CARNEGIE MELLON UNIVERSITY

HIGH PERFORMANCE ROBUST COMPUTER
SYSTEMS

A DISSERTATION
SUBMITTED TO THE GRADUATE SCHOOL
IN PARTIAL FULFILMENT OF THE REQUIREMENTS
for the degree
DOCTOR OF PHILOSOPHY
in

ELECTRICAL AND COMPUTER ENGINEERING

by

John Peter DeVale

Pittsburgh, Pennsylvania
October, 2001

Copyright 2001 by John DeVale. All rights reserved.

To my wife, Kobey, who believed in me,
and helped me believe in myself

Abstract

Although our society increasingly relies on computing systems for smooth, efficient operation;
computer “errors’ that interrupt our lives are commonplace. Better error and exception handling
seems to be correlated with more reliabl e software systems] shel ton00] [koopman99].
Unfortunately, robust handling of exceptional conditionsis ararity in modern software systems,
and there are no signsthat the situation isimproving. This dissertation examines the central
issues surrounding the reasons why software systems are, in general, not robust, and presents
methods of resolving each issue.

Although it is commonly held that building robust code is too impractical, we present methods
of addressing common robustness failuresin asimple, generic fashion. We develop
uncomplicated checking mechanisms that can be used to detect and handle exceptional conditions
before they can affect process or system state (preemptive detection). This gives a software
system the information it needs to gracefully recover from the exceptional condition without the
need for task restarts.

The perception that computing systems can be either robust or fast (but not both) isamyth
perpetuated by not only a dearth of quantitative data, but also an abundance of conventional
wisdom whose truth is rooted in an era before modern superscalar processors. The advanced
microarchitectural features of such processors are the key to building and understanding systems
that are both fast and robust. This research provides an objective, quantitative analysis of the
performance cost associated with making a software system highly robust. It develops methods
by which the systems studied can be made robust for less than 5% performance overhead for
nearly every case, and often much less.

Studies indicate that most programmers have an incompl ete understanding of how to build
software systems with robust exception handling, or even the importance of good design with
respect to handling errors and exceptional conditiong{maxion98]. Those studies, while largein
scope and thorough in analysis, contain data from students with little professional programming
experience. Thiswork presents data collected from professional programming teams that

measured their expected exception handling performance against their achieved performance.

Abstract iv

The data provides an indication that despite industry experience or specifications mandating
robustness, some teams could not predict the robustness response of their software, and did not

build robust systems.

Abstract

Acknowledgments

First and foremost, | wish to thank my wife Kobey, who endured more than anyone should
have to while | struggled through school. Y ou are my light on earth, and | can not thank you
enough for believing in mein the face of all adversity.

| would also like to thank my family who helped shape the person | am now. Y ou taught me
self reliance, trust, and the importance of personal integrity.

| would like to thank my committee, who gave freely of their time to mentor and guide me
through this process. Especially Phil Koopman, my advisor, who taught me how to think
critically about problems, perform effective research, and most importantly, to communicate
results effectively.

| want to thank everyone at Carnegie Mellon who made this work possible and hel ped make it
afun place to be: Bryan Black for putting everything in perspective and making pizza with me
every Tuesday. By the way, thanks for the house. Cindy Black for not getting too mad at Bryan
and | when wetook over her kitchen every Tuesday to make pizza, and for laughing at our
outrageous behavior. Lemonte Green for being atrue friend and setting the best of examples.
My good friend Kymie Tan, the perfectionist, for appreciating my dark humor. Bill and Melanie
Nace, who trooped off to renaissance fairs with us, and shared their liveswith us. Akiko Elaine
Nace for running around the office with the exuberance only a four year old can have, making me
pictures, and giving everyone areason to smile. Lou and Jim, our network engineers who kept
everything running smoothly despite the dumb things we did to the system. Karen, Melissa,
Lynn, Elaine and Elaine (Yes, two Elaines) for doing their jobs so well and with such dedication

that we never had to worry about anything except working on our projects.

Thank you all.

Acknowledgments vi

Table of Contents

Abstract iv
Acknowledgments Vi
1 Introduction 1
1.1 Motivation 1

1.2 Terms and Definitions 6

1.3 Exception Handling 6

1.4 Language based approaches 7

1.5 Operating System Trap Support 8

1.6 Performance Issues 9

1.7 Knowledge of Code 10

1.8 Outline 10

2 Prior Work 11
2.1 Describing Exception Handling 11

2.2 Performing Exception Handling 12

2.3 High Performance Exception Handling 13

3 TheBallista Robustness Benchmarking Service 15
3.1 Previous Work 18

3.2 The Ballista Testing M ethodol ogy 20
3.2.1 Scalable testing without functional specifications 20

3.2.2 Implementation of test values 22

3.2.3 Tedting results 25

3.3 Anexample of testing 26

3.4 Generalizing the Approach 28
3.4.1 Support for exception handling models 29

3.4.2 Support for callbacks and scaffolding 29

3.4.3 Phantom parameters — a generalization of the Ballista testing method 30

3.5 Summary 31

4 Theexception handling effectiveness of POSI X operating systems 33
4.1 Introduction 34

4.2 Ballista testing methodology for POSIX 35
4.2.1 Categorizing test results 37

4.3 Results 37
4.3.1 Raw Testing Results 37

4.3.2 Normalized Failure Rate Results 38

4.3.3 Failure Rates Weighted By Operational Profile 40

4.3.4 Failure Rates By Call/Function Category 41
4.3.5C-Library Failure Rates 43

4.4 Data analysis via N-version software voting 44
4.4.1 Elimination of non-exceptional tests. 44

4.4.2 An estimation of Slent failure rates 46

4.4.3 Frequent sources of robustness failure 48

Table of Contents

Vil

4.5 Issues in attaining improved robustness
4.5.1 Sgnalsvs. error codes
4.5.2 Building more robust systems

4.6 Summary of OS Results

5 Hardening and analysis of math libraries
5.1 Background
5.2 Performance testing methodol ogy
5.3 Results
5.4 Analysis
5.5 Summary of Math Library Robustness Results

6 Hardening and Analysis of Safe, Fast 1/0
6.1 Introduction
6.2 Robustness testing of SFIO
6.3 Performance Results
6.4 Analysis
6.5 Summary

7 Hardening and Analysis of Operating System Internals
7.1 Robustness testing of Linux

7.2 Hardening of select Linux API calls
7.2.1 Failure of previous techniques
7.2.2 Approach for enhanced memory robustness checks

7.3 Performance analysis of hardened code
7.3.1 The Robustness Check Cache
7.3.2 Iterative Benchmark
7.3.3 Lightweight Synthetic Application Benchmark

7.4 Conclusion

8 Understanding Robustness
8.1 The DOD High Level Architecture Run Time Infrastructure

8.2 Commercia Java Objects
8.2.1 SAf Report Format
8.2.2 Sdf Report Data
8.2.3 Test Results

8.3 Analysis
8.4 Conclusions
8.5 Acknowledgments

9 Conclusions

9.1 Contributions
9.1.1 Tractability and Generality
9.1.2 Speed
9.1.3 Developer Understanding

9.2 Future Work
9.2.1 Architectural Improvements
9.2.2 Compiler Support
9.2.3 Controlled Sudy

Table of Contents

viii

9.2.4 Tool Integration
9.2.5 Detailed Performance Evaluation

10 References
Appendix A
Appendix B

Table of Contents

100
100

101
107
108

Figurelist

Figure 1.
Figure 2.
Figure 3.

Figure 4.

Figureb.

Figure 6.
Figure7.

Figure 8.

Figure9.

Figure 10.
Figure 11.

Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.

Figure 18.

Figure 19.
Figure 20.

Figure 21.
Figure 22.

Example of C signal exception handling 8
Ballista test parameter creation 21

A Date String typeinheritstestsfrom Generic String and Generic
Pointer 23

Trapezoidal numerical integration algorithm [sedgewick92] and
target function f. 27

Ballista test case generation for thewr i t e() function. Thearrows
show a singletest case being generated from three particular test

values; in general, all combinations of test valuesaretried in the

course of testing. 36

Normalized failureratesfor POSI X operating systems 40

Normalized failurerates by call/function category, divided per the
POSIX document chapters 42

The C-Library functions contribute a large proportion of the overall
raw failurerates 43

Adjusted, normalized robustnessfailurerates after using muti-version
rsloftV_/ar_etechniques. Resultsare APPROXIMATE due to the use of 45
euristics.

Performance of libm variantsnormalized to the unmodified source. 56
Robustnessfailureratesfor SFIO, STDIO compared for 20 functions

with direct functional equivalence as measured on the Linux test
system. Failurerateson Digital Unix werelower for some SFIO

functions and are addr later in Section 5.2 60
Abort Failure Ratefor Select SFIO Functionsunder Linux 62
Elapsed time of benchmark running on x86 architecture 64

Elapsed time of benchmark running on the AXP (Alpha) architecture 65
Total processing time for benchmark on x86 ar chitecture 68
Total processing time for benchmark on AXP(Alpha) architecture 69

Initial failureratesfor memory manipulation and process

synchronization methods 73
Failurerate of memory and process synchronization functions after

initial treatment 74
Altered malloc helpsaddressfundamental robustnesslimitation 75

Failurerate of memory and process synchronization functions after
final treatment 76

The software implemented robustness check cache 77

Iterative performance slowdown of robust process synchronization
functions 78

List of Figures

Figure 23. Iterative performance sowdown of robust memory functions
Figure 24. Pseudo-codefor lightweight synthetic benchmark

Figure 25. Slowdown of synthetic benchmark using robust process
synchronization functions

Figure 26. Slowdown of synthetic benchmark using robust process
synchronization functionswith large cache size

Figure27. Absoluterobustness overhead for process synchronization functions
in nanoseconds

Figure 28. Absoluterobustnessoverhead for memory functionsin nanoseconds

Figure29. Robustnessfailureratefor RTI 1.3.5 under SunOS5.6. Overall
Averagefailurerate=10.0% from [fernsler99].

Figure 30. Robustnessfailureratefor RTI 1.3.5 under Digital Unix 4.0.
Overall Averagefailurerate=10.1% from [fernder99].

Figure31. Samplereport form for feof()

Figure 32. Robustnessfailureratesfor componentsA & B

Figure 33. Component C Constructor abort failurerates by parameter
Figure 34. Component C Abort Failurerate

Figure 35. Component C silent failurerates

Figure 36. Total failureratefor component C

List of Figures

79
80

81

82

83
84

87

89
91
92
93
94
95

Xi

TableList

Tablel. Directly measured robustnessfailuresfor fifteen POSIX
operating systems.

Table2. Test Function List

Table3. Robustnessfailurerateof math library variants.

Table4. SFIO benchmark descriptions

Table5. Usr, sys and elapsed time data for original and hardened SFIO
(Intel Architecture)

Table6. Expected robustness responsefor Component C

Table7. Expected robustnessresponse for component B

Table8. Expected robustnessresponse for component A

List of Tables

39

57
63

67
90
90
90

Xii

1 Introduction

As our society becomes more dependant on the complex interactions among el ectronic
systems, the ability of these systemsto tolerate defects, errors, and exceptionsis critical to
achieving service goals. Every aspect of life is becoming dependant on computers, and the
software that runs on them. From banking to traffic control, weapons systemsto atrip to the
grocery store, the things we take for granted are now irrevocably tied to the correct functionality
of computing systems.

Of course the need for fault tolerance is not an entirely new thing. Military, aerospace,
medical, and financia systems have always been built to be as tolerant of faults as practical.
Though they have not always been as robust as their designers may have hoped [jones96]
[leveson93] [lions96], the effort to build robust systems was made. Further, the designers of fault
tolerant systems continued their efforts with the goal of improving subsequent system
generations.

Though fault tolerance issues are addressed in safety critical computing sectors (i.e. medical,
aerospace), other sectors lack the time, money and expertise to build robust systems using the
methods devel oped in the traditional safety critical sectors. Further, as the promise of reusable,
modular, computational components (beans, OLE containers, etc.) becomes closer to reality,

building systems that can tolerate faults in reused/purchased components becomes critical .

1.1 Motivation

Theresearch in thisthesistells acomplex story, and is one whose motivation is at times
subtle. This section is an attempt to relate the path of experiences and observations (in roughly
chronological order) that led to the inception of thiswork, and guided its direction. Readers who
are more interested in the results and technical details are invited to skip to the section
immediately after this one, Terms and Definitions (1.2).

The historical basisfor thiswork is deeply rooted in the fault injection community within the

larger fault tolerance community. Fault tolerance has been a goal of engineers since engineering

Introduction 1

was invented as adiscipline. After all, no oneis happy if thefirst stiff wind to come along blows
their house over. This philosophy is applied today to awide variety of computing systems,
including banking, aerospace, military, and medical, just to name afew.

One of the drawbacks of fault injection [kanawati92], has been that it usually required specia
purpose hardware (or was specific to a hardware setup). It was difficult to trace the root cause of
problemsit detected, and it could be difficult to reproduce due to the random element involved.
Of course, during the height of its popularity, this approach worked well because target systems
were relatively simple, and were designed specifically for a purpose requiring fault tolerance.

Another potential problem isthe lack of aconsistent, meaningful, numerical result that could
relate what was measured by the existing tools. It can be unclear exactly what fault injection
tools measure, and how to relate that measurement back to the system.

Dissatisfaction with some of the limitations of traditional fault injects led to aline of research
at Carnegie Mellon University that culminated in the Ballistatool. Ballistaisafault injection
system that is software based, and provides portable, repeatable fault injection at the API level
with meaningful numerical results that can be compared and related back to the system under test.
Theinitia version of thistool was very primitive, with test data types that were hard-coded into
the system, and little flexibility as to what type of API'sit would test.

Armed with our new tool, we set out to change the world (or at least our little corner of it) by
testing several POSIX compliant operating systems. The tool was applied to every POSIX
compliant OS we could get our hands on. Although our instincts told us the systems would not
do well in the tests, even we were surprised and a bit appalled by what results we obtained.

Although we did publish our complete results, we gave the results to the OS vendors well
before publication to allow them to fix the problems and discuss them with us. In afew cases, the
vendors elected to send us new versions of the operating system for retest. In each of these cases
however, the newer system had a different robustness, and not necessarily better.

