
Standard Ethernet as an Embedded Communication Network

Project Report

For the Degree Of Master Of Science

April 26, 1999

Candidate: Geoffrey R. Hendrey

Advisor: Philip Koopman

Department of Electrical and Computer Engineering

Carnegie Mellon University

Pittsburgh, PA 15213

Standard Ethernet as an Embedded Communication Network June 8, 1999 1

Standard Ethernet as an Embedded
Communication Network

Geoffrey R. Hendrey

Abstract

Standard 10 Mbit/s Ethernet is being used for embedded real-time networking despite funda-

mental problems with prioritization, schedulability, and delay bounding. Furthermore, the charac-

teristics of embedded time-driven workloads (periodicity, synchronization, and short messages)

result in significantly longer message delays than Poisson-type “general purpose” workloads. This

paper shows what kind of delay performance to expect when Ethernet is used for embedded net-

working, shows how to use controlled jitter to improve Ethernet performance, and compares Ether-

net delays to Controller Area Network (CAN) delays. We simulated several embedded workloads

incorporating time-driven traffic and varying frame sizes. For Ethernet with time-driven workloads

and 15m cable lengths, delays were roughly 35 times the delays for a Poisson workload. However, we

found that by introducing controlled jitter we could reduce average delays by about 26% and

“worst-case” delays by about 47% for embedded Ethernet. In practice, this jitter can be added from

user-level networking code without any modification to drivers or hardware. We conclude that

because Ethernet operates at a higher bit rate than slow-speed embedded protocols, and is most effi-

cient on short cable lengths, average message delays are comparable to those of CAN, and can be

made acceptable for soft real-time embedded workloads.

1.0 Introduction

Protocols such as Foundation Fieldbus, ControlNet, Interbus, and CAN have been developed specif-

ically for networking embedded real-time systems. These protocols typically run slowly (around 1 Mbit/s)

Standard Ethernet as an Embedded Communication Network June 8, 1999 2

but offer increased determinism over multiple access methods used by desktop networks [MTL, 98]. For

hard real-time applications, determinism is a must, since missed deadlines can result in catastrophic system

failure [Krishna, 97]. However, for soft real-time systems that will not fail dangerously if a message dead-

line is occasionally missed, it is possible that a familiar high-speed local area network (LAN) protocol can

provide performance comparable to a dedicated embedded protocol. This paper explores the performance

of the most popular LAN, IEEE 802.3 Ethernet, when used for embedded communication. We compare the

performance of Ethernet to CAN, a common embedded communication protocol, typically used in auto-

motive and industrial machine control [Moon, 96][Glaze, 96].

Ethernet has several properties that make it ideal for distributed embedded systems. First, Ethernet is

a completely decentralized protocol. There is no centralized polling station that can fail. There is no token

that can be lost. Ethernet, in its most basic version runs at 10 Mbit/s, an order of magnitude faster than

most embedded protocols [CAN, 91]. Communication software can be developedand testedon worksta-

tions using a familiar API such as the POSIX IV socket calls and should be portable to a Real-Time Oper-

ating System (RTOS) without modification. The code can be run and debugged on workstations that use

the same medium access control (MAC) as the target platform.

Ethernet has traditionally been used to network enterprise workstations and to transfer non-real-time

data. The success of Ethernet in the desktop world has been due to its simplicity, expandability, robustness,

and affordable implementation. Based on Ethernet’s success as a data network, embedded soft real-time

communication networks are being implemented with standard 10 Mbit/s Ethernet for economy, familiar-

ity, and compatibility with enterprise networks.

By using TCP/IP on top of Ethernet, embedded systems can become globally accessible from enter-

prise networks. This connectivity and interoperability is possible, and affordable using commodity off-the-

shelf (COTS) hardware and software, which has led to a recent surge in interest in embedded Ethernet.

Consider that embedded Ethernet controller chips sell for less than 10 dollars in quantities of 1000. 32-bit

ARM processor cores with integrated 10/100BaseT Ethernet and an RTOS license cost $32.50 in quantities

Standard Ethernet as an Embedded Communication Network June 8, 1999 3

of 10,000 [Shear, 97]. At least 8 proprietary real-time operating systems (RTOS) provide “small” TCP/IP

implementations ranging from 20 Kb to 120 Kb designed for use in embedded applications [Quintell, 97].

There are two reasons to expect that the performance of Ethernet will be different for embedded

workloads than for LAN-type workloads. First, Ethernet was designed to perform well under workloads

that behave as Poisson processes, which is a reasonable model for LAN traffic. However, embedded real-

time workloads are often time-driven, in which messages are generated by periodic sampling intervals

rather than explicit event triggers. In time-driven systems, messages are generated in synchronized periodic

bursts. These bursts are caused by the transmission of sense/process/actuate messages during system states

that must be simultaneously sampled by several control loops (e.g. piston strikes top-dead-center in a com-

bustion engine) [Backman, 97]. The time required to serialize the time-driven messages greatly increases

the average message delay. Many embedded protocols handle such message pileups efficiently; Ethernet

does not. Secondly, while the typical topology for both an Ethernet LAN subnet and an embedded Ethernet

is a star topology, cable lengths in an embedded Ethernet will likely be no more than 15m. Because colli-

sion detection occurs more rapidly as cable lengths decrease, the Ethernet MAC is actually more efficient

for embedded systems than for LANs, given the same workload. This improvement in collision detection

speed helps offset the degradation of delay performance caused by typical time-driven embedded work-

loads.

Because there are significant pros and cons to using Ethernet for embedded communication, a thor-

ough evaluation of Ethernet’s performance on embedded workloads with short cable lengths (e.g. 15m) is

needed. The performance of Ethernet for LANs has been well established both analytically and by obser-

vation for many kinds of traffic [Mazraani, 91][Gonsalves, 88][Boggs, 88][Hutchinson, 87][Shwarts, 87],

but no studies could be found that address the performance of Ethernet under time-driven workloads with

cable lengths and topologies representative of embedded systems. In order to build an embedded soft real-

time system with the requisite confidence that messages will make their deadlines, the delay performance

of Ethernet must be established for embedded workloads.

Standard Ethernet as an Embedded Communication Network June 8, 1999 4

In section 2 we elaborate further on the differences between CAN and Ethernet, and describe previ-

ous research that has been done, primarily on the LAN topology, to establish throughput and delay charac-

teristics for Ethernet.

In section 3 we show the results of MAC level simulations of Ethernet on a LAN topology to serve

as a baseline for later comparison with the embedded topology. Three models of traffic are used: a Poisson

model in which all the messages have exponentially distributed interarrival times, a time-driven model in

which all of the messages are generated with the same period and phase, and a mixed workload in which

half the messages are Poisson and half are time-driven. For each scenario we generated cumulative distri-

bution functions (CDF) of message delays and compare the average and “worst-case” delays.

 In section 4 we produce CDFs of message delays using cable lengths typical of embedded systems,

not LANs. These CDFs allow the probability of missed deadlines to be evaluated and can be used as a

guideline for building embedded Ethernets. We also point out the significant reduction in delay that is

achieved by short cable lengths.

