

The better mixing of bits that Adler checksum provides due to its prime modulus has been claimed to

provide better error detection capabilities than Fletcher checksum. We have found that this is often not
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the case (see Figure 12). [20] also shows that Fletcher-32 is better than Adler-32 for 65536 bit lengths,

but does not comment on shorter lengths.

The Adler checksum outperforms the Fletcher checksum only for 16-bit checksums, and only in that

checksum’s HD=3 performance region (see Figure 12). The issue is that while the prime modulus in

the Adler checksum results in better mixing, there are fewer “bins” (i.e., valid FCS values) available for

code words. In most cases, this reduction in bins outweighs the gains made by better mixing. Thus, the

Fletcher checksum is superior to the Adler checksum in all cases except for Adler-16 used on short data

word lengths. And even then, the improvement in error detection effectiveness might not be worth the

increase in complexity and computational cost of performing modular addition.

V. ERRORDETECTION AND COMPUTE COST TRADEOFFS

Selection of the best checksum for a given application is usually not based on error detection properties

alone. Other factors such as computational cost frequently come into play as well.

Fig. 13. Error Detection Effectiveness vs. Compute Cost Tradeoffs for 8-bit Checksums (BER of10−5) The compute cost unit

x is equal to the compute cost of the XOR checksum.

Feldmeier’s study on fast software implementations for checksum algorithms [30] showed that one’s

complement addition checksum is approximately twice as fast as Fletcher checksum and Fletcher check-

sum is at least twice as fast as CRC. To get a better idea of the tradeoffs per checksum algorithm, the

results of our study were plotted against the results of Feldmeier’s paper. (See Figure 13)

The XOR checksum has the smallest compute cost of all checksum algorithms. However, it also has

the worst error detection properties among all the checksum algorithms. Its error detection properties do

not significantly change with code word length.
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Two’s complement addition checksum (“add checksum” for short), if executed in hardware, has a

slightly higher compute cost than XOR checksum due to propagation delay of carry bits. If executed in

software, the add checksum has the same compute cost as XOR checksum. At little or no extra cost, the

add checksum is nearly twice as good as the XOR checksum in error detection properties. Code word

length does not significantly affect its error detection ability.

For some hardware implementations, one’s complement addition checksum has no additional cost over

add checksum. In software implementations, it has a very slightly higher compute cost than add checksum

because of the MSB carry bit incorporation. It makes up for this slightly higher cost by being slightly

better at error detection than add checksum. Its error detection properties are not affected by code word

length. The one’s complement addition checksum should usually be used instead of XOR checksum and

add checksum, unless there are very compelling reasons for not doing so.

The Fletcher checksum has double the compute cost of one’s complement addition checksum due to

its having two running sums instead of one, but is at least an order of magnitude better at error detection

at long code word lengths. For short code word lengths, it is a number of orders of magnitude better

than the one’s complement addition checksum due to its HD=3 error detection. As can be seen from

Figure 13, error detection properties of the Fletcher checksum sharply deteriorate after a certain code

word length.

The Adler checksum has a slightly higher compute cost than the Fletcher checksum due to its use of a

prime for its modulo. It has, at most, a comparable error detection property to Fletcher checksum. Like

Fletcher checksum, its error detection ability also drops off after a certain code word length. (It drops off

at 60 bits for Adler-8, which is why Adler checksum appears to be much worse than Fletcher checksum

in Figure 13.) When given a choice between using the Fletcher checksum and Adler checksum for short

codeword lengths, the Fletcher checksum should almost always be used. Not only does it have a lower

compute cost, but also, it has better overall error detection properties.

The CRC has the highest compute cost of all checksum algorithms. It is generally double the compute

cost of Fletcher checksum. However, it also has the best error detection properties of all the checksum

algorithms. For the same checksum size, an optimal CRC polynomial is orders of magnitude better than

Fletcher checksum for code word lengths less than2k wherek is the checksum size. For code word

lengths longer than this, an optimal CRC polynomial is approximately an order of magnitude better than

Fletcher checksum. Among all the checksum algorithms studied, the CRC has the greatest variance in

error detection ability with respect to code word length.