We did succeed in our goal of interacting with the developers, and their responses were varied
and ranged from “ We will fix everything we can” (IBM), “ Dumping core is the right

thing” (FreeBSD), “ We understand, but are not interested in addressing these issues’(Linux), to

Introduction 2

“You guys are crazy” (name withheld to protect the guilty). Some companies, like AT&T, Cisco,
and military contractors agreed that these results were important. But by and large the prevailing
sentiment was that fixing these issues just couldn’t be done. It wasjust too hard to do, it would
cost too much in terms of performance, and no one can do any better.

Confronted by what appeared to be the cold hard redlity of the situation, we stopped and took
stock of our position. Although nearly everyone we talked to disagreed, we felt that there had to
be away to address these issues in areasonable fashion. Unfortunately, we didn’t have any
evidence to support our position.

We took some time to enhance our tool, and completely rebuilt Balista, making it extensible
toany API. A custom language and compiler were created to allow easy creation of custom data
typesfor testing. This gave us the ability to test awide range of software systems.

Having completely rewritten the tool, we began the process of deciding the next best stepin
addressing the problem of improved system robustness. Asasimple expedient, we elected to
investigate the FreeBSD math libraries. We wanted to determine how difficult it would be to
address the existing robustness problems, and what the cost of fixing them was.

We were ableto fix al the robustness failures in the math library, and it turned out to be not
very costly in terms of performance(<1%). Additionally, we discovered that there was already a
lot of checksin libm similar to the ones we needed to add for improved robustness. These tested
ranges and boundary conditions that were for the most part necessary to make the calculations
correct, but also checked for some error conditions, which forced asignal if the condition were
detected. Asit turned out, the stock libm implementation already paid most of the cost of making
the library robust, just to get the calculation correct. For just afew percent more we were able to
make it robust, and afford to check return codes after each call.

Of course, the response to this result was predictably negative. The math libraries represent
simple, computational code. They don’'t use any complex data structures, and don’t affect
machine state. Thus the results were generally seen as providing little solid evidence supporting
our ideathat it was possible build robust software, and you could do so with little performance

cost aswell.

Introduction 3

Now that we had at least one example however, the criticisms changed a bit to include a new
idea. Theideawasthat developerscould build robust code, but didn’'t because of complexity and
speed issues. Thusindicating that there were no insights to be gained from even using our tool
for robustnesstesting. The issues we uncovered were believed to be understood, but simply
ignored.

To address the new direction our critics were taking, we decided ook at a package written
with software reliability and fault tolerance in mind: the Safe, Fast, 1/0O library. The authors of
SFIO were ableto create and I/O library that avoided some of STDIO’ s inefficiencies, and added
inavariety of safety features that greatly improved its robustness over that of STDIO. It did
suffer failures (despite comments by the authors indicating the contrary) — more than we
suspected it should.

Wetook our results to the SFIO authors, and they firmly believed that the failures remaining
were too hard, and too performance costly to remove. They pointed out that they had improved
the robustness to alarge extent, and had removed all the failures they felt they could without
sacrificing performance.

This explanation seemed plausible, so we elected to look to see what kinds of performance vs
robustness tradeoffs it was possible to make. To facilitate this we obtained a copy of the SFIO
source code, and waded in trying to fix the problems Ballista found.

After a couple of weeks we were able to build in additional checks to make the code more
robust. So robust, in fact, that many functions exhibited no failures, or only fractional
percentages of failures. The only thing that remained was to benchmark the new code, and figure
out what performance tradeoffs were possible.

We recreated the original benchmarks used by the authors of SFIO (scaled for today’s
architectures), and found that through afew simple optimizations, the performance penalty was
not large(<2%). Despite what was originally thought, the SFIO didn’t fix everything, and even
thefailuresit didn’t address could be fixed without detracting significantly from the performance

of thelibrary.

Introduction 4

Finally, we looked at several speed critical OS services under Linux including memory and
process synchronization primitives. \We were able to completely harden even these low level
service modules for only a slight performance penalty(<5% for the pessimistic case). Thus what
began as an attempt to quantify the performance tradeoffs inherent with building robust systems
became an work detailing simple, generically applicable methods one might use to build high
performance robust computing systems.

The last piece to this puzzle was the nagging issue of the purpose of the tool itself, Balista. If,
as some would have us believe, devel opers understand how to build robust software, and were not
simply because of speed and complexity issues, then thetool is redundant. If that is not the case,
however, then the tool is critical, because it offers feedback asto how well robustness goals are
being met.

A great deal of thoughtful experimentation had aready been donein this area by Roy Maxion,
but the last piece fell into place during the course of ajoint research project with IBM’s Center
for Software Engineering Research. Peter and his group were interested in coming up with a
methodology to describe the non-functional qualities of componentsin away that encourages
reuse. One aspect of thisisrobustness. Using Maxion's work as a springboard, we came up with
a system whereby developers within IBM could classify the robustness of a software system.

An experiment was then devised whereby developers could classify their software modules
and indicate how robust they expected them to be. The modules could then be tested, and the
actual versus expected robustness values compared. This experiment was executed by the
research team at the IBM Center for Software Engineering Research, and the data and
components were turned over to us for testing and comparison.

Once we had tested the components and related their measured robustness to their actual
robustness, we noticed that there were a number of discrepancies between the expected and
measured robustness. We attribute this to the phenomena discussed by Maxion in [maxion98]. It
thus seems likely that for any team to build robust software some tool such as Ballistais
necessary to perform tests to determine how well robustness goals are being met, and feed back

into the software process.

Introduction S

Although the path of research seemed long and serpentine during its execution, itisin
retrospect fairly straight and logical. We started with ametric. We addressed each concern we
heard detailing reasons why robust software systems were not being developed. Finally, we
relearned that even though people are smart, you still need a some method or tool to check to
make sure what we think is happening is actually happening.

At the end of the day it is the software groups themselves who determine if they will build

robust systems or not —but now there are no more technical excuses.

1.2 Termsand Definitions
For the purposes of thisthesis, we use the definition of robustness as that given in the IEEE
software engineering glossary, dropping the environmental conditions clause: “The degree to
which a system or component can function correctly in the presence of invalid inputs[| EEE9Q].”
We quantify robustnessin terms of failure rate. The failurerate for afunction represents the
percentage of test cases that cause robustness failures to occur.

We define the normalized failure rate for a particular operating system to be:

N f
F2? w2t

i?1 ti

with arange of vaues from 0 to 1 inclusive, where: ? w, ?1
N = number of functions tested - Equal to the number of calls a particular OS supports of the 233 in our
suite
w; isaweighting of importance or relative execution frequency of that function where
f; isthe number of tests which produced robustness failure for function i
t; is the number of tests executed for function i

We define hardening as the act of adding software to perform the following tasks:
» Perform run-time checks and validation to determine the validity of operand data
* Detect and handle any exceptiona conditions.

Thus a software package that has been hardened is by definition robust.

1.3 Exception Handling
Anecdotal data collected by robustness testing seems to suggest that systems incapabl e of
gracefully handling exceptional conditions (including exceptions caused by software defectsin

application programs calling other software packages) tend to be somewhat lessreliable at a

Introduction

system level, and much lessreliable at the task level. While the evidence does not prove
causality, in many cases overall system failurestend to be within modules with poor overall
exception handling characteristics [christian95] [shelton00] [koopman99].

Despite ageneral need for better exception handling and the existence of tools to identify
exception handling shortcomings, few projects pay anything other than passing attention to this
aspect of the system. Some developers simply lack exposure to the need and methods for
exception handling [maxion98]. Others eschew it because of perceived performance problems
and development difficulty. Neither of these need be the case. AsMaxion points out, even a
small amount of effort applied to raising the awareness of the importance of solid exception
handling can result in significant improvements [maxion98]. Additionaly, there are now several
research and commercial toolsto help developers detect potential robustness weaknesses
[deval€99] [hastings92][carreira98][ghosh99]. But, beyond the issue of finding and correcting
robustness problems, our experience is that devel opers greatly overestimate the performance
penalty of making software highly robust and use this as a reason to avoid robustness

improvement.

1.4 Language based approaches

Theidea of building good exception handling is not anovel one. It isafundamental part of
some languages that have well defined constructs for handling exceptional conditions. One of the
more popular such languages today is Java.

Java provides optional mechanisms that enforce exception handling constructs for modules. It
allows devel opers to specify which exceptions a given method can throw, amongst predefined or
user defined types. The compiler then forces any calling routine to catch and handle every type
of exception the moduleis defined to throw. Similarly, C++, Ada, ML, and other languages al
provide various levels of compiler enforceabl e exception handling.

One problem with these approaches is incomplete foresight on the part of the people writing
the software modules. It isnearly impossible to anticipate every possible event or condition, and

often there are large gaps where no or improper exception handling exists.

Introduction 7

#i ncl ude <signal . h>
programmers can grow torely 4 ne| ude <st di o. h>

j mp_buf EC;

Xsegfault_error(int signunm {
si gnal (SI GSEGV, (void *)Xsegfault_error);
I ongj mp(EC, 1) ;

too heavily on alanguage that
is“safe” and become
complacent. Aswewill see

later in thiswork, some Java 1 nt main() {

int i=0;
components have many {
i nt exc_code;
robustness failures despite it si gnal (SI GSEGV, (void *)Xsegfault_error);
if ((exc_code =setjnp (EC)) == 0) {
being a“safe” language. i =10;
] i=fileno(((void *)0));
Also of great importance } else {
. : i--;
is the question of printf("Exception handl ed %\n"
recoverability after a } exc_code);
L }
language exception is printf("Conplete %\n",i);
return(0);

received. Although any of the
_ o Figure 1. Example of C signal exception handling

languages with built in

exception handling will

deliver language exceptions instead of low level signals, they do little to ensure that the

exceptional condition can be safely recovered from without atask restart.

1.5 Operating System Trap Support

Many of the languages with built in routines for exception handling rely on specific support
from avirtual machine, asin the case of Java, or operating system support for signal handling.
Signals caused by exceptional conditions (or software generated conditions) are interpreted by a
small runtime environment and converted into the appropriate language constructs. These
constructs are then handled by the built in mechanisms.

Other languages without any specific built in support for exception handling may use the same
mechanisms to trap and handle signals (machine/software generated exceptions). In C, for
example, the programmer may set up exception handling mechanisms by using the signal

handling defined by POSIX (Figure 1. Example of C signal exception handling). In essence, the

Introduction 8

programmer can set up alarge number of small, localized exception handling routines to be called
upon the occurrence of an exception (in essence modeling the try-catch framework), or setup

large, global handlers.

1.6 Performancelssues

Although exception handling is generally perceived to be expensive in terms of performance,
there are some software systems that attempt to be robust without sacrificing performance. An
example of a software package devel oped with safety and robustness as a goal, without
compromise to performance, is the safe, fast, 1/0 library (SFIO) developed by David Korn and
K.-Phong Vo at AT&T research [korn91]. The functions included in SFIO implement the
functionality of the standard C I/O libraries found in STDIO. Thislibrary adds alarge amount of
error checking ability (aswell as other functionality) to the standard 1/O libraries, and manages to
do so without adversely affecting performance.

While the authors of SFIO were able to demonstrate that it was a high performance library, at
the time it was devel oped there was no method for quantifying robustness. They could make a
case that the library was safer due to their design decisions, but there was no method available to
quantify how much they had improved over STDIO. Furthermore, discussions with the
developers of SFIO revealed that even they were concerned about the performance impact of
increasing the amount of exception checking done by their code.

The existence of SFIO can be viewed as an opportunity to gain an understanding of how
robust an Application Programing Interface (API) implementation might be made using good
design techniques but no metrics for feedback, and what the actual performance penalty might be
for further improving robustness beyond the point judged practical by SFIO developers. If the
performance cost of adding solid exception handling and error checking is as high as
conventional wisdom holds, then how can we reduce that cost? Conversely, if the cost is not
prohibitive, what isit, and how good can the error checking and exception handling be while still

keeping the cost within reason?

Introduction 9

1.7 Knowledge of Code

Beyond the cost of exception handling, it isimportant to understand the ability of developers
to estimate how well their own code performs with respect to its graceful response to exceptional
conditions. Oncethisisdone, it will aid in determining the reason some software is not as
completein thisregard asit might be, and perhaps put us on the path toward being able to
devel op software with good exception handling in awider range of projects - not just military
aerospace applications.

Available evidence suggests inexperienced devel opers are not able to write code with robust
error and exception handling[maxion98]. This might support the hypothesis that professional
developers would have asimilar deficiency. However, without even cursory data to explore this
notion, any effort to understand and improve the ahility of professional developersto successfully

write software systems with robust exception handling is just speculation.

1.8 Outline

This dissertation begins with an overview of previouswork in the general area of exception
handling in Chapter 2, which discusses the broad nature of existing work, and how this
dissertation fitsin to the overall spectrum of exception handling research. Chapter 3 presents the
Ballista software robustness testing tool in detail. Chapter 4 presents experimental results on the
robustness of POSIX operating systems that shaped the core ideathat, in general, robustnessis
poorly understood, and is not a priority for many professional software developers. Vendor
response to these results led to the further investigation presented here as to the tractability and
performance characteristics of robust exception handling. Chapter 5 presents experimental data
and analysis of the standard math libraries distributed with FreeBSD. This represents the earliest
exploratory work donein thisinvestigation. Chapter 6 presents the results from the analysis and
hardening of the Safe, Fast 1/O library (SFIO)[korn91]. The results from applying techniques
and lessons devel oped while hardening SFIO and the math libraries to operating system services
can be found in Chapter 7. Data collected from professional development groups comparing their
expected robustness with measured robustness is presented in Chapter 8. This dissertation

concludes in Chapter 9 with a discussion of contributions and possible future work.