In section 5 we introduce controlled queuing jitter as a means to reduce message delays for embed-

ded Ethernet workloads. We present a method for choosing how much jitter should be introduced, and

show simulation results for time-driven workloads that indicate delays can be significantly reduced using

this technique.

In section 6 we compare the delay performance of Ethernet to CAN. We compare both the average

and worst-case delays. We show that for the average case, Ethernet delays are shorter than CAN delays,

and are only slightly longer in the “worst-case”.

Standard Ethernet as an Embedded Communication Network June 8, 1999 5

2.0 Background and previous work

2.1 Embedded Ethernet

We assume the reader is familiar with carrier-sense multiple access with collision detection used by

the IEEE 802.3 MAC [IEEE85]. Throughout this paper, “Ethernet” will refer to the 10 Mbit/s Ethernet

described by 802.3.

 Numerous studies have addressed the performance of Ethernet for non-real-time applications. One

of the most thorough observational studies (which we will use in section 6 to validate our simulator) was

conducted by Gonsalves [Gonsalves, 85]. Gonsalves used a bus structured LAN consisting of 3 500m seg-

ments, and measured the performance of a 33-38 host, 10Mbit/s Ethernet. Throughput and delay statistics

were collected. However, Gonsalves’ results are not applicable to embedded Ethernets because the cable

lengths were too long, and a modern star topology was not used.

The suitability of the Ethernet LAN for voice traffic was investigated in [Gonsalves, 83]. Although

packets were generated periodically, and delay was considered as a performance metric, there was no syn-

chronization of sources as would be found in an embedded time-driven system. The performance of Ether-

net under bursty traffic was examined in [Mazraani, 91] but bursty sources were Poisson sources that had

active and inactive periods, not periodic time-driven sources that we consider essential for modeling

embedded traffic.

Hutchinson and Merabti simulated a generic real-time workload comprised of periodic and aperiodic

messages, but due to the limitations of their simulation platform, they scaled the network baud rate to 250

Kbps [Hutchinson, 87]. The scaled delay characteristics presented do not match well with Gonsalves’

observed delays in [Gonsalves, 85]. Sources described as synchronous were in fact Poisson streams, and

only 512-byte frames were considered for the synchronous sources, which means that the simulation was

more representative of multimedia-type traffic than a real-time control system that would typically

Standard Ethernet as an Embedded Communication Network June 8, 1999 6

exchange messages using the smallest frame size available - 64-bytes. Furthermore, no simulation valida-

tion results were presented.

Despite its non-deterministic delay characteristics, Ethernet has been used, and will continue to be

used for real-time systems. The literature describes Ethernet being used in closed loop systems to monitor

and control everything from servos to linear particle accelerators [Mazraani, 91] [Addison, 98][Elkins, 86]

[Daniel, 98] [Daniel, 98][Quintell, 97][Shear, 97]. The majority of these papers are qualitative “industry/

experience” papers, or present data that is very specific to a single system.

No previous studies could be found that present distributions of message delays for time-driven

Ethernet traffic, using the star topology which is common in modern hubbed Ethernets, and considering

cable lengths typical of embedded systems (e.g. 15m as opposed to 1500m). This lack of data reduces the

design of embedded real-time Ethernet to intuition and guesswork.

2.2 CAN

The following introduction is taken directly from the CAN specification [CAN,91]:

“The Controller Area Network (CAN) is a serial communications protocol which effi-

ciently supports distributed realtime control with a very high level of security. Its domain

of applications ranges from high speed networks to low cost multiplex wiring. In automo-

tive electronics, engine control units, sensors, ant-skid systems, etc. are connected using

CAN with bitrates up to 1 Mbit/s. ... Whenever the bus is free, any unit may start to trans-

mit a message. If 2 or more units start transmitting messages at the same time, the bus

access conflict is resolved by bitwise arbitration using the IDENTIFIER. The mechanism

of arbitration guarantees that neither information nor time is lost. ...During arbitration,

every transmitter compares the level of the bit transmitted with the level that is monitored

on the bus. If these levels are equal, the unit will continue to send. When a ‘recessive’

Standard Ethernet as an Embedded Communication Network June 8, 1999 7

level is sent and a ‘dominant’ level is monitored... the unit has lost arbitration and must

withdraw without sending one more bit.”

In order for bitwise arbitration to work, the time required to transmit a single bit must be long

enough that the bit “fills” the entire cable length, and all stations have a consistent read-back value. At 1

Mbit/s, the ISO11898 standard specifies that the CAN bus cannot exceed 40 m. Increasing the bit rate

beyond 1 Mbit/s would require reducing the cable length beyond practicality for many industrial or auto-

motive embedded systems. Thus, constraints on the minimum usable cable length impose a fundamental

limit on the maximum CAN bitrate.

It is claimed in [24] that CAN bitwise arbitration can guarantee latency times for messages. Such

guarantees are essential for hard real-time systems. It has been shown in [12] that if every message in a

CAN workload is periodic (give or take some maximum queuing jitter), rate monotonic (RM) scheduling

can be performed on a CAN workload. Using RM scheduling, a hard upper bound can be calculated for the

message delay (latency) associated with a particular IDENTIFIER, as claimed in [12]. RM scheduling is

an optimal static-priority scheduling algorithm which guarantees that if any scheduling algorithm can pro-

duce a feasible schedule, so can RM [20]. However, in order to use the RM algorithm for static scheduling,

all messages must be assigned a period. Interarrival times cannot deviate from this period by more than a

maximum queuing jitter. Therefore, static scheduling can be applied, but only so long as care is taken to

buffer aperiodic messages in such a way that their interarrival times are never shorter than the value

assumed for scheduling.

In summary, CAN was designed to handle time-driven messages without wasting time resolving col-

lisions, as Ethernet does. It is possible to statically and optimally schedule a CAN workload. However,

CAN implementations cannot run faster than approximately 1 Mbit/s, an order of magnitude slower than

Ethernet.

Standard Ethernet as an Embedded Communication Network June 8, 1999 8

3.0 Embedded real-time workloads

Embedded real-time workloads typically exhibit a higher degree of synchronization and periodicity

than non-real-time workloads [Addison, 98][Hutchinson, 87][Elkins, 86]. This is because real-time sys-

tems are often time-driven, inherently sampled systems. In such systems, synchronization can occur

because there are specific instances when data must be collected and transmitted. Further, ordinary dis-

crete-time control theory is based on cyclic sampling of system states at a time-invariant sampling rate.

Thus, sampled data electromechanical control systems will need to send periodic sense-process-actuate

messages between sensors, programmable logic controllers (PLC), and actuators. After a data value is

sampled, it must be delivered to the controller before it becomes stale, and is no longer usable by the con-

trol algorithm [Backman, 93][Nilsson, 98]. Likewise, the control message from the controller to the actua-

tor must be delivered before its useful lifetime expires. When a state variable must be sampled or updated

at a particular instant, the system is inherently time-driven.

In addition to time-driven traffic, Poisson messages represent another type of traffic that is found in

embedded systems [Tindell, 94]. For example, the Society of Automotive Engineers [SAE93] describes a

list of signals sent between the various subsystems of a typical automobile. Many of the messages are peri-

odic, such as brake pressure and vehicle speed readings. However, sporadic signals are also generated

when the driver turns the ignition key or when a gear shift is in progress. These messages can be modeled

as Poisson streams.