To serve as verification of Feldmeier’s results, the compute costs of the actual code used to obtain
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the data for this study was determined. As expected, XOR and add checksums have exactly the same

cost when implemented in software. One’s complement addition checksum had a compute cost of 1.8

times that of add checksum. This could be explained by the fact that the C implementation did not use

the “add with carry” instruction. If this instruction were used, the compute cost would have been the

same as that of add checksum. Fletcher checksum had a compute cost of 4 times that of add checksum.

The reason for this is that the authors were using a non-optimized version of the Fletcher checksum.

As shown in [30], the Fletcher checksum can be optimized to twice the compute cost of add checksum.

Adler checksum had a compute cost of 1.25 times that of the Fletcher checksum, which is as expected.

Figure 13 shows that the shorter the code word length, the greater the benefit of using a CRC compared

to other checksum algorithms. For code word lengths greater than2k with k equal to checksum size,

the benefit of using a CRC drops sharply because it only provides HD=2 error detection performance.

(Results are similar for larger checksums, with the lengths at which CRCs provide better than HD=2

substantially longer.) Thus, while it may be difficult to justify the increased computational cost of using a

CRC for the large data words found in typical enterprise and desktop computing environments, the story

is quite different for short messages (often less than 100 bits) typically found in embedded networks.

For embedded network applications, using a CRC can bring orders of magnitude better error detection

performance for a factor of about 4 performance penalty. ([33] presents some CRC polynomials that have

better error detection performance at comparable cost to common CRC polynomials.) While Fletcher and

Adler checksums can provide HD=3 at short message lengths, they are outperformed by a good CRC at

all message lengths by at least one bit of HD.

Of course these performance numbers are just approximate ratios and many factors determine the best

choice for a particular application. However, the general notion in widespread circulation that Fletcher

and Adler checksums are more or less as good as a CRC at dramatically less computation cost are not

really accurate for embedded applications. Checksums other than CRC give up orders of magnitude in

error detection effectiveness in return for a factor of two to four speedup. Moreover, applications that use

an XOR checksum could have significantly better error detection for essentially the same computational

cost simply by using a two’s complement addition or preferably a one’s complement addition checksum.

VI. CONCLUSIONS

The error detection properties of checksums vary greatly. The probability of undetected errors for ak-

bit checksum is not always1/2k in realistic applications as is sometimes thought. Rather, it is dependent

on factors such as the type of algorithm used, the length of the code word, and the type of data contained
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in the message. The typical determining factor of error detection performance is the algorithm used, with

distinct differences evident for short messages typical of embedded networks.

Even for moderately long messages, error detection performance for random independent bit errors on

arbitrary data should be considered as a potentially better (and simpler) model than1/2k wherek is the

checksum size in bits. Behavior on small numbers of bit errors seems to be a limiting factor of overall

error detection performance.

Based on our studies of undetected error probabilities, for applications where it is known that burst

errors are the dominant source of errors, XOR, two’s complement addition, and CRC checksums provide

better error detection performance than one’s complement addition, Fletcher, and Adler checksums.

For all other applications, a “good” CRC polynomial, whenever possible, should be used for error

detection purposes. It provides at least one additional bit of error detection capability (more bits of

Hamming Distance) compared to other checksums, and does so at only a factor of two to four times higher

computational cost. In applications where computational cost is a severe constraint, Fletcher checksum is

typically a good choice. The Fletcher checksum has lower computational cost than the Adler checksum

and, contrary to popular belief, is also more effective in most situations. In the most severely constrained

applications, one’s complement addition checksums should be used if possible, with two’s complement

addition a less effective alternative. There is generally no reason to continue the common practice of

using an XOR checksum in new designs, because it has the same software computational cost as an

addition-based checksum but is only about half as effective at detecting errors.
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APPENDIX I

TWO’ S COMPLEMENT ADDITION CHECKSUM FORMULA DERIVATIONS

The formulas for the percentage of undetected errors for all zero and all one data are derived as follows.