Introduction 10

2 Prior Work

The literature written on exceptions and exception handling is vast. Exception handling has
been studied since the incept of computing, and isimportant for detecting and dealing with not
only problems and errors, but also expected conditions. The research fallslargely into three

major categories with respect to exception handling:
* How to describeit
e How to perform it

e Howtodoit fast

2.1 Describing Exception Handling

Exception handling code can be difficult to represent in terms of design and documentation,
largely because it generally falls outside normal program flow, and can occur at virtually any
point in aprogram. Accordingly, alarge body of work has been created to help develop better
methods to describe, design and document the exception handling facilities of a software system.

Early work strove to discover multiple ways to handle exceptional conditions [hill71]
[goodenough75]. Over the years two methods have come to dominate current implementations.
These methods are the termination model and the resumption model [gehani92].

In current systems the two main exception handling models manifest themselves as error
return codes and signals. It has been argued that the termination model is superior to the
resumption model [cristian95]. Indeed, the implementation of resumption model semanticsin
POSIX operating systems (signals), provides only large-grain control of signal handling, typically
at thetask level resulting in the termination of the process (e.g. SIGSEGV). This can make it
difficult to diagnose and recover from a problem, and is a concern in real-time systems that
cannot afford large-scale disruptions in program execution.

Implementations of the termination model typically require a software module to return an
error code (or set an error flag variable such as er r no in POSIX) in the event of an exceptional

condition. For instance afunction that includes a division operation might return adivide by zero

Prior Work 11

error code if the divisor were zero. The calling program could then determine that an exception
occurred, what it was, and perhaps determine how to recover from it. POSIX standardizes ways
to use error codes, and thus provides portable support for the error return model in building robust
systems [IEEE94].

At ahigher level of abstraction, several formal frameworks for representing exception
handling and recovery have been devel oped [edelweiss98][hofstede99]. These methods attempt
to build an exception handling framework that is easy to use and understand around a
transactional workflow system.

Highly hierarchical object oriented approaches seek to build flexible and easy to use
frameworks that bridge the gap between representation and implementation [dony90]. Y et
another approach is to use computational reflection [maes87] to separate the exception handling

code from the normal computational code [garcia99][garcialO0].

2.2 Performing Exception Handling

Aswe can see from the C language example in Figure 1, exception handling mechanisms can
often make code generation and reading difficult. Thisis a problem throughout the development
lifecycle. Easing the burden of developing, testing, and maintaining software with exception
handling constructs through better code representation is important for not only reducing costs,
but improving product quality. Consequently, thereisalargefield of related work.

One common way of easing the burden of writing effective exception handling codeis
through code and macro libraries. Thistype of approach has the benefit of being easily
assimilated into existing projects, and allows devel opers to use traditional programming
languages [1ee83] [hull88] [hagen98] [buhrO0]. More aggressive approaches go beyond simple
compiler constructs build entire frameworks [govindargjan92] [romanovsky00] or language
constructs [lippert00].

The focus of this research is more along the lines of identifying exceptional conditions before
an exception is generated (in an efficient manner), rather than devel oping exception handling
mechanisms that are easier to use. As such, the most closely related work is Xept [vo97]. The

Xept method is away in which error checking can be encapsulated in awrapper, reducing

Prior Work 12

flow-of-control disruption and improving modularity. It usesatool set to facilitate intercepting
function callsto third party libraries to perform error checking. Xept is a somewhat automated
version of the relatively common manual “ wrapper” technique used in many high availability
military systems.

Xept has influenced the research presented here, and the work leading up toit. The research
presented here uses the idea of avoiding exception generation in order to harden a software
interface against robustness failures. Further, it explores the practical limits of such hardening, in
terms of detection capabilities and performance cost. In some cases, atool such as Xept might
work well as a mechanism for implementing checks discussed in our work. Unfortunately it does
incur the overhead of at least one additional function call in addition to the tests performed per
protected code segment. Though the Xept check functions can not be inlined due to the structure
of its call-intercept methodology, it is not difficult to imagine practical modifications to the

technology that would allow the inlining optimization.

2.3 High Performance Exception Handling

In today’ s high performance culture, the desire for fast exception handling is obvious. The
work discussed in this section largely focuses on generating, propagating, and handling
exceptions as fast as possible. Thisis complementary to the work presented in this document.
Once generated, exceptions can be difficult to recover from in arobust fashion. Thiswork is
mainly interested in devel oping methods of including enhanced error detection in software
systems to detect exceptional conditions to the maximum extent possible before they generate
exceptions, and to do so without sacrificing performance.

Exception delivery cost can be substantial, especially in heavily layered operating systems
where the exception needs to propagate through many subsystems to reach the handling program.
In [thekkath94], the authors present a hardware/software solution that can reduce delivery cost up
to an order of magnitude. In [zilles99], the use of multithreading is explored to handle hardware
exceptions such as TLB misses without squashing the main instruction thread. The work
presented here may benefit from multithreading technol ogies that are beginning to emerge in new

commercia processor designs by allowing error checking threadsto run in parallel. However,

Prior Work 13

synchronizing checking threads with the main execution thread may prove to be costly in terms of
execution overhead, and certainly machine resources. Thiswork performs checksin the main
thread, building them such that the enhanced multiply branch prediction hardware[rakvicO0] and
block cacheg[black99] can simply execute checksin parallel and specul atively bypass them with
little or no performance cost.

In [wilken93][wilken97] the authors propose a hardware architecture to allow the rapid
validation of software and hardware memory accesses. Their proposed architecture imposed only
a 2% speed penalty. Unfortunately, the authors also determined that without the specia
hardware, the scheme was too costly to implement in software alone. Other work proposes a
code transformation technique to detect memory exceptions, resulting in performance overheads
of 130%-540% [austin94].

Thiswork expands on these ideas in some key areas. It creates asimple, generically
applicable construct for exception detection. It quantifies the performance cost of using the
construct to provide robust exception detection and handling, and it discusses waysin which

emerging microprocessor technologies will improve the construct’ s performance even further.

Prior Work 14

3 TheBallista Robustness Benchmarking Service

Although computing systems continue to take on increasingly important roles in everyday life,
the dependability of these systems with respect to software robustness may not be as high as one
would like. The disruption of communications services or a business server can cause substantial
problems for both the service provider and the consumer dependent upon the service. Personal
computer users have becomeinured to crashes of popular desktop computer software. But, these
same people are notoriously unsympathetic when faced with computer problems that disrupt
servicesin their daily lives.

Software robustness failures and exceptional conditions are not a new problem. An early,
highly visible software robustness failure in a critical system came in the Apollo Lunar Landing
Program despite the ample resources used for engineering, development and test. 1n 1969 the
Apollo 11 space flight experienced three mission- threatening computer crashes and reboots
during powered descent to lunar landing, caused by exceptional radar configuration settings that
resulted in the system running out of memory buffers[jones96].

More recent software development methodol ogies for critical systems (e.g., [rational01]) have
given engineers some ability to create robust systems. But, cost cutting, time pressure, and other
real-world constraints on even critical systems can lead to less than perfectly robust software
systems. One of the more spectacular recent instances of this was the maiden flight of the Ariane
5 heavy lift rocket. Shortly after liftoff the rocket and payload were lost due to afailure
originating from an unhandled exceptional condition during a conversion from a floating point
valueto aninteger value [lions96]. It stands to reason that everyday projects with lower
perceived criticality and budget size are likely to be even more susceptibl e to robustness
problems.

Asillustrated by the space flight examples above and most people’ s daily experience with
personal computer software, al too often the response to exceptional conditionsisless than
graceful. Frequently the focus of software development processesis either that agiven input is
exceptional and therefore should not have been encountered, or that the lack of a specification for

that input was a defect in the requirements. But, from a user’s perspective, afailure to handle an

The Ballista Tool 15

exceptional condition gracefully amounts to a software failure even if it is not strictly speaking
caused by a software defect (it isirrelevant to laypeople that software devel opment documents
leave responses to a particular exceptional condition “unspecified” if they have lost anything
from an hour’ s work to a family member due to a software crash).

History and common sense tell us that specifications are unlikely to address every possible
exceptional condition. Consequently, implementations devel oped by typical software
devel opment teams are probably not entirely robust. And, in the world of commercial software it
is even more likely that resource and time constraints will leave gaps where even exceptional
conditions that might have been anticipated will be overlooked or left unchecked.

Asasimple example, consider an ASCII to integer conversion inadvertantly fed a null string
pointer expressed by the C call at oi (NULL). Asone might expect, on most systems this call
causes a segmentation fault and aborts the process. Of course one would not expect programmers
to deliberately write “at oi (NULL) .” However, it is possible that a pointer returned from a user
input routine purchased as part of a component library could generate a NULL pointer value.
That pointer could be passed to at oi () during some exceptiona condition — perhaps not
documented anywhere (just to pick an example, let’s say that this happensif the user presses
backspace and then carriage return, but that isn’t in anyone’' stest set).

Should at oi () abort the program in this case? Should the application programmer check
theinput to at oi () even though thereis no specified case from the input routine component
that could generate anull pointer? Or should at oi () react gracefully and generate an error
return code so that the application program can check to seeif the conversion to integer was
performed properly and take corrective action? Whileit is easy to say such a problem could be
handled by a bug patch, alack of robustness in even so simple a case could cause problems
ranging from the expense of distributing the patch to embarrassment, loss of customers, or worse.

Resource and time constraints too often allow thorough testing of only the functional aspects
of a software system. Functional testing is often the easiest testing expense to justify as well.
After all, it is easy to conjure visions of unhappy customers and poor sales to even the most

budget-conscious cost cutter if aproduct failsto perform advertised functions. However,

The Ballista Tool 16

devel opment methodol ogies, test methodol ogies, and software metrics typically give short shrift
to the issue of robustness. In particular, there has previously been no comprehensive way to
guantify robustness, so it is difficult to measure the effects of spending money to improve it.
Furthermore, exceptional conditions are typically infrequent, so it is difficult to justify spending
resources on dealing with them. (However, it isamistake to think that infrequent or exceptional
necessarily equates to unlikely, as can be demonstrated by year values rolling from 1999 to 2000
with two-digit year datafields; thisisinfrequent, but certain to happen.)

While robustness may not be an important issue in every software system, those systems
which require software robustness can pose specia difficulties during testing. 1n a“robust”
software system it istypical for up to 70% of the code to exist for the purpose of dealing with
exceptions and exceptional conditions[gehani92]. Unsurprisingly in light of this, other sources
state that mature test suites may contain 4 to 5 times more test cases designed to test responses to
invalid conditions and inputs (“Dirty” tests) than those designed to test functionality (* Clean”
tests)[beizer95]. In short, writing robust code and testing for robustness are both likely to be
difficult, time consuming, and expensive. Given that the bulk of development effort in such
situationsis spent on exceptions rather than “normal” functionality, it would seem useful to have
tools to support or evaluate the effectiveness of exception handling code.

Other problems arise when attempting to use off-the-shelf software components. It may be
difficult to evaluate the robustness of software without access to complete devel opment process
documentation (or in some cases even source code!). Yet if robustness matters for an application,
it would seem that robustness evaluations would be useful in selecting and using a component
library. Evaluationswould be even more useful if they were performed in away that permitted
“apples-to-apples’ comparisons across the same or similar component libraries from multiple
vendors.

The Ballista approach to robustness testing discussed in this chapter provides an automated,
scaleable testing framework that quantifies the robustness of software modules with respect to
their response to exceptional input values. It generates specific test cases that deterministically

reproduce individual robustness failures found during testing in order to help developers pin

The Ballista Tool 17

down robustness problems. Additionally, it has been used to compare off-the-shelf software
components by measuring the robustness of fifteen different implementations of the POSIX

operating system Application Programming Interface (API).

3.1 PreviousWork

While the Ballista robustness testing method described here is aform of software testing, its
heritage traces back not only to the software testing community, but also to the fault tolerance
community as aform of software-based fault injection. Ballista builds upon more than fifteen
years of fault injection work at Carnegie Mellon University, including [schuette86], [czeck86],
[barton90], [siewiorek93], [mukherjeed7], [dingman95], and [dingman97], and makes the
contribution of attaining scalability for cost-effective application to areasonably large API.

An early method for automatically testing operating systems for robustness was the
development of the Crashme program [carrette96]. Crashme operates by writing random data
values to memory, then spawning large numbers of tasks that attempt to execute those random
bytes as concurrent programs. While many tasks terminate almost immediately due to illegal
instruction exceptions, on occasion a single task or a confluence of multiple tasks can cause an
operating system to fail. The effectiveness of the Crashme approach relies upon serendipity — in
other words, if run long enough Crashme may eventually get lucky and find some way to crash
the system.

Similarly, the Fuzz project at the University of Wisconsin has used random noise (or “fuzz”)
injection to discover robustness problemsin operating systems. That work documented the
source of several problems [miller90], and then discovered that the problems were still present in
operating systems several years later [miller98]. The Fuzz approach tested specific OS el ements
and interfaces (as opposed to the completely random approach of Crashme), although it still
relied on random data injection.

Other work in the fault injection area has al so tested limited aspects of robustness. The FIAT
system [barton90] used probes placed by the programmer to alter the binary processimagein
memory during execution. The FERRARI system [kanawati92] was similar in intent to FIAT,

but uses software traps in amanner similar to debugger break-points to permit emulation of

The Ballista Tool 18

specific system-level hardware faults (e.g., data address lines, condition codes). The FTAPE
system [tsai95] injected faults into a system being exercised with arandom workload generator
by using a platform-specific device driver to inject the faults. While all of these systems
produced interesting results, none was intended to quantify robustness on the scale of an entire
OS API.

Earlier work at CMU attempted to attain scalable testing for large APl [mukhergee97]. That
work attempted to generically map a method’ s functionality into testing groups. While the
approach worked, it did not fulfil its goal of being scalable because of the large effort required on
a per function basis to specify the generic functionality of a software function.

While the hardware fault tolerance community has been investigating robustness mechanisms,
the software engineering community has been working on ways to implement robust interfaces.
These efforts are discussed in detail in Chapter 2. For the moment let us simply reiterate that the
POSIX supported mechanism for creating portable, robust systemsis the error return code
model[|[EEE94, lines 2368-2377].