We formulate three simple workloads, based on the Poisson and time-driven messages that are

present in typical embedded control applications.

• Poisson workload. The Poisson workload is the model of traffic often assumed for LAN traffic. Mes-

sage arrivals are exponentially distributed with average interarrival time α.

Standard Ethernet as an Embedded Communication Network June 8, 1999 9

• Time-driven workload. The time-driven workload is comprised entirely of synchronized, periodic

messages with arrival period α. This workload resembles the worst case behavior of an inherently sam-

pled system in which all sense/process/actuate loops are in lock step.

• Mixed workload. The mixed workload is comprised of 50% Poisson traffic and 50% time driven traf-

fic. The same interarrival parameter α is used for both types of traffic.

Number of stations is another important consideration for embedded systems. For typical embedded

systems such as vehicles or robots, we consider 32 to be a reasonable upper bound on the number of net-

work interfaces that would be present.

4.0 Results

4.1 LAN Baseline

Before simulating Ethernet using cable lengths typical of embedded systems, we first simulated a

balanced star LAN. We provide the LAN results because significant differences exist between the LAN

and embedded throughput and delay characteristics. Comparisons between section 4.1 and 4.2 show that

simulation results obtained for the LAN topology will be quite pessimistic if used for designing embedded

Ethernet. Since our LAN simulation results are well validated (Section 6) we can infer that much of the

simulation and observational data collected on the Ethernet LAN in prior studies must be taken with a

grain of salt when applied to embedded Ethernet.

We first ran simulations to establish the performance of our three workloads in the LAN environ-

ment. We simulated a 10 Mbit/s Ethernet with frame sizes of 64 bytes, 512 bytes, and 1500 bytes. A bal-

anced star topology was considered, and no packet buffering was used. We used a one way propagation

delay of 30us which is reported in [Gonsalves, 85] for a 1500m LAN. For simulations of the Poisson and

time-driven workloads, 35 stations were used. For the mixed workload, 17 stations generated Poisson traf-

fic and 17 generated time-driven traffic.

Standard Ethernet as an Embedded Communication Network June 8, 1999 10

Throughput data for the Poisson and mixed workload is presented in section 6 as part of the simula-

tor validation. The results are sufficiently close to those in [Gonsalves, 85] that they are not presented as

new data. Fig. 1 shows the throughput curve vs. offered load for the time-driven workload, which has not

been simulated in prior studies, even on the LAN topology. For 64 byte frames the throughput tracks the

offered load until the offered load is about 1 Mbit/s. For offered loads greater than 1Mbit/s the throughput

does not exceed 2 Mbit/s because incoming frames are dropped while the network interface is busy. For

512 and 1500 byte frames, throughput tracks the offered load until the offered load is around 5 Mbit/s. The

throughput of the larger frames is closer to the ideal because larger frames are generated less frequently for

the same offered load, so contention becomes an issue at higher offered loads than for small frames.

FIGURE 1. LAN Throughput Vs. Offered Load, Time-Driven Workload

Fig. 2 shows the average message delay characteristics for the Poisson workload as a function of

offered load. Fig. 2 matches well with Gonsalves’ results in [Gonsalves, 85] and are again presented as a

baseline to which we contrast the delay performance for time-driven and mixed workloads. Below an

offered load of 1 Mbit/s, the delay is relatively constant for all three frame sizes. Above 1 Mbit/s, the num-

ber of collisions increases and frames are delayed while they wait to access the channel.

Fig. 3 shows how the average message delay varies as a function of the offered load for the mixed

workload. Here we see a noticeable change from the Poisson workload of Fig 2. For offered loads below

0.10 1.0 10.0
0

1

2

3

4

5

6

7

8

9

10

11
10 Mbps Ethernet, Throughput Vs Offered Load

Offered Load (Mbit/s)

Ne
t T

hr
ou

gh
pu

t (
M

bit
/s)

ideal

1500 byte

512 byte

64 byte

ideal
1500 byte frames
512 byte frames
64 byte frames

Standard Ethernet as an Embedded Communication Network June 8, 1999 11

10 Mbit/s, an offset has been added to each of the delay curves. This offset is caused by the additional time

required to serialize the 17 messages that periodically arrive at the same instant.

Fig. 4 shows the average delay vs. offered load for the fully time-driven LAN workload. All 35 sta-

tions are simultaneously transmitting. Because all messages arrive at the same instant, the average amount

of time required to send a message is independent of the offered load, provided all 35 frames are cleared

before the next arrival instant. Fig. 4 shows the large overhead that is introduced by collision resolution

when many frames arrive simultaneously. Average delays are 6.6 ms, 15.3 ms, and 34.6 ms for 64 byte,

512 byte, and 1500 byte frames respectively, when the offered load is a reasonable 1 Mbit/s. For all three

frame sizes, the delay overhead caused by message synchronization is close to or worse than the message

delays observed at 100% loading (10 Mbit/s offered load) for a Poisson workload. Thus, the overhead

introduced by time-driven traffic is very large, and independent of the offered load for offered loads below

10 Mbit/s. This shows that the MAC delay induced by time-driven traffic even at light offered loads is as

bad as the delay caused by fully loading the Ethernet with Poisson messages.

FIGURE 2. LAN Delay vs. offered load, Poisson workload

0.10 1.0 10.0
0

5

10

15

20

25

30

35

40

Offered Load (Mbit/s)

de
lay

 (m
s)

10 Mbit/s Ethernet, Poisson Workload

1500 byte frames
512 byte frames
64 byte frames

Standard Ethernet as an Embedded Communication Network June 8, 1999 12

FIGURE 3. LAN Delay vs. offered load, mixed workload

FIGURE 4. LAN Delay vs. offered load, time-driven workload

Figs. 2, 3, and 4 only provide information about the average message delays. In addition to the aver-

age message delays, we need to know how the delays are distributed in order to evaluate the probability

that a message will miss its deadline. From a soft real-time perspective, perhaps the most important infor-

mation to have before building an embedded communication system is the fraction of messages that miss

their deadlines. The cumulative distribution function of message delays allows this fraction to be deter-

mined. In order to generate CDFs, we ran our simulator in trace mode and recorded the delay experienced

by every message in the simulation. We ran the simulations at an offered load of 1 Mbit/s, 10% of the avail-

able bandwidth. We chose 10% based on figs.2-4, that show average delays are still in the “flat” region for

10% offered load (1 Mbit/s).