A. All Zero Data

For ann-bit code word with all zero data, the number of undetected two-bit errors is equal to the sum

of the total number of bits in the code wordn minus the checksum sizek, and the combination of all

the most significant bits in the data word taken two at a time,

(n− k) +

 ((n− k)/k)

2

 = (n− k) +
((n− k)/k)((n− 2k)/k)

2

=
2(n− k) + ((n− k)/k)((n− 2k)/k)

2
=

2k2(n− k) + (n− k)(n− 2k)
2k2

The total number of possible two-bit errors for ann-bit code word is n

2

 =
n(n− 1)

2

Dividing the number of undetected two-bit errors by the total number of two-bit errors gives us the

percentage of undetected two-bit errors as

2k2(n−k)+(n−k)(n−2k)
2k2

n(n−1)
2

=
2k2(n− k) + (n− k)(n− 2k)

nk2(n− 1)

wheren is the code word length in bits andk is the checksum size in bits.

B. All One Data

For ann-bit code word with all one data, the equation used depends on whether the most significant

bit (MSB) of the checksum is 1 or 0. The MSB changes every(2k/2) ∗ k bits of data word length. For

example, in an 8-bit checksum, the MSB of the checksum changes after every 1024 data word bits.

Looking at the 1st, 3rd, 5th, and so on set of data words, it can be seen that the MSB of the checksum

is 1. For this case, ann-bit code word will have an undetected two-bit error equal to the checksum

size k minus the number of onesi in the binary form of((n/k) − 2) multiplied by data word length

((n− k)/k), plus the combination of all the most significant bits in the data word taken two at a time:

(k − i)((n− k)/k) +

 ((n− k)/k)

2

 = (k − i)
(

n− k

k

)
+

(n− k)(n− 2k)
2k2
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Considering the 2nd, 4th, 6th, and so on set of data words, the undetected two-bit error for ann-bit

code word is equal to one plus the checksum sizek minus the number of onesi in the binary form of

((n/k)− 2) multiplied by data word length((n− k)/k), plus the combination of all the most significant

bits in the data word taken two at a time:

(k − i + 1)((n− k)/k) +

 ((n− k)/k)

2

 = (k − i + 1)
(

n− k

k

)
+

(n− k)(n− 2k)
2k2

The reason for the addition of 1 to the 2nd equation is that having a value of 0 in the MSB causes the

bits in the MSB column to generate additional undetected errors.

The two equations above when divided by the number of all possible two-bit errors (n bit combinations

taken two at a time) will yield the following equations.

For the 1st, 3rd, 5th, and so on set of(2k/2) ∗ k data words,

2(k − i)((n/k)− 1) + ((n/k)− 1)((n/k)− 2)
n(n− 1)

wheren is code word length in bits,k is checksum size in bits, andi is the number of zeros in the

checksum or the number of ones in the binary form of((n/k)− 2) within checksum width.

For the 2nd, 4th, 6th, and so on set of(2k/2) ∗ k data words,

2(k − i + 1)((n/k)− 1) + ((n/k)− 1)((n/k)− 2)
n(n− 1)

wheren is code word length in bits,k is checksum size in bits, andi is the number of zeros in the

checksum or the number of ones in the binary form of((n/k)− 2) within checksum width.

APPENDIX II

ONE’ S COMPLEMENT ADDITION CHECKSUM FORMULA DERIVATION

For all zero and all one data, only one equation is needed because there are no undetected two-bit

errors due to the MSB. The equation is equal to the one from two’s complement add checksum for all

zero data minus the undetected bit errors caused by the MSB. Thus, percentage of undetected errors is

equal to:
(n− k) n

2


=

(n− k)
n(n−1)

2

=
2(n− k)
n(n− 1)

wheren is the code word length in bits andk is the checksum size in bits.