Typical software testing approaches are only suitable for eval uating robustness when
robustness isincluded as an explicit and detailed requirement reflected in specifications. When
comprehensive exceptional condition tests appear in code traceabl e back to requirements, regular
software engineering practices should suffice to ensure robust operation. However, software
engineering techniques tend to not yield away to measure robustness if there is no tracability to
specifications. For example, test coverage metrics tend to measure whether code that existsis
tested, but may provide no insight as to whether code to test for and handle non-specified
exceptions may be missing entirely.

There are tools which test for robustness problems by instrumenting software and monitoring
execution (e.g., Purify [rational O1], Insure++ [para0l], and BoundsChecker [numega01]). While
these tools test for robustness problems that are not necessarily part of the application software
specification, they do so in the course of executing tests or user scripts. Thus, they are useful in
finding exceptional conditions encountered in testing that might be missed otherwise, but still

rely on traditional software testing (presumably traceable back to specifications and acceptance

The Ballista Tool 19

criteria) and do not currently employ additional fault injection approaches. Additionally, they
require access to source code, which is not necessarily available. In contrast, Ballistaworks by
sending selected exceptional inputs directly into software modules at the module testing level,
rather than by instrumenting existing tests of an integrated system. Thusit is complementary to,

rather than a substitute for, current instrumentation approaches.

3.2 TheBallista Testing M ethodology

The Ballista robustness testing methodology is based on combinational tests of valid and
invalid parameter values for system calls and functions. In each test case, a single software
Module under Test (or MuT) is called once to determine whether it provides robust exception
handling when called with a particular set of parameter values. These parameter values, or test
values, are drawn from a pool of hormal and exceptional values based on the data type of each
argument passed to the MuT. A test case therefore consists of the name of the MuT and atuple
of test values that are passed as parameters (i.e., atest case would be a procedure call of the form:
MuT_name(test_valuel, test_value?, ..., test_valueN)). Thus, the general Ballista approachisto
test the robustness of asingle call to aMuT for asingle tuple of test values, and then iterate this
process for multiple test cases that each have different combinations of valid and invalid test
values.

Thus, the general approach to Ballistatesting isto test the robustness of asingle call toaMuT
for asingle tuple of test values, and then repeat this process for multiple test cases that each have
different combinations of valid and invalid test values. Although this style of testing excludes
timing and sequence issues, the system could be extended to cover these areas. Phantom
parameters or test scaffolding (discussed later in this chapter) provide the opportunity to
investigate sequence or timing issues. Of course, the significant drawback to doing soisa

potential loss of scalability.

3.2.1 Scalabletesting without functional specifications
The Ballista testing framework achieves scalability by using two techniques to abstract away
almost al of the functional specification of the MuT. The reasoning isthat if the functional

specification can be made irrelevant for the purposes of testing, then no effort needs to be made to

The Ballista Tool 20

create such specifications (this is especially important for testing legacy code, code from third
party software component vendors, or code with specifications that are not in machine-usable
form).

The first technique to attain scalability isthat the test specification used by Ballistais simply
“doesn’t crash; doesn’'t hang.” This simple specification describes a broad category of robust
behavior, applies to almost all modules, and can be checked by looking for an appropriate timeout
on awatchdog timer and monitoring the status of atask for signs of abnormal termination. Thus,
no separate functional specification is required for amodule to be tested (those few modul es that
intentionally terminate abnormally or hang are not appropriate for testing with Ballista).

The second technique to attain scalability is that test cases are based not on the functionality of
the MuT, but rather on values that tend to be exceptiona for the data types used by the MuT. In
other words, the types of the arguments to a module completely determine which test cases will
be executed without regard to what that module does. This approach eliminates the need to
construct test cases based on functionality. Additionally (and perhaps surprisingly), in full-scale
testing it has proven possible to bury most or all test “scaffolding” code into test values

associated with datatypes. This meansthat to alarge degree there is no need to write any test

AP Sfseek (Sfio_t *theFile, int pos)
TESTING OBJECTS Sfio t* nt
ORTHOGONAL
PROPERTIES File State Buffer Type Flags IntValue
OPN_READ MAPPED STRING MAXINT
OPN_WRITE BUFFERED READ MININT
OPN_RW NON_BUFFERED WRITE ZERO
CLOSED APPEND ONE
TEST DELETED LINE NEGONE
VALUES SHARE 2
PUBLIC 4
MALLOC 8
STATIC 16
IOCHECK 32
BUFCONST 64
WHOLE
MALLOC_STATIC

TEST CASE Sfseek (Sfio_t *theFile=(Composite Value), int pos=0)
Figure 2. Ballistatest parameter creation

The Ballista Tool 21

scaffolding code, nor any test cases when testing a new module if the data types for that module
have been used previously to test other modules. The net result isthat the effort to test alarge set
of modulesin an API tendsto grow sublinearly with the number of modules tested.

For each function tested, an interface description is created with the function name and type
information for each argument. The type information is simply the name of atype which Ballista
is capable of testing. In some cases specific information about how the argument is used was
exploited to result in better testing (for example, afile descriptor might be of typeint, but has
been implemented in Ballista as a specific file descriptor data type).

Ballista bases the test values on the data types of the parameters used in the function interface
(Figure 2). For example, if the interface of afunction specifiesthat it is passed an integer, Ballista
builds test cases based on what it has been taught about exceptional integer values. In the case of
integer, Ballista currently has 22 potentially exceptional test values. These include values such as
zero, one, powers of two, and the maximum integer value.

Some complex data types have orthogonal properties which, if abstracted properly, can greatly
reduce the complexity and effectiveness of test objects. Ballista can easily accommodate such
orthogonal deconstruction of itstest datatypes. This provides agreater ability to distinguish
which aspect of a parameter might be causing a specific robustness failure (in addition to
decreasing code complexity). Consider the type Sfio_t* in Figure 2, afunction that seeksto a
specific location in afile. There are 3 orthogonal categories, with 5, 3, and 13 possible values
each. Thusthereare5 x 3 x 13 possible generated values for Sfio_t*, or 195 total values.

Ballista uses the interface description information to create all possible combinations of
parameters to form an exhaustive list of test cases. For instance, suppose a MuT took one
parameter of type Sfio_t* and an integer as input parameters. Given that there are 22 integer test

values and 195 Sfio_t* values, Ballistawould generate 22 x195 x 11 = 4290 test cases.

3.2.2 Implementation of test values
Data types for testing can themselves be thought of as modules, which fit into a hierarchical
object-oriented class structure. This simplifies the creation of new data types and the refinement

of existing types. Each datatypeis derived from a parent type, and inherits all of the parent’ s test

The Ballista Tool 22

cases up to the root Ballistatype

object. For instance, adatatype Date String 12/1/1899
- 1/1/1900
created to specifically represent a Generic String ~ BIGSTRING 2/29/1984
i it STRINGLEN1 | 4/3U1%8
date string would have specific test ALLASCII 13/1/1997
Generic Pointer NONPRINTABLE 12/0/1994
cases associated with it that might NULL 8/31/1992
: o : DELETED |~ 8/32/1993
includeinvalid dates, valid dates, 1K 12/31/1999
dates far in the past, and dates in the ,\PA';();(E?ZIEE 1121/221328 46
. . IZE1
future (Figure 3). Assuming the ﬁ\lv ALID iﬁggg
direct parent of the date string data

module were string, it would inherit Figure 3. A Date String type inherits tests from

Generic String and Generic Pointer
all of the test cases associated with a

generic string, such as an empty

string, large “ garbage” strings, and small “garbage” strings. Finally the generic string might
inherit from a generic pointer data type which would be a base type and include atest for aNULL
pointer.

Each test value (such as Sfio_T_Closed_Buffered_Malloc, or Int_zero in Figure 2) refersto a
set of code fragments that are kept in a simple database comprised of a specially formatted text
file. Thefirst fragment for each test valueis a constructor that is called before the test caseis
executed (it isnot literally a C++ constructor, but rather a code fragment identified to the test
harness as constructing the instance of atest value). The constructor may simply return avalue
(such asaNULL), but may also do something more complicated that initializes system state. For
example, the constructor for Sfio_T_Closed Buffered Malloc creates a safeffast file with a call
tomal | oc, puts a predetermined set of bytesinto the file, opensthefile for read, then returns a
pointer to the file structure.

The second of the code fragments for each test value is commit code that changes any values
necessary prior to calling the test. For example, the commit code for

Sfio_T_Closed_Buffered_Malloc closes thefile.

The Ballista Tool 23

The last fragment del etes any data structures or files created by the corresponding constructor.
For example, the destructor for Sfio_T_Closed_Buffered_Malloc deletesthe file created by its
matching constructor and frees the buffer.

Tests are executed from within atest harness by having a parent task fork afresh child process
for every test case. The child process first calls constructors for all test values used in a selected
test case, then executes acall to the MuT with those test values, then calls destructors for all the
test values used. Specia care istaken to ensure that any robustness failure is aresult of the MuT,
and not attributabl e to the constructors or destructors themselves. Functions implemented as
macros are tested using the same technique, and require no special treatment.

Thetest values used in the experiments were a combination of values suggested in the testing
literature (e.g., [marick95]) and values selected based on personal experience. For example,
consider file descriptor test values. File descriptor test values include descriptors to existing files,
negative one, the maximum integer number (MAXINT), and zero. Situationsthat are likely to be
exceptional in only some contexts are tested, including file open only for read and file open only
for write. File descriptors are also tested for inherently exceptional situations such asfile created
and opened for read, but then deleted from the file system without the program’ s knowledge.

The guideline for test value selection for all data types were to include, as appropriate: zero,
negative one, maximum/minimum representabl e values, pointers to non-existent memory, lengths
near virtual memory page size, pointers to heap-allocated memory, files open for combinations of
read/write with and without exceptional permission settings, and files/data structures that had
been released before the test itself was executed. While creating generically applicable rules for
thorough test value selection remains a subject of future work, this experience-driven approach
was sufficient to produce useful results.

It isimportant to note that this testing methodol ogy does not generate tests based on a
description of MuT functionality, but rather on the data types of the MuT’ s arguments. This
approach means that per-MuT “scaffolding” code does not need to be written. Asaresult, the
Ballista testing method is highly scalable with respect to the amount of effort required per MuT,
needing only 20 data typesto test 233 POSIX MuTs.

The Ballista Tool 24

Data types are created through the use of a stand-alone data type compiler. The compiler,
completed as a part of thiswork, allows data types to be written in a higher level language that
makes it easy to define the orthogonal characteristics of adatatype, and associate them with the
appropriate code fragments for creation. The compiler takes the high level specification and
generates a C++ abject that can be linked in with the Ballista testing system. Appendix B
contains a sample template file (data type description), as well as the code generated by the
compiler.

An important benefit derived from the Ballista testing implementation is the ability to
automatically generate the source code for any single test case the suite is capable of running. In
many cases only a score of lines or fewer, these short programs contain the constructors for each
parameter, the actual function call, and destructors. These single test case programs have been
used to reproduce robustness failures in isolation for use by OS devel opers and to verify test

result data.

3.2.3 Testing results
Ballista categorizes test results according to the CRASH severity scale: [kropp98]
 Catastrophic failures occur when the OS itself becomes corrupted or the machine crashes
and reboots.

* Restart failures occur when acall to aMuT never returns contral to the caller, meaning
that in an application program a single task would be “hung,” requiring intervention to
terminate and restart that task. These failures are identified by awatchdog timer which
times out after several seconds of waiting for atest caseto complete. (Callsthat wait for
I/0 and other such legitimate “hangs’ are not tested.)

» Abort failures tend to be the most prevalent, and result in abnormal termination (a*core
dump,” the POSIX SIGSEGV signal, etc.) of asingle task.

¢ Sjlent failures occur when the MuT returns with no indication of error when asked to
perform an operation on an exceptiona value. For example, the floating point libraries
distributed with several operating systems fail to return an error code, and instead return as

if the result were accurate when computing the logarithm of zero[devale99]. Silent failures

The Ballista Tool 25

can currently be identified only by using inferences from N-version result voting, and so
are not identified by the Ballista testing service.

* Hindering failures occur when an incorrect error codeis returned from aMuT, which
could make it more difficult to execute appropriate error recovery. Hindering failures have
been observed as fairly common (forming a substantial fraction of cases which returned
error codes) in previous work [koopman97], but are not further discussed dueto lack of a
way to perform automated identification within large experimental data sets.

There are two additional possible outcomes of executing atest case. It ispossible that atest
case returns with an error code that is appropriate for invalid parameters forming the test case.
Thisisacasein which the test case passes — in other words, generating an error code isthe
correct response. Additionally, in some tests the MuT legitimately returns no error code and
successfully completes the requested operation. This happens when the parametersin the test
case happen to be all valid, or when it is unreasonabl e to expect the OS to detect an exceptional
situation (such as pointing to an address past the end of a buffer, but not so far past asto go
beyond a virtual memory page or other protection boundary).

Although the Ballista methodol ogy seems unsophisticated, it uncovers a surprising number of
robustness failures even in mature software systems. For example, when used to test 233
function calls across 15 different POSIX compliant operating systems, Ballista found normalized
robustness failure rates from 9.99% to 22.69%, with a mean of 15.16% [devale99]. Testing of

other software systems seemsto indicate comparable failure rates.

3.3 Anexampleof testing

In order to illustrate the usage of Ballista, consider the code segment for performing
trapezoidal approximation of numerical integration given in Figure4. Itistypical of textbook
algorithmsin that isis efficient, and easy to understand. The testing was done on a Digital Unix
Alpha Station 500, running Digital Unix 4.0D.

All that isrequired isto ssimply add aline to a configuration file that describes the function or
module to be tested. This allows Ballistato locate the interface (.h) file, the library, binary or

source code of the module, and which data types to use during the test. Ballista processes the

The Ballista Tool 26

information supplied by a user, performs the tests, and builds an HTML page describing the
results, including links that generate the source code required to replicate any robustness failures.

For this example, Ballistaran atotal of 2662 tests on the inttrap() function in Figure 4. Ballista
found 807 tests which caused abort failures and 121 tests which caused restart failures, for a
robustness failure rate of 35%. Of courseg, it isimportant to realize that any failure rate is going to
be directly dependant on the test cases themselves. In this case the MuT was passed two floats
and an integer. There were several values for both float and int that were not exceptional for
inttrap() (such aseand pi). This meansthat any failure rates are relative, and any comparisons to
be made among multiple modul es should use the same data type implementations.