0.10 1.0 10.0
0

5

10

15

20

25

30

35

40

Offered Load (Mbit/s)

de
lay

 (m
s)

10 Mbit/s Ethernet, Mixed−Workload

1500 byte frames
512 byte frames
64 byte frames

0.10 1.0 10.0
0

5

10

15

20

25

30

35

40

Offered Load (Mbit/s)

De
lay

 (m
s)

10 Mbit/s Ethernet LAN, Time−Driven Workload

1500 byte frames
512 byte frames
64 byte frames

Standard Ethernet as an Embedded Communication Network June 8, 1999 13

FIGURE 5. LAN CDF of normalized message delay

 Fig. 5 shows CDFs of normalized frame delay for Poisson, time-driven, and mixed workloads. We

normalized the frame delays by dividing the delay by the length of time required to transmit all the bits in

the frame. Frame sizes shown are 64 bytes and 512 bytes. The CDFs of 1500 byte messages were not

shown in Fig. 5 in order to simplify the plot. The 1500 byte CDFs were very close to those of the 512 byte

frames, running about 0.05 above the 512 byte CDFs. The CDF for the Poisson workload shows that virtu-

ally all of the messages experienced normalized delays of less than 30 frames. Because there is no syn-

chronization in the Poisson workload, collisions are infrequent and quickly resolved by the BEB

mechanism. This behavior is the best-case behavior of an Ethernet LAN and is close to the ideal CDF. The

ideal CDF is a step function that changes from 0 to 1 after a single normalized frame delay, indicating that

no collisions took place at all and all messages were delivered in the amount of time required to send a sin-

gle frame.

Fig.5 also shows the CDFs of the mixed and time-driven workloads. Because the mixed and time-

driven workloads contain synchronized, periodic messages, the CDF shows large deviation from the ideal

CDF as collision resolution takes longer to serialize the synchronized arrivals. The mixed and time-driven

CDFs show more “rolloff” because message delays are spread over a wider range of times due to conten-

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Normalized delay (frames)

fra
ct

io
n

of
 p

ac
ke

ts

CDF of normalized delay for sporadic, mixed, and time−driven workloads

time−driven

mixed

Poisson

64−byte frames
512−byte frames

Standard Ethernet as an Embedded Communication Network June 8, 1999 14

tion. This shows that the introduction of time-driven traffic significantly increases the delay in a LAN envi-

ronment for all frame sizes but has the greatest effect on small frames.

Table 1 summarizes the normalized mean frame delays at 1Mbit/s offered load. For a given type of

traffic, the mean normalized delay improves as frame sizes increase, as we saw in Figs. 3, 4, and 5. This is

no surprise since for larger frame sizes fewer messages need to be sent to generate the 1 Mbit/s offered

load. Fewer frames mean fewer collisions and less waiting, on average. However, the difference between

columns in the same row is quite large. The difference is most pronounced between Poisson 64 byte frames

and time-driven 64 byte frames. For the same offered load of 1 Mbit/s, messages in the 64 byte time-driven

workload wait, on average, 48 times as long as messages in the 64 byte Poisson load.

While mean delays are certainly an important metric for soft real-time systems, the utility of the

CDF is that it allows us to evaluate the probability of arbitrary message delays. Of particular interest is the

longest delay that a frame is likely to experience. Table 2 summarizes the 99 percentile delay. The choice

of the 99 percentile is somewhat arbitrary but allows the system designer to place a probabilistic bound on

how long it will take to send a frame. Hutchinson and Merabti cite 95% as a reasonable guarantee for

Ethernet in real-time applications [Hutchinson, 87] but we consider this to be a bit too lax for applications

we have seen. Since we are assuming the system issoftreal-time, we consider 99% to be sufficient. Table 2

shows us the normalized 99 percentile frame delay for all three workloads across frame sizes. Again, the

differences between the time-driven and sporadic workloads is notable. 64 byte time-driven frames have a

normalized 99 percentile delay more than 21 times that of 64 byte frames in the Poisson workload

.

TABLE 1. Normalized mean frame delays (number of frames)

Poisson Mixed
Time-
Driven

64 byte 2.7329 43.4435 129.4792

512 bye 1.0823 10.4476 37.3981

1500 byte 1.0600 8.0530 28.8220

Standard Ethernet as an Embedded Communication Network June 8, 1999 15

The baseline LAN simulation serves as a point of departure, to which we will compare our results as

we simulate Poisson, time-driven, and mixed workloads using cable lengths typical of embedded systems.

4.2 Embedded-sized networks

In this section we simulate our three workloads using cable lengths typical of an embedded system.

We assume a 15m cable length and a conservative propagation velocity of 1/2 the speed of light. This

results in a propagation delay of 100ns.

Fig. 6 shows throughput vs. offered load for the embedded-sized network with the time-driven work-

load. Of particular interest is the throughput for 64 byte frames, which tracks the ideal curve much more

closely than it does in Fig. 2, and reaches a throughput of over 5 Mbit/s at an offered load of 10 Mbit/s. For

short cable lengths, the efficiency of Ethernet improves considerably. This means that the embedded topol-

ogy is more bandwidth efficient than the LAN topology for small frames that are characteristic of embed-

ded workloads. Since an embedded real-time network should never offer more load than the available

bandwidth, we consider the region of interest to be offered loads below 100% (10Mbit/s). For embedded

real-time systems, reasonable offered loads should be kept well below 100%. The throughput is very close

to ideal for all frame sizes when the offered load is below 10% (1Mbit/s). Because we do not use packet

buffering, this implies that few frames are being dropped at an offered load of 1Mbit/s. Therefore, as a

rule-of-thumb for embedded Ethernet, the offered load should be kept below approximately 10%.

TABLE 2. Normalized 99 percentile frame delays (number of frames)

Poisson Mixed
Time-
Driven

64 byte 29.88 273.43 635.01

512 bye 3.00 58.50 139.50

1500 byte 1.50 46.50 82.50

Standard Ethernet as an Embedded Communication Network June 8, 1999 16

FIGURE 6. 15m throughput Vs. Offered load, Time-driven Workload

Figs. 7, 8,and 9 show the delay characteristics for the embedded Ethernet for Poisson, mixed, and

time-driven workloads. For all three workloads, the delays for all frame sizes are lower for the embedded

topology than the LAN topology owing to the decreased collision detection and propagation time. For the

fully time-driven workload of Fig. 9, delays are about 5 ms less for the embedded topology than for the

LAN. For all three workloads, the delay is still fairly constant until the offered load exceeds 1Mbit/s. This

bolsters our conclusion that 1 Mbit/s is a reasonable offered load for the embedded topology as well as for

the LAN.

FIGURE 7. 15m Delay vs. Offered Load, Poisson workload

0.10 1.0 10.0
0

1

2

3

4

5

6

7

8

9

10

11
10 Mbps Ethernet, Throughput Vs Offered Load

Offered Load (Mbit/s)

Ne
t T

hr
ou

gh
pu

t (
M

bit
/s)

ideal

1500 byte

512 byte

64 byte

ideal
1500 byte frames
512 byte frames
64 byte frames

0.10 1.0 10.0
0

5

10

15

20

25

30

35

40

Offered Load (Mbit/s)

de
lay

 (m
s)

10 Mbit/s Ethernet, Poisson Workload

1500 byte frames
512 byte frames
64 byte frames

Standard Ethernet as an Embedded Communication Network June 8, 1999 17

FIGURE 8. 15m Delay vs. offered Load, mixed workload

FIGURE 9. 15m Delay Vs. Offered Load, time-driven workload

Fig. 10 shows the CDFs generated for an Ethernet with a 100ns propagation delay and 64, 512 and