On the surface, it seems astonishing that a simple published agorithm such as this would have
so many robustness failures. However, in al fairness, thisis atextbook algorithm intended to
convey how to perform a particular operation, and is presumably not intended to be
“bullet-proof” software. Additionally, the Ballista methodology tends to bombard a MuT with
many test cases containing exceptional conditions which generate failures having the same root
cause. One must examine the details of the test results to obtain more insight into the robustness
of the MuT.

By looking at the results more closely, it became apparent that al of the restart failures were
due to the integer value of MAXINT being used as the value of N, the number of subdivisions. In
this case, the algorithm attempted to sum the areas of roughly 2 billion trapezoids. After waiting
about 1 second (thisvalueis user

doubl e f(double i)
configurable) Ballista decided that the { o
return i*i*i;

process had hung, terminated it, and }

o)] doubl e i nttrap(doubl e a, double b,int N)
classified it as arestart failure. While ¢

int i; double t=0; double w = (b-a)/N
for (i=1;i<=Ni++)

t+= w(f(a+(i-1)*w) +f (a+t*w))/2;
return t;

there may be some applicationsin
which thisis not arestart failure, in
many cases it would be one, and it }

seems reasonable to flag this situation Figure 4. Trapezoidal numerical integration algorithm
[sedgewick92] and target function f.

The Ballista Tool 27

as apotentia problem spot. Thus, the importance of Restart failures found by Ballista varies
depending on timing constraints of the application, and will detect true infinite loops if present.

Of the 807 abort failures detected by Ballistafor this example, 121 were directly caused by a
divide by zero floating point exception. Thisis probably the easiest type of exceptiona condition
to anticipate and test for. Seasoned programmers can be expected to recognize this potential
problem and put a zero test in the function. Unfortunately, there is alarge amount of software
developed by relatively unskilled programmers (who may have no formal training in software
engineering), and even trained programmers who have little knowledge about how to write robust
software.

The remaining 686 aborts were due to overflow/underflow floating point exceptions. Thisis
an insidious robustness failure, in that nearly every mathematical function has the potential to
overflow or underflow. Thisexception is commonly overlooked by programmers, and can be
difficult to handle. Nonetheless, such problems have the potential to cause a software system to
fail and should be handled appropriately if robust operation is desired.

The floating point class of exceptions can be especially problematic, especially in systems
whose microarchitecture by default masks them out. Although this may seem incongruous, the
fact that the exception is masked out may lead to problems when hardening algorithms against
robustness failures. If the exception does not cause an abort and the software does not check to
make certain that an overflow/underflow did not occur, Silent failures (undetectable by the
current Ballista service) may result. Resultant calculations may be at best indeterminate and at
worst wrong, depending on the application; thusit is strongly recommended that full IEEE
floating point features [|EEE85] such as propagation of NaN (“ Not A Number”) values be used

even if Ballistatesting has been applied to a computational software module.

3.4 Generalizing the Approach

The first-generation, standalone Ballista test harness was devel oped having in mind POSIX
operating system calls as afull-size example system. The results achieved the goals of portability
and scalability. However, there were two significant limitations. The POSIX testing harness

assumed that any signal (“thrown” exception) was a robustness failure because the POSIX

The Ballista Tool 28

standard considers only error return codes to be robust responses. Second, the result that POSIX
testing required absolutely no scaffolding code for creating tests was a bit too good to be true for
general software involving distributed computing environment initialization and call-backs.

However, both of these issues have been addressed in the Web-based testing system.

3.4.1 Support for exception handling models

The Ballista framework supports both the termination model and resumption model as they
areimplemented in standard C/C++. With the termination model Ballista assumes that
exceptions are thrown with some amount of detail viathe C++ try-throw-catch mechanism so that
corrective action can be taken. In the case of error code returns, it is assumed that thereis an
error variable that can be checked to determine if an error has occured (currently theer r no
variable from POSIX is supported). Thus, an “unknown” exception or a condition that resultsin
an unhandled generic exception such as a SIGSEGV segmentation violation in a POSIX
operating system is considered a robustness failure.

Additionally, Ballista has the ability to add user defined exception handlers to support those
modules which use C++ exception handling techniques. Ballista embeds each test call into a
standard try-catch pair. Any thrown exception not caught by the user defined catch statements
will be handled by thelast cat ch (.. .) inthetest harness and treated as an Abort robustness

failure.

3.4.2 Support for callbacks and scaffolding

Ferngler [fernsler99] used the Ballistatool to test the High Level Architecture Run Time
Infrastructure (HLA RTI — asimulation backplane system used for distributed military
simulations/dahman97]). This example system brought out the need for dealing with exceptions,
since errors are handled with a set of thrown exceptions specified by the API. Additionally, the
HLA RTI presented problemsin that a piece of client software must go through a sequence of
events to create and register data structures with a central application server before modules can
be called for testing.

While at first it seemed that per-function scaffolding might be required for the HLA RTI, it

turned out that there were only 12 equivalence classes of modules with each equivalence class

The Ballista Tool 29

able to share the same scaffolding code. Thus the Ballista Web testing service has the ability to
specify scaffolding code (a preamble and a postamble) that can be used with a set of modulesto
betested. The preamble also provides a place for putting application-specific “include” files and
so on. While there are no doubt some applications where clustering of functionsinto sets that
share scaffolding code is not possible, it seems plausible that this technique will work in many
cases, achieving scalability in terms of effort to test alarge set of modules.

There are some software systems which require a calling object to be able to support a series
of callbacks, either as independent functions or methods associated with the calling object. Two
examples of this are afunction that analyzes incoming events and dispatches them to registered
event handlers, or aregistration function which uses member functions of the calling object to
obtain the information it requires. These situations require the testing framework itself to be
enhanced with either the functions or appropriate object structure to handle these cases.

To facilitate Ballista s ability to test these types of systems we provide a user the ability to
build the main testing function call into an arbitrary sub-class, or add any independent functions
needed. Aswith the other customizable features of Ballista, the additions can be changed
between modules. Although this feature adds back some of the per function scaffolding that we
eschewed in the previous version of Ballista, it was added to allow testing of code that requires it

if desired (and it may be completely ignored by many users).

3.4.3 Phantom parameters— a generalization of the Ballista testing method

At first glance, the parameter-based testing method used by Ballista seems limited in
applicability. However, abit of creativity allowsit to generalize to software modules without
parameters, modules that take input from files rather than parameters, and tests for how system
state affects modules that do not have parameters directly related to that state.

In order to test a module without parameters, all that need be done is create adummy module
that sets appropriate system state with a parameter, then calls the module to be tested. For
example, testing a pseudo-random number generator might require setting a starting seed value,
then calling a parameterless function that returns a random number in a predefined range. While

this could be accomplished by creating preamble test scaffolding to set the starting seed, the

The Ballista Tool 30

Ballistatool supports a more elegant approach. When specifying parameters for amodule,
“phantom” parameters can be added to the list. These parameters are exercised by Ballista and
have constructor/destructor pairs called, but are not actually passed to the MuT. So, for example,
testing the random number generator is best done by creating a data type of “random number
seed” that sets various values of interest, and then using that data type as a phantom parameter
when testing the otherwise parameterl ess random number generator.

A similar approach can be taken for file-based module inputs rather than parameter-based
inputs. A phantom parameter can be defined which creates a particular file or data object (or set
of such objects) with a particular format. If that object is accessed other than with a parameter
(for example, by referencing aglobal variable or looking up the object in a central registry) the
phantom parameter can appropriately register the object. In afuture version of Ballista, phantom
parameters might be able to themselves take parameters, so that for instance afile name could be
passed to ageneric file creation data type in support of this scheme, and recursive/iterative
creation of test sets could be performed.

Given the concept of phantom parameters, it becomes clear how to test modules for system
states which are not reflected in explicit parameters. Phantom parameters can be added to set
system state as desired. As an example, a phantom parameter data type might be created to fill up
disk space before a disk accessing function is called.

Thus, Ballistatesting has a reasonable (although certainly not complete) ability to test not only
single module calls with single sets of parameters, but the effects of such callsin awide variety
of system states. With the extension of phantom parameters, it can provide highly deterministic
testing of what amounts to awide variety of sequences of function calls (reflected in system state

set by that sequence of calls).

3.5 Summary
Ballista can test alarge variety of software modules for robustness to exceptional input
conditions. It ishighly scalable, and can provide arich state in which to test modules. Early

versions of this testing approach found robustness failure rates ranging from 10% to 23% on a

The Ballista Tool 31

full-scale test of fifteen POSIX operating system implementations. Any module capable of being
linked into GNU C++ bhinaries can be tested by the Ballista system.

Ballista's ability to abstract testing to the data type/API level is, in part, responsible for its
scalability. Functions or methods that operate on similar data types can use the same Ballista test
type for input creation. This minimizes the amount of code that needs to be written to run the
tests. Due to this abstraction, test effort (in terms of test devel opment time) tends to scale
sub-linearly with the number of functions to be tested.

The Ballista data type compiler allows the easy creation of new testing datatypes. It allows
the devel oper to write test objects in asimple, abstract language that is powerful enough to
express orthogonal properties and associate them with code needed to create the test values at run

time.

The Ballista Tool 32

4 Theexception handling effectiveness of POSI X operating systems

The genesis of the work presented in this thesis involved the testing and analysis of POSIX
operating systems. This provided usarich set of available test targets built by professional
teams, with operating stability as an explicit goal. Although we suspected that the tested systems
would not be as robust as the authors seemed to believe, we were surprised at how poor the
robustness of some systemswas. The results of the investigation presented in this chapter
afforded us the opportunity to interact with OS devel opers who were interested in our results. It
was during those discussions that is became clear that the prevailing wisdom was that building a
robust system would be too complex, too hard, and the resultant system would be too slow.

Operating systems form a foundation for robust application software, making it important to
understand how effective they are at handling exceptional conditions. The Ballistatesting system
was used to characterize the handling of exceptional input parameter values for up to 233 POSIX
functions and system calls on each of 15 widely used operating system (OS) implementations.
Thisidentified ways to crash systems with asingle call, ways to cause task hangs within OS code,
ways to cause abnormal task termination within OS and library code, failures to implement
defined POSIX functionality, and failures to report unsuccessful operations.

Overall, only 55% to 76% of the exceptional tests performed generated error codes, depending
on the operating system being tested. Approximately 6% to 19% of tests failed to generate any
indication of error despite exceptional inputs. Approximately 1% to 3% of tests revealed failures
to implement defined POSIX functionality for unusual, but specified, situations. Between 18%
and 33% of exceptional tests caused the abnormal termination of an OS system call or library
function, and five systems were completely crashed by individual system calls with exceptional
parameter values. The most prevalent sources of these robustness failures were illegal pointer
values, numeric overflows, and end-of-file overruns. Thereis significant opportunity for
improving exception handling within OS calls and especially within C library functions.
However, therole of signalsvs. error return codes is both controversial and the source of
divergent implementation philosophies, forming a potential barrier to writing portable, robust

applications.

OS Robustness 33

4.1 Introduction

The robustness of a system can depend in large part on the quality of exception handling of its
operating system (OS). It isdifficult to produce arobust software application, but the task
becomes even more difficult if the underlying OS upon which the application is built does not
provide extensive exception handling support. Thisistrue not only of desktop computing
systems, but also of embedded systems such as telecommunications and transportation
applications that are now being built atop commercial operating systems. A trend in new
Application Programming Interfaces (APIs) is to require comprehensive exception handling (e.g.,
CORBA [OMG95] and HLA [DoD98]). Unfortunately, while the POSIX AP [IEEE94]
provides a mechanism for exception reporting in the form of error return codes, implementation
of thismechanismislargely optional. This resultsin uncertainty when adopting a POSIX
operating system for use in acritical system, and leads to two important questions. 1) Given the
lack of afirm requirement for robustness by the POSIX standard, how robust are actual
Commercia Off-The-Shelf (COTS) POSIX implementations? 2) What should application
programmers do to minimize the effects of non-robust OS behavior?

These questions can be answered by creating a direct, repeatable, quantitative assessment of
OS exception handling abilities. Such an evaluation technique would give the devel opers
feedback about anew OS version beforeit is released, and present the opportunity to measure the
effectiveness of attempts to improve robustness. Additionally, quantitative assessment would
enable system designers to make informed comparison shopping decisions when selecting an OS,
and would support an educated “ make/buy” decision as to whether a COTS OS might in fact be
more robust than an existing proprietary OS. Alternately, knowledge about the exception
handling weak spots of an OS would enable application designers to take extra precautionsin
known problem spots.

POSIX exception handling tests were conducted using Ballista on fifteen POSIX operating
system versions from ten different vendors across a variety of hardware platforms. More than

one million tests were executed in all, covering up to 233 distinct functions and system calls for

OS Robustness 34

each OS. Many of the tests identified instances in which exceptional conditions were handled in
anon-robust manner, ranging in severity from complete system crashes to false indication of
success for system calls. Other tests managed to uncover exception-related software defects that
apparently were not caught by the POSIX certification process.

Beyond the robustness failure rates measured, analysis of test data and discussion with OS
vendors reveals a divergence in approaches to dealing with exceptional parameter values. Some
operating systems attempt to use the POSIX-documented error codes to provide portable support
for exception reporting at run time. Alternately, some operating systems emphasize the
generation of asignal (typically resulting in abnormal process termination) when exceptional
parameter values are encountered in order to facilitate debugging. However, there is no way to
generalize which OSs handle what situations in a particular manner, and all OSs studied failed to
provide either indication of exceptionsin a substantial portion of tests conducted. Whileitis
indeed true that the POSIX standard itself does not require comprehensive exception reporting, it
seems likely that a growing number of applicationswill need it. Evaluating current operating
systems with respect to exception handling is an important first step in understanding whether
change is needed, and what directionsit might take.

The following sections describe the testing methodology used (briefly), robustness testing
results, what these results reveal about current operating systems, and potential directions for

future research.

4.2 Ballistatesting methodology for POSI X

The Ballista approach to robustness testing has been implemented for a set of 233 POSIX
functions and calls defined in the IEEE 1003.1b standard [|[EEE94] (* POSIX.1b" or “ POSIX with
real-time extensions with C language binding”). All standard calls and functions were tested
except for calls that take no arguments, such as get pi d() ; callsthat do not return, such as
exi t ();and calsthat intentionally send signals, suchaski | | ().

For each POSIX function tested, an interface description was created with the function name

and type information for each argument. In some cases, specific information about argument use

OS Robustness 35

was exploited to result in better testing (for example, afile descriptor might be of typei nt , but
was described to Ballista as a more specific file descriptor data type).

As an example, Figure 5 shows the actual test valuesused totestwrit e(i nt fil edes,
const void *buffer, size_t nbytes),whichtakesparameters specifying afile
descriptor, a memory buffer, and a number of bytes to be written. This exampleis of an older
version of Ballista used in the collection of the OS data and is a precurser to the previously
illustrated testing example that showed the more sophisticated example using the “ dias’
approach. Becausewr i t e() takesthree parameters of three different data types, Ballista draws
test values from separate test objects established for each of the three datatypes. In Figure 5, the
arrows indicate that the particular test case being constructed will test afile descriptor for afile

which has been opened with only read access, aNULL pointer to the buffer, and a size of 16

API wite(int filedes, const void *buffer, size_t nbytes)
FILE MEMORY SIZE
TESTING pescripTOR BUFFER TEST
OBJECTS TEST OBJECT TEST OBJECT OBJECT
FD_CLOSED BUF_SMALL_1 SIZE_1
FD_OPEN_READ BUF_MED_PAGESIZE LSIZE_16
FD_OPEN_WRITE BUF_LARGE_512MB SIZE_PAGE
FD_DELETED BUF_XLARGE_1GB SIZE_PAGEX16
FD_NOEXIST BUF_HUGE_2GB SIZE_PAGEx16plusl
FD_EMPTY_FILE BUF_MAXULONG_SIZE SIZE_MAXINT
FD_PAST_END BUF_64K SIZE_MININT
TEST | FD_BEFORE_BEG BUF_END_MED SIZE_ZERO
FD_PIPE_IN BUF_FAR_PAST SIZE_NEG
VALUES | Fp_PIPE_OUT BUF_ODD_ADDR
FD_PIPE_IN_BLOCK BUF_FREED
FD_PIPE_OUT_BLOCK BUF_CODE
FD_TERM BUF_16
FD_SHM_READ BUF_NULL
FD_SHM_RW BUF_NEG_ONE
FD_MAXINT
FD_NEG_ONE
TEST CASE write(F!_(PEN_RD, BUFF_NULL, SIZE_16)

Figure 5. Ballistatest case generation for thewr i t e() function. The arrows show a single test
case being generated from three particular test values; in general, all combinations of test values
aretried in the course of testing.

OS Robustness 36

bytes. Other combinations of test values are assembled to create other test cases. In the usual
case, all combinations of test values are generated to create a combinatorial number of test cases.
For a half-dozen POSIX calls, the number of parametersis large enough to yield too many test
cases for exhaustive coverage within areasonable execution time. In these cases a
pseudo-random sampling of 5000 test casesis used. (Based on acomparison to arun with
exhaustive searching on one OS, this sampling gives results accurate to within 1 percentage point

for each function.)

4.2.1 Categorizing test results

After each test case is executed, the Ballista test harness categorizes the test results according
to thefirst three letters of the “C.R.A.S.H.” severity scale [kropp98]. Although Silent failuresare
not normally detectable using the Ballista system, we were able to infer Silent failuresin this

experiment. The details of this are explained in Section 4.4.

4.3 Reaults
A total of 1,082,541 test cases were executed during data collection. Operating systems which
supported al of the 233 selected POSIX functions and system calls each had 92,658 total test

cases, but those supporting a subset of the functionality tested had fewer test cases.

4.3.1 Raw Testing Results

The compilers and libraries used to generate the test suite were those provided by the OS
vendor. Inthe case of FreeBSD, NetBSD, Linux, and LynxOS, the GNU C compiler version
2.7.2.3 and associated C libraries were used to build the test suite.

Table 1 reports the robustness failure rates as measured by Ballista. In al, there were five
MuTs across the tested systems that resulted in Catastrophic failures. Restart failures were
relatively scarce, but present in all but two operating systems. Abort failures were common,
indicating that in all operating systemsit is relatively straightforward to elicit an abnormal task
termination from an instruction within afunction or system call (Abort failures do not haveto do
with subsequent use of an exceptional value returned from a system call — they happenin

response to an instruction within the vendor-provided software itself).

OS Robustness 37

Any MuT that suffered Catastrophic failures could not be completely tested due to alack of
time for multiple reboots on borrowed equipment, and thus is excluded from failure rate
calculations beyond simply reporting the number of MuTswith such failures. A representative
test case causing a Catastrophic failureon Irix 6.2 is:

munmap(mal | oc((1<<30+1)), MAXI NT);
Similarly, the following call crashes the entire OS on Digital Unix (OSF 1) version 4.0D:
nmprotect (malloc ((1 << 29) + 1), 65537, 0);

Other calls causing Catastrophic failureswere: nunmap() on QNX 4.22, npr ot ect () on
QNX 4.22, mmap() on HPUX 10, set pgi d() on LynxOS, and ng_r ecei ve() on Digital
Unix/OSF 3.2. Note that the tables al report Digital Unix version 4.0B, which did not have the

Catastrophic failure found in 4.0D, but is otherwise quite similar in behavior.

4.3.2 Normalized Failure Rate Results

Comparing OS implementations simply on the basis of the number of tests that fail is
problematic because, while identical tests were attempted on each OS, different OS
implementations supported differing subsets of POSIX functionality. Furthermore, MuTs having
many parameters execute a large number of test cases, potentially skewing results.

Rather than use raw test results, comparisons should be made based on normalized failure
rates. The rightmost column of Table 1 show the normalized failure rates computed by the
following process. A ratio of robustness failures to total testsis computed for each MuT within
each OS (e.g., aratio of 0.6 means that 60% of the testsfailed). Then, the mean ratio across al
MuTsfor an OSis computed using a simple arithmetic average. This definition produces an
exposure metric, which gives the probability that exceptional parameter values of the types tested
will cause arobustness failure for aparticular OS. This metric has the advantage of removing the
effects of differing number of tests per function, and also permits comparing OS implementations
with differing numbers of functions implemented according to a single normalized metric.

Overall failure rates considering both Abort and Restart failures range from the low of 9.99%

(AIX) to ahigh of 22.69% (QNX 4.24). Asshown in Figure6, the bulk of the failures found are

OS Robustness 38

Fns. with

POSIX Fns. with) Fns. with Normalized
System Frs. Ca.tastro- Restart Fn§ with Abort No Number of | Abort Re§tart Abort +

Tested phI.C Failures Failures Failures Tests Failures | Failures Restart Rate

Failures

AlX 4.1 186 0 4 77 108 64009 11559 |13 9.99%
FreeBSD 2.25 | 175 0 4 98 7 57755 14794 |83 20.28
HPUX 9.05 186 0 3 87 98 63913 11208 |13 11.39
HPUX 10.20 |185 1 2 93 92 54996 10717 |7 13.05
IRIX 5.3 189 0 2 99 90 57967 10642 |6 14.45
IRIX 6.2 225 1 0 94 131 91470 15086 |0 12.62
Linux 2.0.18 190 0 3 86 104 64513 11986 |9 12.54
Lynx 2.4.0 222 1 0 108 114 76462 14612 |0 11.89
NetBSD 1.3 182 0 4 99 83 60627 14904 |49 16.39
OSF1 3.2 232 1 2 136 96 92628 18074 |17 15.63
OSF1 4.0B 233 0 2 124 109 92658 18316 |17 15.07
ONX 4.22 203 2 6 125 75 73488 20068 | 505 20.99
ONX 4.24 206 0 4 127 7 74893 22265 | 655 22.69
Sun0S 4.13 189 0 2 104 85 64503 14227 |7 15.84
SunOS 5.5 233 0 2 103 129 92658 15376 |28 14.55

Table 1. Directly measured robustness failures for fifteen POSIX operating systems.

Abort failures. OS implementations having Catastrophic failures are annotated with the number
of MuTscapable of causing a system crash.

Thefirst set of experimental data gathered included severa relatively old OS versions,
representing machines that were in service under a conservative campus-wide software upgrade
policy. At theinsistence of vendors that newer versions would be dramatically better, tests were
run on several borrowed machines configured with the newest available OS releases. The results
showed that even major version upgrades did not necessarily improve exception handling
capabilities. Failure rates were reduced from Irix 5.3 to Irix 6.2, from OSF 3.2 to OSF 4.0, and
from SunOS 4 to SunOS 5, although in all cases the improvement was not overwhelming.

However, the failure rates actually increased from HPUX 9 to HPUX 10 (including addition of a

OS Robustness 39

Ballista Robustness Tests
233 POSIX Function Calls

AlX 4.1

Free BSD 2.2.5
HP-UX 9.05
HP-UX 10.20
Irix 5.3

Irix 6.2

Linux 2.0.18
LynxOS 2.4.0
NetBSD 1.3
OSF13.2
OSF14.0
QNX 4.22
QNX 4.24
Sun0S 4.1.3
SunOS 5.5

1 Catastrophic
]

1 Catastrophic

I Abort Failures
[Restart Failure

1 Catastrophic

1 :
| 1 catastrophic

Operating System Tested

| 2 catastrophics

0% 5% 10% 15% 20% 25%

Normalized Failure Rate

Figure 6. Normalized failure rates for POSIX operating systems

Catastrophic failure mode), increased from QNX 4.22 to QNX 4.24 (although with elimination of
both Catastrophic failure modes), and stayed essentially identical from OSF 1 4.0B to OSF 1
4.0D (although 4.0D introduced a new Catastrophic failure mode).

4.3.3 Failure Rates Weighted By Operational Profile

The use of auniformly weighted average gives a convenient single-number metric for
comparison purposes. However, it isimportant to dig alittle deeper into the data to determine
what functions are driving the failure rates, and whether they are the functions that are frequently
used, or instead whether they are obscure functions that don’t matter most of the time.

In some situations it may be desirable to weight vulnerability to exception handling failures by
the relative frequency of invocation of each possible function. In other words, rather than using
an equal weighting when averaging the failure rates of each MuT in an OS, the average could

instead be weighted by relative execution frequency for a“typical” program or set of programs.

OS Robustness 40

This approach corresponds to a simple version of operational profiles as used in traditional
software testing [musa96].

Collecting profiling information at the OS system call and function level turned out to be
surprisingly difficult for the POSIX API, because most tools are optimized for instrumenting
user-written calls rather than OS calls. However, instrumentation of the IBS benchmark suite
[uhlig95] and the floating point portions of the SPEC95 benchmark suite were possible using the
Atom tool set [srivastavad4] running on Digital Unix to record the number of calls made at run
time. Due to problems with compiler option incompatibility between Atom and the benchmark
programs, only the 10Zone, compress, ftp, and gnuChess programs from I1BS were measured.

The results were that the weighted failure rates vary dramatically in both magnitude and
distribution among operating systems, depending on the workload being executed. For example,
IBS weighted failure rates varied from 19% to 29% depending on the operating system.
However, for SPECO5 floating point programs, the weighted failure rate was less than 1% for al
operating systems except FreeBSD. Because FreeBSD intentionally uses a SIGFPE floating
point exception signal instead of error return codes in many cases, it happens have a high
percentage of Abort results on functions heavily used by SPEC95.

Specific weighted failure rates are not described because the results of attempting operational
profiling point out that there is no single operational profile that makes sense for an interface as
versatile asan OS API. The only definite point that can be made is that there are clearly some
profiles for which the robustness failure rates could be significant. Beyond that, publishing a
weighted average would, at best, be overly simplistic. Instead, interested readers are invited to
obtain the raw OS failure rate data and apply operational profiles appropriate to their particul ar

application area.

4.3.4 Failure Rates By Call/Function Category

A somewhat different way to view the failure rate data is by breaking up aggregate failure
rates into separate failure rates grouped by the type of call or function [ostrand88]. This gives
some general insight into the portions of the implementations that tend to be robust at handling

exceptions without becoming bogged down in the details of individual call/function failure rates.

OS Robustness 41

Robustness Failure Rate

chapters

Figure 7 shows the failure rate of different categories of calls/functions as grouped within the
chapters of the POSIX specification [IEEE93]. In thisfigure both a general name for the
category and an example function from that category are given for convenience. The failure rates
for each category are calculated by taking the normalized average of the failure rates of each
function in that category. For instanceif category X had three member function with a 4%, 5%,
and 6% failure rate, the category failure rate would be 5%.

Several categoriesin Figure 7 have pronounced failure rates. The clocks and timers category
(Section 14 of the Standard) had abimodal distribution of failure rates: 30% to 69% for seven of
the OS implementations (the visible barsin Figure 7), and low values for the remaining OSs (the
hidden bars are 7% for Irix 6.2, 1% for SunOS 5.5, and 0% for therest). This set and the memory

management set (Section 12 of the Standard, which deals with memory |ocking/mapping/sharing,

OS Robustness 42

but not “malloc” -type C-library operations) are representative of areas in which thereisavery
noticeabl e variation anong OS implementations with respect to exception handling.

While in many cases failure rates are comparable across OS implementations for the different
call categories, there are some bars which show significantly higher failure rates. HPUX 10 has a
100% failure rate for memory management functions. Worse, it was one of the memory
management calls that produced HPUX 10’ s Catastrophic system failure, indicating that this area
isindeed arobustness vulnerability compared to HPUX 9, which had no such problems. (We
have learned that HPUX 10 has a new implementation of these functions, accounting for a
potentially higher failurerate.) Thisand other similar observations indicate that there may be

specific areas of reduced exception handling effectiveness within any particular OS.