1500 byte frames, respectively. The offered load was 1 Mbit/s. The CDFs of the embedded topology are

quite different than the CDFs obtained for the LAN topology. The most improvement over the LAN CDFs

is seen for 64 byte frames, which is good news for embedded systems because most messages in a time-

driven workload are likely to be small control messages. For each workload there is not as much variation

between the delay CDFs for small and large frames as there was for the LAN topology, and all of the CDFs

have tightened up considerably. This is significant for an embedded system because it means the determin-

0.10 1.0 10.0
0

5

10

15

20

25

30

35

40

Offered Load (Mbit/s)

de
lay

 (m
s)

10 Mbit/s Ethernet, Mixed Workload

1500 byte frames
512 byte frames
64 byte frames

0.10 1.0 10.0
0

5

10

15

20

25

30

35

40

Offered Load (Mbit/s)

de
lay

 (m
s)

10 Mbit/s Ethernet, Time−Driven Workload

1500 byte frames
512 byte frames
64 byte frames

Standard Ethernet as an Embedded Communication Network June 8, 1999 18

ism of the network has increased compared to the LAN topology. Average delays are shorter, and the tail of

the CDF reaches 0.99 at smaller frame delays than for the LAN case.

FIGURE 10. 15m CDF of normalized message delay

Tables 3 and 4 summarize the properties of the CDFs shown in Fig. 10. Comparing the normalized

mean frame delays in Table 3 to those in table to Table 1, we note that for 64 byte frames, the average delay

has fallen from 129.47 frames to 35.8 frames. The normalized 99 percentile delay for the 64 byte time

driven workload has fallen from 635.01 to 135 frames. Converting the normalized delays back to seconds

for 64 byte frames, we find that the average delay in the time driven workload is 1.8ms and the 99 percen-

tile delay is 6.9 ms.

TABLE 3. Normalized mean frame delays (number of frames)

Poisson Mixed
Time-
Driven

64 byte 1.0624 10.3565 35.855

512 bye 1.0578 7.4851 27.0592

1500 byte 1.0547 6.7605 24.9357

0 50 100 150
0

0.2

0.4

0.6

0.8

1

time−driven

mixed

Poisson

CDFs of normalized delay

Normalized delay (frames)

Fr
ac

tio
n

of
 fr

am
es

1500 byte frames
512 byte frames
64 byte frames

Standard Ethernet as an Embedded Communication Network June 8, 1999 19

\

4.3 Improving Ethernet delays for mixed and time-driven workloads

Fig. 11 shows a timeline from the perspective of a representative time-driven message which we

refer to as mi. The timeline depicts the simultaneous arrival of mi and several other time-driven messages.

FIGURE 11. Timeline of a time-driven message, mi

Before mi is able to seize the channel, it experiences several collisions and subsequent backoffs. Col-

lisions are guaranteed for time-driven messages because simultaneous arrivals result in simultaneous

attempts to transmit as soon as the channel becomes idle. Statistically, half the time-driven messages will

immediately try to retransmit after the collision and half will backoff for 51.2us, due to the binary expo-

TABLE 4. Normalized 99% frame delays (number of frames)

Poisson Mixed
Time-
Driven

64 byte 1.50 61.50 135.00

512 bye 1.50 43.5 96

1500 byte 1.50 36 76.5

T2 T3T1 (Time)

• T1: mi is generated and attempts to trans-
mit along with several other time-driven
messages.

• T2: mi seizes the channel after a conten-
tion interval T2-T1.

• T3: mi completes transmission with delay
T3-T1.

Standard Ethernet as an Embedded Communication Network June 8, 1999 20

nential backoff (BEB) specified in IEEE 802.3. Collisions will occur again for the group of messages that

retried immediately and for the group that backed off. The cycle of collisions and backoffs repeats for mi

until mi seizes the channel. If mi is lucky, it can seize the channel after just a few collisions. If mi is unlucky

it will have to wait until its backoff counter and the backoff counters of the remaining messages have

become so large that the chance of collision is very small. Unfortunately, as the backoff counters become

large for the unlucky contenders and the backoff intervals increase exponentially, the channel is actually

idle much of the time. During this idle time any of the backed off messages could transmit successfully if

they were not locked into their large backoffs. The more messages present in the first collision, the longer

it takes to serialize the messages by the BEB procedure. However, we can help the BEB mechanism by

spacing the messages out so that a large number of simultaneous arrivals does not occur and the backoff

counters are kept low. It is somewhat counterintuitive, but by delaying the transmission of mi we can actu-

ally successfully transmit mi sooner by avoiding the inefficiency of the BEB for large backoff counters.

It is possible to improve Ethernet’s performance for time-driven and mixed workloads by introduc-

ing a controlled amount of random queuing jitter that breaks the lock-step collision resolution cycle. The

effect of this jitter is to prevent collisions from happening by spacing out the messages and reducing syn-

chronization. Fig. 12 illustrates the scheme. Message mi is generated along with other time-driven mes-

sages at time T1. Instead of immediately attempting transmission, mi and the other time-driven messages

are delayed by a jitter that is uniformly distributed between 0 and MAXJIT. If MAXJIT is judiciously cho-

sen, the total delay experienced by mi and the other time-driven messages can be reduced.

Standard Ethernet as an Embedded Communication Network June 8, 1999 21

FIGURE 12. Timeline for mi with controlled jitter

The value of MAXJIT greatly effects the CDF of message delays and can increase the average and

“worst-case” delay if chosen poorly. For example, if MAXJIT is chosen too large, the added delay will

swamp any improvement gained by reducing the number of collisions. On the other hand, if MAXJIT is

chosen too small it will not space out the messages enough to reduce collisions.

We have developed a simple heuristic for picking a value of MAXJIT. Consider that the CDF of a

uniformly distributed random variable U[0,MAXJIT] is a straight line from (0,0) to (MAXJIT,1). If

MAXJIT is significantly larger than the mean delay, the number of collisions will be negligible and the

delay experienced by a given message will be U[0,MAXJIT+TRANS], where TRANS is the time required

to transmit all the bits of the message. As a first guess at MAXJIT, choose a value greater than the average

normalized frame delay of the original CDF.

T3 T4T1 (Time)T2

• T1: mi is generated but waits
U[0,MAXJIT], as do all time-driven mes-
sages generated at T1.

• T2: mi attempts to transmit.

• T3: mi seizes the channel.

• T4: mi completes transmission with total
delay T4-T1.

Standard Ethernet as an Embedded Communication Network June 8, 1999 22

FIGURE 13. 15m CDFs for several values of MAXJIT

Fig. 13 shows the original CDF and the CDFs that result from several values of MAXJIT, for 64 byte

frames and the embedded topology. From Table 3, the average normalized frame delay is 35.855 frames

(1.8ms) for the original CDF. As a first guess at MAXJIT we tried 78.125 frames (4ms). The resulting CDF

is essentially a straight line, telling us that we are successfully avoiding collisions. The normalized 99%

frame delay has improved over the original curve. This means that we have improved the “worst-case”

delay for the system. However, the new CDF has a larger average normalized delay than the original,

which we can see because the new CDF is below the original CDF for most of the plot.