4.3.5 C-Library Failure Rates

The general failure rate of the C library callsin Figure 7 is uniformly high across al OS
implementations tested. Figure 8 shows the same data as Figure 6, but shows the portions of each
failure rate that are attributable to the C library functions. Part of the large contribution of C

library functions to overall failure ratesis that they account for approximately half of the MuTs

AlX 4.1
FreeBSD 2.2.5
HP-UX A.09.05
HP-UX B.10.20

IRIX5.3

IRIX 6.2

LINUX 2.0.18
LynxOS 2.4.0
NetBSD 1.3
OSF1 3.2
OSF1 4.0B
QNX4.22
QNX4.24
SunOS 4.1.3
SunOS 5.5

| W System Calls
| O C-Library Functions

0% 5% 10% 15% 20% 25%

Abort + Restart Failure Rates

Figure 8. The C-Library functions contribute alarge proportion of the overall raw failure rates

OS Robustness 43

for each OS (atotal of 102 C library functions were tested, out of 175 to 223 total MuTs per OS).
The C library functions had a failure rate about the same as system calls on QNX, but had failure
rates between 1.8 and 3.8 times higher than system calls on all other OS versionstested. Within
the C library, string functions, time functions, and stream I/O tended to have the highest

robustness failure rates.

4.4 Data analysisvia N-version software voting

The scalability of the Ballista testing approach hinges on not needing to know the functional
specification of aMuT. Inthe general case, this results in having no way to deal with tests that
have no indication of error — they could either be non-exceptional test cases or Silent failures,
depending on the actual functionality of the MuT. However, the availability of a number of
operating systems that all conform to a standardized API permits estimating and refining failure
rates using an ideainspired by multi-version software voting (e.g., [avizienis85]). Ballistatesting
results for multiple implementations of asingle APl can be compared to identify test cases that
are either non- exceptional, or that are likely to be Silent failures. Thisis, of course, not really
multi-version software voting, but rather a similar sort of idea that identifies problems by finding

areas in which the various versions disagree as to results for identical tests.

4.4.1 Elimination of non-exceptional tests.

The Ballistatest cases carefully include some test values which are not exceptional in any
way. Thisisdone intentionally to prevent the masking of robustnessfailures. A correctly
handled exceptional condition for one value in atuple of those passed into a function may cause
the system to not even look at other values. The concept is similar to obtaining high branch
coverage for nested branches in traditional testing. For instance, in the test case:
write(-1, NULL, 0), some operating systems test the third parameter, alength field of zero,
and legitimately return with success on zero length regardless of other parameter values.
Alternately, the file descriptor might be checked and an error code returned. Thus, having a
second parameter value of aNULL pointer might never generate a robustness failure caused by a

pointer dereference unless the file descriptor parameter and length fields were tested with

OS Robustness 44

non-exceptional values. In other words, exceptional values that are correctly handled for one
argument might mask non-robust handling of exceptional values for some other argument. If, on
the other hand, thetest casewr i t e(FD_OPEN_WRI TE, NULL, 16) were executed, it might
lead to an Abort failure when the NULL pointer is dereferenced. Additionally, test cases that are
exceptional for some calls may non-exceptional for others (e.g., using read permissions for testing
read() vs.write()). Thus, by including non-exceptiona test cases we force the module
under test to attempt to handle each value that might be exceptional. While both uses of
non-exceptional test values are important, they necessarily lead to test cases that are not, in fact,
tests of exceptional conditions (e.g., reading from aread-only file is not exceptional).
Multi-version software comparisons can prune non-exceptional test cases from the results data
set. Thisis done by assuming that any test case in which all operating systems return with no
indication of error arein fact non-exceptional tests (or, are exceptional tests which cannot be
detected within reason on current computer systems). In all, 129,731 non-exceptional tests were

removed across all 15 operating systems. Figure 9 shows the adjusted abort and restart failure

Normalized Failure Rate by Operating System

AlX 4.1
FreeBSD 2.2.5

HP-UX 9.05 |
5 HP-UX 10.20 [|1 catastrophic
Irix 5.3 I B Abort %
g Irix 6.2 _ 1 Catastrophic [1 Restart%
§ Linux2.0.18 | | 1 Silent Error%
:‘% Lynxos 2.4.0 [1 catastrophic
o NetBSD 1.3 |
% OSF-13.2 || 1 catastrophic
’g OSF-14.0 [T]
O ONXx4.22 [[]2 catastrophics

QNX 4.24
SunOS 4.13
SunOS 5.5

0% 10% 20% 30% 40% 50%

Normalized Failure Rate
Figure 9. Adjusted, normalized robustness failure rates after using muti-version software
techniques. Results are APPROXIMATE due to the use of heuristics.

OS Robustness 45

rates after removing non-exceptional tests. Manual verification of 100 randomly selected test
cases thus removed indicated that al of them were indeed non-exceptional, but it was impractical
to examine alarger sample using this very labor-intensive process. Whileit is possible that some
test cases were incorrectly removed, based on this sample and intuition gained during the
sampling process, it seems unlikely that the number of false removalsinvolved would materially

affect the results.

4.4.2 An estimation of Silent failurerates

One of the potential problems with leaving out Silent failuresin reporting resultsis that an OS
might conceivably be designed to avoid generating Abort failures at any cost. For example, AIX
intentionally permits reads (but not writes) to the memory page mapped to address zero to support
legacy code, meaning that dereferences of aNULL pointer would not generate Abort failures.
And, in fact, AIX does have amoderately high Silent failure rate because of this implementation
decision.

Once the non-exceptional tests were removed, a multi-version software comparison technique
was again used to detect Silent Failures. The heuristic used wasthat if at least one OS returns an
error code, then all other operating systems should either return an error code or suffer some form
of robustness failure (typically an Abort failure).

As an example, when attempting to compute the logarithm of zero, AIX, HPUX-10, and both
versions of QNX completed the requested operation without an error code, whereas other OS
implementations did return an error code. Thisindicated that A1X, HPUX-10, and QNX had
suffered Silent robustness failures for that test case.

Of course the heuristic of detection based on asingle OS reporting an error code is not perfect.
Manual verification of 100 randomly sampled test cases, with each test case compared across all
the OS implementations, indicates that approximately 80% of cases predicted to be Silent failures
by this technique were actually Silent failures. Of the approximately 20% of test cases that were

mis-classified:

OS Robustness 46

» 28% were due to POSIX permitting discretion in how to handle an exceptional situation.
For example, npr ot ect () ispermitted, but not required, to return an error if the
address of memory space does not fall on a page boundary.

* 21% were dueto bugsin C library floating point routines returning false error codes. For
example, Irix 5.3 returns an error for t an(- 1. 0) instead of the correct result of
-1.557408. Two instances were found that are likely due to overflow of intermediate
results —HPUX 9 returns an error code for f mod(DBL_MAX, Pl); and QNX 4.24 returns
an error codefor | dexp(e, 33)

* 9% were due to lack of support for required POSIX featuresin QNX 4.22, which
incorrectly returned errors for filenames having embedded spaces.

* Theremaining 42% were instances in which it was not obvious whether an error code
could reasonably be required. Thiswas mainly a concern when passing a pointer to a
structure containing meaningless data, where some operating systems (such as SunOS
4.13, which returned an error code for each test case it did not abort on) apparently
checked the data for validity and returned an error code.

Examining potentia Silent failures manually also revealed some software defects (“bugs’)
generated by unusual, but specified, situations. For instance, POSIX requiresi nt
fdat asynch(int fil edes) toreturnthe EBADF erroriffi | edes isnot valid, and the
file open isfor write [IEEE94]. Y et when tested, only one operating system, IRIX 6.2,
implemented the specified behavior, with the other OS implementations failing to indicate that an
error occurred. The POSIX standard al so specifically permits writes to files past EOF, requiring
the file length be updated to allow the write [IEEE94]; however only FreeBSD, Linux, and
SunOS 4.13 returned successfully after an attempt to write data to afile past its EOF, while every
other implementation returned EBADF. It is estimated that the failure rates for these problemsis
quite low (perhaps 1% to 3% overall depending on the OS), but is definitely present, and is
apparently not caught by the process of validating POSIX compliance.

A second approach was attempted for detecting Silent failures based on comparing test cases

having no error indication against instances of the same test case suffering an Abort failures on

OS Robustness 47

some other OS. With some surprise, this turned out to be as good at revealing software defects as
it was at identifying Silent failures. A relatively small number (37,434 total) of test cases
generated an Abort failure for some operating systems, but completed with no error indication at
all for other operating systems. But, manual verification 100 randomly sampled test cases
indicated that this detection mechanism had approximately a 50% false alarm rate.

Part of the high false alarm rate for this second approach was due to differing orders for
checking arguments among the various operating systems (related to the discussion of fault
masking earlier). For example, reading bytes from an empty fileto aNULL pointer memory
location might abort if end-of-file is checked after attempting to move a byte, or return
successfully with zero bytes having been read if end-of-file is checked before moving a byte. The
other part of the false alarm rate was apparently due to limitations within floating point libraries.
For instance, FreeBSD suffered an Abort failure on both f abs(DBL_MAX) and
f abs(- DBL_MAX)whereasit should have returned without an error.

Based on these estimated accuracy rates, results reported in Figure 9 reflect only 80% of the
Silent errors measured and 50% of the Silent Aborts measured, thus compensating for the
estimated false alarm rates. With all of the manual examination techniquesit was impractical to
gather amuch larger sample, so these percentages should be considered gross approximations,

but are believed to be reasonably accurate based on intuition gained during the sampling process.

4.4.3 Frequent sources of robustnessfailure
Given that robustness failures are prevalent, what are the common sources? Source code to

most of the operating systems tested was not available, and manual examination of available
source code to search for root causes of robustness failures was impractical with such alarge set
of experimental data. Therefore, the best data available is based on a correlation of input values
to robustness failures rather than analysis of causality. The test values most frequently associated
with robustness failures are:

* 94.0% of invalid file pointers (excluding NULL) were associated with arobustness failure

» 82.5% of NULL file pointers were associated with a robustness failure

OS Robustness 48

* 49.8% of invalid buffer pointers (excluding NULL) were associated with a robustness
failure

* 46.0% of NULL buffer pointers were associated with a robustness failure

* 44.3% of MININT integer values were associated with arobustness failure

* 36.3% of MAXINT integer values were associated with a robustness failure

Perhaps surprisingly, system state changes induced by any particular test did not proveto be a

source of robustness failures for other tests. Apparently the use of a separate process per test case
provided sufficient inter-test isolation to contain the effects of damage to system state for all tests
except Catastrophic failures. Thiswas verified by vendors reproducing testsin isolation with
single-test programs, and by verifying that test results remained the same even if testswererunin
adifferent order within the test harness. Thisis not to say that such problems don’t exist, but

rather that they are rather more difficult to elicit on these operating systems than one might think.

45 Issuesin attaining improved robustness

When preliminary testing results were shown to OS vendors, it became very apparent that
some developerstook adim view of aSIGSEGV or SGFPE signal being considered a robustness
failure. Infact, in some cases the developers stated that they specifically and purposefully
generated signals as an error reporting mechanism, in order to make it more difficult for
developersto miss bugs. On the other hand, other developers provide extensive support for a
wide variety of error return codes and make attempts to minimize abnormal task terminations
from within system calls and library functions. The importance of such comprehensive exception
handling was underscored by many conversations with application devel opers who develop
critical systems. There are two parts to this story: the relative strengths and weaknesses of each
philosophy, and whether either goal (robust return codes or signaling for all exceptions) was

attained in practice.

4.5.1 Signalsvs. error codes
While discussions with OS devel opers have proven that exception handling robustnessis a

controversial, even “religious’ subject, the fact remains that there are significant applicationsin

OS Robustness 49

several industries in which developers have stated very clearly that fine-grain error reporting is
extremely desirable, and that signals accompanied by task restarts are unacceptable. These
applications include telecommunication switches, railroad train controllers, real-time simulations,
uninterruptible power supplies, factory automation control, ultra-high availability mainframe
computers, and submarine navigation, to name afew real examples encountered during the course
of this project. While these may not be the intended application areas for most OS authors, the
fact isthat COTS OS implementations are being pressed into service for such critical systemsto
meet cost and time-to-market constraints. Thus, evaluating the robustness of an OSis useful,
even though robustnessis not required by the POSIX standard.

That having been said, the results reported here suggest that there are issues at hand that go
beyond a preference for signals vs. error return codes. Oneissueis simply that divergencein
implementations hinders writing portable, robust applications. A second issueisthat no
operating systems examined actually succeeded in attaining a high degree of robustness, even if

signals were considered to be a desirable exception reporting mechanism.

4.5.2 Building more robust systems

Traditionally, software robustness has been achieved through a variety of techniques such as
checking error codes, performing range checks on values, and using testing to flush out problems.
However, Ballista robustness testing results have eliminated any slender hopes that these
approaches were entirely sufficient for critical systems. Checking error codes might work on one
OS, but might not work when porting to another OS (or even to aminor version change of the
same OS) which generates a SIGSEGV instead of an error code, or which generates no error code
at al in response to an exceptiona situation. Similarly, it is clear that POSIX functions often do
not perform even a cursory check for NULL pointer values, which could be accomplished with
minimal speed impact. Finally, vendor testing of OS implementations has been demonstrated to
miss some very simple ways to cause system crashes in both major and minor version changes.

Thus, a useful additional step in building more robust systemsisto use API-level fault
injection such as that performed by the Ballista testing system. Thiswill, a a minimum, identify

certain classes of Catastrophic failures so that manual intervention can be performed via software

OS Robustness 50

“wrappers’ to screen out exceptional parameters for specific system calls, or to permit application
devel opers to otherwise pay specific attention to eliminating the possibility of such situations.

For C library functions, it may be possible to use aternate libraries that are specifically
designed for increased robustness. One exampleisthe Safe Fast I/O library (SFIO) [korn91] that
can replace portions of the C library. For system calls, one can select an existing OS that tends to
have low failure rates as shown in Figure 8, if Abort failures are a primary concern. Or, one
might even find it necessary to add extra parameter-checking wrappers around system callsto
reduce Silent failure rates.

For any application it isimportant to realize that abnormal task terminations are to be
expected as a matter of course, and provide for automatic recovery from such events. In some
applications thisis sufficient to attain areasonable level of robustness. For other applications,
thisis merely away to reduce the damage caused by a system failure, but isnot aviable
substitute for more robust error identification and recovery.