We next try a smaller value for MAXJIT of 58.59 frames (3ms). The 99% frame delay is improved

even more, and the average frame delay is now smaller than the original. We continue reducing the value of

MAXJIT by trying a value of 30.06 frames (2ms). Again we achieve more improvement in 99 percentile

delay and average frame delay. We then reduce the value of MAXJIT to 19.53 frames (1ms). This CDF

shows worse performance than when MAXJIT=2ms. Further reductions in MAXJIT will result in CDFs

that look progressively more like the original until the degenerate value of MAXJIT=0 is chosen. In this

case the CDF is identical to the original.

10 20 30 40 50 60 70 80 90
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

original

4m
s

jitt
er

1m
s

jitt
er

2ms j
itte

r

3m
s

jit
te

r

Normalized delay (frames)

Fr
ac

tio
n

fra
m

es

CDFs of normalized delay with jitter

Standard Ethernet as an Embedded Communication Network June 8, 1999 23

To summarize the procedure for selecting a value of MAXJIT:

1. Start with a value of MAXJIT significantly larger than the average delay - we found that using

twice the original average delay was sufficient to produce a CDF that looked like a straight line

and was thus relatively collision free.

2. Reduce the value of MAXJIT until the average and 99% normalized delay stops improving.

Fig 14. shows the improvement that is possible by inserting a controlled jitter before attempting to

send periodic messages. For the time-driven workload, using the above procedure, we selected a controlled

jitter that was distributed U[0,2ms]. For the mixed workload we selected a controlled jitter distributed

U[0,1ms]. The improved curves have less rolloff than the originals and reach 0.99 at smaller frame delays

than the original. No attempt was made to improve the Poisson CDF since the arrival stream contains no

periodic messages that would benefit from controlled jitter. Because few collisions occur in the sporadic

case, any jitter introduced would simply increase the delay experienced by each message.

FIGURE 14. CDFs of 64 byte frames with and without jitter

Table 5 shows the improvements in the mean delay and 99 percentile delay that results from the

introduction of jitter, for 64 byte frames. For both the mixed and the time-driven workload, the mean is

0 10 20 30 40 50 60 70

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized delay (frames)

fra
cti

on
 o

f f
ra

m
es

CDF of normalized delay, 64 byte frames, Tpd = 100ns

time−driven

mixed

improved CDF
original CDF

Standard Ethernet as an Embedded Communication Network June 8, 1999 24

improved significantly. Even more improvement is seen in the 99 percentile delay. Further refinement of

MAXJIT will result in slight improvements beyond what we have accomplished.

Because one of the primary reasons for using Ethernet in embedded systems is the availability and

familiarity of commodity off-the-shelf PLCs, OSs, and Ethernet network interface cards, any scheme to

improve Ethernet’s performance for embedded systems would ideally not require any modifications to net-

work drivers or hardware. Controlled queuing jitter can be implemented by simply delaying at the user-

level the software call that is ordinarily used to queue messages for transmission. Furthermore, the soft-

ware at the user-level is aware of which messages are time-driven, and can therefore selectively insert

delays for only the time-driven component of the workload. This scheme is preferable to TDM-like move-

able slots proposed in [Hutchinson, 87] because it does not require any modifications to the Ethernet MAC,

either in software or hardware.

5.0 Comparison of Ethernet to CAN

In this section we compare the delay performance of standard 10base-T Ethernet to Controller Area

Network (CAN). The two networks operate at different bit rates but we believe a performance comparison

for embedded systems is fair, considering that CAN was specifically designed for embedded workloads.

CAN’s nondestructive bitwise arbitration means that simultaneous transmission attempts are serialized

without wasting bandwidth. The designers of CAN anticipated that time-driven messages would be com-

mon and designed a protocol that was collision free. For hard real-time systems CAN is clearly the better

protocol since an upper bound can theoretically be placed on message delays by static RM scheduling.

TABLE 5. delay reduction for 64 byte frames

Mixed
Time-
Driven

mean
delay

24.43% 26.47%

99%
delay

34.15% 46.67%

Standard Ethernet as an Embedded Communication Network June 8, 1999 25

However, we will show that Ethernet has better average message delays, and that 99% of Ethernet mes-

sages are delivered with a delay comparable to that of CAN.

Despite its slow bit rate, CAN’s bus arbitration allows for efficient handling of simultaneous arrivals.

In Fig.15 we have plotted the blocking probability against offered load for our three workloads.We define

blocking probability as the probability that a message arrives at the node’s outgoing message queue when

the queue is full. Such messages are “blocked” from entering the queue and are discarded. For CAN mes-

sages, a single outgoing slot exists for each CAN IDENTIFIER. Therefore, if the previous message with a

given IDENTIFIER has not been cleared from the node’s outgoing slot, the incoming message is blocked.

One byte of data was sent in each CAN message, making the total message length just over 8 bytes. The

blocking probability of the time-driven workload is pegged at 0 and only rises when the offered load

exceeds 1Mbit/s, the network capacity. This shows us just how efficient CAN is at serializing time-driven

messages. No messages are blocked when the arrivals are fully deterministic. However, for Poisson and

mixed workloads, the blocking probability reaches 6% and 8% respectively, when the network is fully

loaded at 1 Mbit/s. For Poisson-type messages, an exponential distribution of interarrival times means that

it is possible for messages to be generated with an arbitrarily small interarrival time. If a message arrives

before the previous one has been cleared from the network interface, the message will be blocked. This

accounts for the 6% blocking probability of the Poisson workload. For the mixed workload, fewer poisson

messages are present, but these messages are likely to be delayed longer due to the serialization of the peri-

odic messages that make up the other half of the workload. Thus, the Poisson messages are even more

likely to be blocked than when no periodic messages are present. So, while CAN handles time-driven traf-

fic well, it will still drop a small fraction of messages when Poisson sources are present.

Standard Ethernet as an Embedded Communication Network June 8, 1999 26

FIGURE 15. Blocking probability Vs. offered load for CAN

Fig. 16 shows the average delay vs. offered load for CAN. For the time-driven workload message

delays are fully deterministic and do not depend on the offered load. An analogy can be made between

periodically filling a queue with messages, and then transmitting the messages one by one until the queue

empties. The interval between queue fillings determines the offered load. As long as the total offered load

does not exceed 1 Mbit/s, it will take the same amount of time to clear the queue regardless of the interval

between queue fillings. For the mixed and Poisson workloads the delay increases as the offered load

approaches 1 Mbit/s, the network capacity. The increase in delay is in fact responsible for the increased

blocking probability seen in Fig. 15. As messages linger in the network interface, the chance that incoming

messages are blocked increases.

FIGURE 16. Average delay Vs. offered load for CAN

0.01 0.10 1.00
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
1 Mbit/s CAN, Blocking Probability Vs Offered Load, 8−byte Frames

Offered Load, Mbps

blo
ck

ing
 p

ro
ba

bil
ity

Poisson
mixed
time−driven

0.01 0.10 1.00
0

0.5

1

1.5

2

2.5

3

Offered Load (Mbit/s)

de
la

y
(m

s)

1 Mbit/s CAN, Delay Vs Offered Load, 8−byte Frames

Poisson
mixed
time−driven

Standard Ethernet as an Embedded Communication Network June 8, 1999 27

Fig. 17 shows a comparison between the CDFs of CAN and Ethernet for Poisson, mixed, and time-

driven workloads. The “staircase” appearance of the time-driven and mixed CAN workloads is due to the

simultaneous arrival and clearing of messages. In the time-driven case, any given message experiences the

same delay, deterministically, because its position in the “global queue” is always the same. Each message

has a unique identifier (priority) and thus messages are always sent in the same order. Thus, the CDF for

the time-driven workload shows 35 discrete delays, one for each message. For the mixed CAN work-

load,17 discrete delays are present (one for each time-driven source). The CDF for the mixed CAN work-

load also shows that about half of all messages are delivered with almost no delay, consistent with half of

the sources being Poisson.

The Ethernet CDFs have advantages and disadvantages compared to the CAN CDFs. For the Poisson

case, the Ethernet CDF is virtually a step function. Because of the great difference in network speeds,

when the probability of collision is low Ethernet clearly outperforms CAN from a soft real-time perspec-

tive. Surprisingly, the Ethernet CDFs are better in the average sense, than the CAN CDFs even when time-

driven messages are present (mixed and time-driven workloads).

FIGURE 17. CDFs of message delay for CAN

Fig. 18 compares the average delay for CAN and Ethernet for the Poisson, mixed, and time-driven

workloads. For each workload, Ethernet has lower delays than CAN. This means that even though time-

0 1 2 3 4 5 6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CDFs of Ethernet and CAN

fra
cti

on
 of

 fr
am

es

delay (ms)

time−driven

mixed

Poisson

CAN
Ethernet

Standard Ethernet as an Embedded Communication Network June 8, 1999 28

driven Ethernet messages collide several times before seizing the bus, the order of magnitude difference

between Ethernet and CAN bitrates is sufficient to handle this inefficiency, on average. Ethernet with jitter

is also shown, and has smaller average delays than CAN and Ethernet without jitter.

FIGURE 18. Comparison of average CAN and Ethernet delays

Fig. 19 compares the worst-case performance of CAN, Ethernet, and Ethernet with jitter. Because

the Ethernet’s binary exponential backoff can lead to very long delays, it is not surprising that the 99%

message delay is significantly larger than the average Ethernet delay when a large number of collisions

occurs. When time driven messages are present it is guaranteed that for Ethernet several collisions will

occur; thus for the mixed and time-driven workloads the 99% delay is much worse than the average delay.

However, the difference between worst-case CAN and Ethernet messages is less than 0.5 ms for the mixed

workload, and about 2 ms for the time-driven workload. This shows that even when the Ethernet MAC is

subjected to a completely synchronized workload it manages to serialize virtually all the messages in a

time frame only slightly longer than the longest CAN delay. When jitter is introduced, Ethernet’s worst-

case delay is actually shorter than the CAN delay for mixed and time-driven workloads.

Poisson mixed time−driven
0

0.5

1

1.5

2

2.5

de
la

y
(m

s)

Average Delay for CAN and Ethernet

CAN
Ethernet
Ethernet with Jitter

Standard Ethernet as an Embedded Communication Network June 8, 1999 29

FIGURE 19. Comparison of 99 percentile CAN and Ethernet delays

6.0 Simulation Model and Validation

Our simulation consists of an arbitrary number of packet generating stations, and a protocol simulator

built on top of the Simpack discrete event simulation library. Each station contains a message queue that

can be set to a maximum depth and supports both priority and non-priority queuing. Messages are gener-

ated and placed into the queue by a message generator that supports Poisson, periodic, and time-driven

messages. Each station contains a mix of message generators described by an input file. Messages at the

front of the queue are seized by the protocol simulator, and released from the queue after successful trans-

mission. A model of the simulation framework is shown in Fig. 20. Statistics are maintained both globally

and on a per-station basis. Our simulator has the ability to perform traces that record the delay of every

message to a file. This enables a complete delay distribution to be plotted. Statistics are recorded after a

warm-up period so that only steady state behavior is observed.

 Most Ethernets today use a star topology, due to the low cost of centralized hubs and cable. Therefore

our simulator assumes a balanced star topology.

Poisson mixed time−driven
0

1

2

3

4

5

6

7
Worst−case delays for CAN and Ethernet

De
lay

 (m
s)

CAN
Ethernet
Ethernet with Jitter

Standard Ethernet as an Embedded Communication Network June 8, 1999 30

FIGURE 20. Simulation framework

There are three methods used by prior simulation studies to validate simulation results. These meth-

ods are trace analysis, comparison to observational studies, and comparison with existing simulators

[Mazraani, 91] [Gonsalves, 88] [Hughes, 82]. All three methods were used to validate the performance of

our Ethernet simulator. For simple scenarios, trace files were analyzed in order to verify that the simulation

algorithms were working properly, and to track down bugs. The trace files consisted of a sequential list of

time stamped simulation events from which a time line was produced that verified that all observable

aspects of the simulation were working properly.

Simulation results were compared to the results reported by Gonsalves and Tobagi in their simula-

tion of a balanced star Ethernet. Our simulation matches closely with the results obtained by Tobagi [Gon-

salves, 88] for comparable operating conditions.

Protocol Simulator

station

Message Generators

Simpack Discrete Event Simulator

Message Generators

station

Standard Ethernet as an Embedded Communication Network June 8, 1999 31

FIGURE 21. Throughput Vs. Offered load, Poisson Workload

We also validated our simulator by running our LAN baseline, using a setup very much like that used

by Gonsalves in his oft-cited observational study [Gonsalves, 85]. Our throughput curves are shown in Fig.

21 for a LAN with Poisson sources. Gonsalves’ curves reach a throughput a few percent higher than ours,

which is attributable to the decreased efficiency of the star topology noted by Gonsalves and Tobagi. The

delay characteristics shown in Fig 2. are also very close to those observed by Gonsalves. There were sev-

eral unknowns that we made a best guess at, in order to come as close as possible to Gonsalves’ observa-

tions. Gonsalves gives an estimate of the propagation delay (30us) on his network, not an exact figure. We

used the 30us estimate in our simulation. Furthermore, for a given experiment, Gonsalves states only that

33-38 stations were present. We used 35 stations to validate against Gonsalves’ observations.

7.0 Conclusion

The presence of time-driven messages in embedded systems results in large delays for collision based

protocols like Ethernet. Message delays, which are an important issue for real-time communication system

design, are significantly worse for mixed and time-driven Ethernet workloads than for Poisson workloads.

However, the delays are shorter for embedded systems than for LANs because of the increased efficiency

of the MAC at short cable lengths.

0.10 1.0 10.0
0

1

2

3

4

5

6

7

8

9

10

11
10 Mbit/s Ethernet, Poisson Workload

Ne
t T

hr
ou

gh
pu

t (
Mb

it/s
)

ideal
1500 byte frames
512 byte frames
64 byte frames

Standard Ethernet as an Embedded Communication Network June 8, 1999 32

 In order to determine a bound on just how badly Ethernet might perform when subjected to time-

driven traffic, one of our simulation workloads was fully time-driven. That is, all the messages arrived in

lock step. We used 35 stations since we consider 35 to be a reasonable upper bound on the number of

nodes in an embedded system. When simulating cable lengths typical of a LAN, time-driven workloads

had delays on the order of 100 times longer than Poisson workloads for small frames. When cable lengths

typical of embedded systems were considered, our time-driven workloads had delays approximately 35

times longer than Poisson workloads. The difference in delay degradation (100x for the LAN, 35x for the

embedded system) shows that Ethernet actually handles message pileups much better as an embedded net-

work than a LAN.

We also found a way to improve time-driven message delays. By introducing a controlled, uniformly

distributed jitter, the lock-step arrival of time-driven messages can be broken. While this jitter actually

delays the message slightly, it results in an overall improved message delay because the time-driven mes-

sage is more likely to find the bus idle, thus avoiding multiple backoffs. Using controlled jitter, the average

delays for embedded time-driven workloads were improved by roughly 26% and the 99 percentile delays

were improved by roughly 47%. Picking a reasonable maximum jitter value is a simple iterative procedure.

The jitter can be implemented in user level code without any modifications to network hardware or drivers.

Finally, we compared the performance of embedded Ethernet to CAN, a widely used embedded net-

work. A comparison of average delays revealed that despite its collision-based MAC, Ethernet actually has

lower average message delays than CAN because it runs at a significantly higher bitrate. This is true even

when Ethernet is subjected to fully time-driven workloads which induce significant delays regardless of the

offered load. Furthermore, we found that 99% of delays for Ethernet are just a few ms longer than the

slowest CAN message. When our controlled jitter is introduced, Ethernet is actually able to provide shorter

message delays than CAN for both the average and 99 percentile. Therefore, in situations when hard real-

time delays are not required, we found that standard 10 Mbit/s Ethernet can actually provide delay perfor-

mance comparable to or better than CAN, a dedicated embedded communication protocol.

Standard Ethernet as an Embedded Communication Network June 8, 1999 33

8.0 References

[Addison, 98] J. Addison, W. Cole, “Ethernet rules closed-loop system“,InTech, vol.45, no.6, pp. 39-42,

June, 1998.

[Backman, 93] U. Backman, M. Torngren, “Evaluation of real-time communication systems for machine

control“, Proc. of the Swedish National Association on Real-Time Systems Conference, August 1993.

[Boggs, 88] D.R.Boggs, J.C. Mogul, C.A. Kent, “Measured capacity of an Ethernet: myths an reality”,

Computer Communication Review, vol. 18, no. 4, pp. 222-34, August 1988.

[CAN, 91] CAN Specification Version 2.0, Robert Bosch GmbH, 1991.

[Daniel, 97] R.A. Daniel, “A case for communicating sensor data via Ethernet”,I&CS, vol.70, no.10, pp.

37-40, October 1997.

[Daniel, 98] R.Daniel, “Embedded Ethernet connectivity”,Embedded Systems Programming, April 1998.

[Elkins, 82] E.P. Elkins, “Data acquisition and control using ETHERNET”,Nuclear Instrumentation

Methods Phys. Res. A., vol. A247, no.1, pp. 197-201, June 1986.

[Glaze, 96] S. Glaze, “Smart Distributed System Accumulation Conveyer Control”,Third International

CAN Conference, pp. 13-2 - 13-8, 1996.

[Gonsalves, 83] Gonsalves, T.A., “Packet-voice communications on an Ethernet local computer network:

an experimental study”,Computer Communication Review, Vol. 13, no. 2, pp. 178-185, 1983.

[Gonsalves, 85] T.A. Gonsalves, “Performance characteristics of 2 Ethernets: an experimental study”,Pro-

ceedings of the 1985 ACM SIGMETRICS Conference on Measurement and Modeling of Computer Sys-

tems, pp. 78-86, 1985.

Standard Ethernet as an Embedded Communication Network June 8, 1999 34

[Gonsalves, 88] T.A. Gonsalves, F.A. Tobagi, “On the performance effects of station locations and access

protocol parameters in Ethernet networks”,IEEE Transactions on Communications, vol.36, no.4, pp. 441-

9, April 1988.

[Hughes, 82] H.D. Hughes, L. Li, “Simulation model of an Ethernet”,Computer Performance, Vol.3, no.

4, pp. 211-217, December 1982.

[Hutchinson, 87] D. Hutchinson, M. Merabti, “Ethernet for real-time applications”,IEE Proceedings E

(Computers and Digital Techniques), vol. 134, no. 1, pp. 47-53, January 1987.

[IEEE, 85]IEEE Standards for Local Area Networks Carrier Sense Multiple Access With Collision Detec-

tion (CSMA/CD) Access Method and Physical Layer Specifications, ANSI/IEEE Std 802.3-1985, 1985.

[Koopman, 96] P. Koopman, “Tracking down lost messages and system failures”,Embedded Systems Pro-

gramming, vol. 9, no. 11, pp. 38-52 October 1996.

[Krishna, 97] C.M. Krishna, K.G. Shin,Real-Time Systems, McGraw-Hill, 1997.

[Leu, 95] T. Leu, M. Neilson, B. Leu, “Simulation analysis of a controller area network subject to asym-

metric traffic loads”,Proceedings of the SCS’95, pp. 784-789, July 1995.

[Mazraani, 91] T.Y. Mazraani, G.M. Parulkar, “Performance of the Ethernet under conditions of bursty

traffic”, Washington University, St. Louis, Missouri,Tech Report WUCS-91-12, February 1991.

[Moon, 96] T. Moon, “Control in automotive body networks”,Proceedings of the Third International CAN

Conference”, pp. 12-23 - 12-28, 1996.

[MTL, 98] MTL Instruments Group, “Fieldbuses: Look before you leap”,EDN, November 5, 1998.

[Nilsson, 98] J. Nilsson, “Real-Time Control Systems with Delays“,Phd Thesis, Department of Automatic

Control, Lund Institute of Technology, 1998.

[SAE, 93] ”Class C Application Requirement Considerations”,SAE Technical Report J2056/1, June 1993.

Standard Ethernet as an Embedded Communication Network June 8, 1999 35

[Shear, 97] D. Shear, “Going global in the real world: putting an embedded system on the internet”,EDN,

September 1997.

[Shwarts, 87] Shwartz, Mischa,Telecommunication Networks Protocols, Modeling, and analysis, Addison

Wesley, 1987.

[Tindell, 94] K. Tindell, A. Burns, “Guaranteed Message Latencies For Distributed Safety-Critical Hard

Real-Time Control Networks”,University of York Technical Report YCS 229, 1994

[Quintell, 97] R.A.Quintell, “Web servers in embedded systems enhance user interaction”,EDN, April

1997.

[Wittenmar, 95] Wittenmar, B., Nillson, J., Torngren, M., “Timing problems in real-time control systems”,

Proceedings of the American Control Conference, pp. 2000-2005 1995.

[[Zuberi, 97] K.M. Zuberi, K.G. Shin, “Scheduling messages on controller area network for real-time CIM

applications”,IEEE Transactions On Robotics And Automation, vol. 13, no. 2, pp. 310-314, April 1997.