Finally, apotential long-term approach to increasing the robustness of OS implementationsis
to modify the POSIX standard to include a requirement for comprehensive exception handling,
with no exception left undefined. While this might impose a modest performance penalty, it
might well be viable as an optional (but well specified) extended feature set. Further research
should be performed to quantify and reduce any associated performance penalties associated with

increased exception handling abilities.

4.6 Summary of OS Results

The Ballista testing approach provides repeatabl e, scalable measurements for robustness with
respect to exceptional parameter values. Over one million total tests were automatically
generated for up to 233 POSIX function and system calls spanning fifteen operating systems.
The most significant result was that no operating system displayed a high level of robustness.
The normalized rate for robust handling of exceptional inputs ranged from alow of 52% for
FreeBSD version 2.2.5 to a high of 76% for SunOS version 5.5 and Irix version 6.2. The
majority of robustness failures were Abort failures (ranging from 18% to 33%), in which asigna

was sent from the system call or library function itself, causing an abnormal task termination.

OS Robustness 51

The next most prevalent failures were Silent failures (ranging from 6% to 19%), in which
exceptional inputs to aModule under Test resulted in erroneous indication of successful
completion. Additionally, five operating systems each had at |east situation that caused a system
crash in response to executing a single system call. The largest vulnerabilities to robustness
failures occurred when processing illegal memory pointer values, illegal file pointer values, and
extremely large integer and floating point numbers. In retrospect it isreally no surprise that
NULL pointers cause problems when passed to system calls. Regardless, the single most
effective way to improve robustness for the operating systems examined would be to add tests for
NULL pointer values for relevant calls.

Application of the Ballista testing approach to measuring OS robustness led to several
insights. It documents a divergence of exception handling strategies between using error return
codes and throwing signals in current operating systems, which may make it difficult to write
portable robust applications. All operating systems examined had alarge number of instancesin
which exceptional input parameter values resulted in an erroneous indication of success from a
system call or library function, which would seem to further complicate creating robust
applications.

The observations and insights gained from the application of Ballista to operating systems
provided the impetus for the remainder of the investigation described in thisthesis. It became
clear that the devel opers we interacted with held very strong beliefs about the tractability of
robust exception detection and handling in terms of complexity and performance. In responseto
the experimental results, many OS vendors stated that their code was as robust as possible given
complexity and performance constraints. Without any real evidence to the contrary, we could not
refute their opinions, and thus became determined to investigate further.

These observations led directly to the questions addressed in remainder of the research
contained in this dissertation:

* Can code be more robust, or was there a fundamental limit as some claimed?

* Isit possibleto build robust systems without losing significant performance?

OS Robustness 52

* |sthe fundamental problem one of education, or in other words, do devel opers understand

robustness? Do they understand what it takes to make a system robust?

OS Robustness 53

5 Hardening and analysisof math libraries

User pressure to provide the fastest possible executable may |ead devel opers to leave out
run-time data checks which may prevent software robustness failures at the expense of execution
speed. While it can be show with a hand waving argument that these checks do indeed sacrifice
performance, it is not clear what the impact is, and if it is even significant. This chapter presents
the first attempt to quantify this penalty. The math library for FreeBSD 3.0 was modified to
perform robust error detection and handling, and a separate version with al error checking and
handling removed was created. At afunction level, the robust library performed an average of
1% slower than the unmodified library, and on average 14% slower than the library with all error
handling code removed. Further, application code written to explicitly check return codes after
library function calls ran 2% slower on average than application code which neglected such

checks.

5.1 Background
The result of testing operating systems and reporting their robustness failures spurred a great
deal of discussion about the tractability and performance cost of detecting and gracefully

handling exceptional conditions. The general consensus that it was too hard and too costly

generated interest in determining if this was indeed the case, and if so, why. vy

As asimple expedient, the standard BSD libm.a source code was chosen for ~ |2€0sh

asinh
modification and testing. This made it a simple exercise to not only remove atan

atanh
existing error detection and handling code, but also to add more robust error COS

cosh

handling code. Since these functions have been rigorously mathematically .

defined, this library also enjoys having degenerate cases and input ranges which :Xp
oor

have been well defined for over a century. gamma

log

sin

sinh

sqrt

number and returns a single double precision floating point number. This tanh
Table 2. Test
Function
List

Table 2 lists the functions which were selected for test. The functions were

sel ected because each function takes a single double precision floating point

Math Libraries 24

simplified creation of the performance testing harness, as well as robustness testing using the
Ballistatesting service.

Three distinct versions of the math library were analyzed. Thefirst version was that of the
original, unmodified source code as distributed with FreeBSD 3.0. The second was the origina
code, with all existing error checking and exception handling removed. The third version was the
original source, modified to be robust.

To make the robust version of the math library, extensive acceptance testing was added to the
function in the form of inline input filters. These filters determined if the operation could be
completed and return a meaningful result, aswell as complete without causing a floating point
exception. If acondition existed that precluded successful completion of the function, er r no
was set to convey a meaningful error message identifying the exact condition preventing such

completion.

5.2 Performancetesting methodology

The performance of the libraries was measured on a Pentium-133 with 64 MB of main
memory running FreeBSD 3.0. All source code was compiled with GCC version 2.7.2.3 with the
-O3 optimization switch. A single program was written to exercise each of the functions listed in
Table2. The program code was then linked with the appropriate library — robust, stock, or
non-robust, and then executed. The input values for the functions were carefully chosen so that
they would cause the function to complete successfully, and not fall into any specia cases. This
resulted in the execution of each test that checked for exceptional conditions, to ensure the
measured cost for enhancing robustness was determined for the non-exceptional case.

For each function tested, the time it took to execute the function 1 million times withinaC
f or loop was measured. Each test wasrun 5 times, and the average is reported. This method
provided a repeatable time measurement with reasonable assurance that the time measured is
representative of the code speed. This complete procedure was performed for each library -

robust, non-robust, and unmodified.

Math Libraries 55

Slowdown Relative to Stock, 1M iterations

O Stock

Robust

O

%0

N
&

E Non-Robust
=

\00"Q

>

&
&

N

Q
E

QD
\’bé\

\"?}\Q

N
&

1.2

T
T

© <

o

UMOPMO|S

Function

Figure 10. Performance of libm variants normalized to the unmodified source.

5.3 Reaults

Overall the cost associated with making a library robust was 14% when compared to the

non-robust case. However, the standard math library was only 1% faster than the robust version.

Complete results for the relative performance of each library function call tested are shown in

Figure 10.

The robustness of each library was measured with the Ballista tool to determine the relative

robust failure rates were

performance with respect to software robustness. Results are detailed in Table 3. The robust

15.3% and 12.5% respectively. No restart or catastrophic failures were detected.

library had an average failure rate of 0.0%, while the stock and non-

54 Analysis

The performance data taken on the libraries provide a surprise, in that the robust library is

very close to the unmodified library in terms of speed performance. In fact, the performance

difference was on average less than 1%.

56

Math Libraries

Non-

It isimportant to realize that the unmodified
Robust [Stock robust

library code does perform afair amount of error Library |Library |Library
acos 0.00% 54.55% 9.09%
checking aready, to perform such functions as acosh 0.00% 45.45% 18.18%
_ _ o asinh 0.00% 0.00% 0.00%
ensuring the input parameter is within the proper [zian 0.00% 0.00% 0.00%
. . atanh 0.00% 72.73% 36.36%
range of the function. Thisisthe source of the oS 0.00% 0.00% 0.00%
performance penalty of the stock library versus cosh 0.00%| 0.00%] 18.18%
erf 0.00% 0.00% 0.00%
the non-robust library. The lack of these checks [exp 0.00% 9.09% 18.18%
floor 0.00% 0.00% 0.00%
can in some cases result in an incorrect answer gamma 0.00% 9.09% 45.45%
_ . log 0.00% 36.36% 18.18%
being returned by the non-robust library. sin 0.00% 0.00% 0.00%
Although the stock library performs many checks, Sinh 0.00% 0.00%, 18.18%
sqrt 0.00% 18.18% 18.18%
in most casesit forces afloating point exception [tanh 0.00%| 0.00%] 0.00%

_ o Table 3. Robustness failure rate of
to occur in hardware when an error conditionis mgth library variants.

detected. Thisof course causes the OSto send a
SIGFPE to the application. On the other hand, the robust library implementation setser r no and
returns zero (or NaN if supported).

The stock math library tested aready performed most (but not al) of the error checking
required to implement atruly robust system. Most of this checking was performed in order to
ensure a correct answer. The added cost of setting an error code and checking its value upon
completion is extremely small for most of the math functions. Thisis especially true considering
that any penalty is amortized over the total running time of the user application, which likely
spends the magjority of itstime processing in its own code and not in the library.

The non-robust library has all error checking removed from it. That the non-robust version
has alower measured failure rate seems on the surface to be a counter-intuitive result. This effect
is caused by the fact that the stock library does afair amount of error checking and purposefully
generates signals in response to these errors. The non-robust library does no error checking. This
means that the only signals which will be generated are those generated directly due to a
hardware exception. Any input which yields only undefined or indeterminate results will simply

return an answer which iswrong at best.

Math Libraries 57

5.5 Summary of Math Library Robustness Results

Thiswork represents the first attempt to quantify the performance cost of building a software
system with robust error detection and handling. It can be argued based on the results presented
here that the performance impact is small when compared with the large gainsin software
robustness, provided they have characteristics which are similar to the math library. For a cost of
only afew percent on the actual function call, arobust system can be implemented using error
return codes which are easy to diagnose and recover from, and leave the process in a defined
state.

Another important conclusion we can reach from the results presented here is that in the case
of the math library, the error checking performed by the existing code base to ensure correct
functionality is almost sufficient to ensure robust operation. They paid most of the price of
building arobust system without reaping the benefits. With the addition of afew more
instructions, the library can be completely robust, at the average cost (in terms of performance) a
few percent, or roughly 90 ns on average per function call.

Thiswork was an important first step toward quantifying the performance cost of robustness.
It however only hints at the result, as the math libraries are relatively specialized, and as such no
general conclusions about the performance cost for building robust software systems can be
drawn.

Although the results were suggestive, the next logical step wasto look at a software system
that was more complex. A higher complexity system tends to have more complex data types and
memory structures. The complexity makes it more difficult to fix robustness problems, and
possibly makes it more sensitive to performance issues.

We searched for a software system that was complex, stressed a different aspect of system
architecture than the math libraries, and preferable was one thought to be already hardened.
Finding a system that met these criteriawould allow usto seeif the result of little performance
cost for added robustness. Equally important, a pre-hardened library would give us a data point
to determine what types of robustness problems were perceived as most difficult or costly,

providing a significant challenge for our assumptions and methodol ogies.

Math Libraries 58

6 Hardening and Analysis of Safe, Fast I/0

The Safe Fast 10 library developed by AT& T Research improves robustness by a factor of 3
to 10 over STDIO without sacrificing performance. Thiswas largely accomplished by optimizing
STDIO, and then adding features to make operation more safe and robust. Based on robustness
testing results, we were able to improve the robustness of eight critical SFIO functions by another
factor of 5. Thus, use of arobustness measurement tool has enabled quantifying and reducing
robustness failure rates by afactor of up to 70 from standard 1/0 functions, with an average
performance penalty of 1% as measured by the original SFIO benchmark scheme. Future
processor architecture improvements will further improve checking speed, essentially eliminating

performance as an obstacle to improving software robustness.

6.1 Introduction

SFIO was written over a decade ago in an attempt to address the issues of speed and safety
(robustness), and while the authors of SFIO were able to demonstrate that it was a high
performance library, at the time it was developed there was no method for quantifying
robustness. They could make a case that the library was safer due to their design decisions, but
there was no method available to quantify how much they had improved over STDIO.
Furthermore, discussions with the developers of SFIO revealed that even they were concerned

about the performance impact of increasing the amount of exception checking done by their code.

We saw the existence of SFIO as an opportunity to gain an initial understanding of how robust
an Application Programing Interface (API) implementation might be made using good design
techniques but no metrics for feedback, and what the actual performance penalty might be for
further improving robustness beyond the point judged practical by SFIO developers. First, we
used the Ballista tool to measure the robustness of SFIO to exceptional parameter values at the
API level. Thisallowed us to quantify SFIO robustness and find that it was significantly more
robust than STDIO, but still had room for improvement. Then we found some common types of
robustness vulnerabilities in SFIO and hardened against them, further improving robustness. At

first theimproved SFIO did in fact have some performance problems; however, these were

SFIO 59

largely remedied by optimizing for the common case and the result proved to be significantly

more robust than the original SFIO with only aslight performance penalty.

The remainder of this chapter describes our efforts to identify and fix general robustness

failures within the SFIO system and quantify the performance impact of the additional code

added to harden the system against those failures. Additionally, we discuss the types of

robustness failures that are still expensive to check for, and how near-term processor architecture

enhancements for general purpose computing
will also reduce the cost of improving
robustness. First, the results of theinitial
robustness testing of SFIO are presented and
discussed. Next, the robustness test results of
the hardened SFIO are presented. The
benchmark results are then discussed for the
initial hardened version (unoptimized). We
then discuss the results of benchmarking the
SFIO version with the hardening code

optimized.

6.2 Robustnesstesting of SFIO

We used the Ballista testing suite to
measure the robustness of the 36 functionsin
the SFIO API. Thisalowed us to objectively
evaluate the SFIO library in terms of exception
handling robustness. To test SFIO we used
existing datatypes for POSIX tests and created
two custom Ballista test types capable of
generating tests cases for the SFIO types

Sfio_t and Void_t. These typesfit directly

SFIO

Robustness of STDIO and
comparable SFIO function

ungetc
tmpfile
sscanf
sprintf

setbuf |

fwrite
ftell
fseek
fscanf
fread
fputs

fputc |

fopen
fileno
fgetc
fflush
ferror
feof
fdopen
fclose
clearerr

% Failure Rate

H SFIO
O STDIO
—
Jj S—
] —
=
0 50 100

Figure 11. Robustness failure rates for SFIO,
STDIO compared for 20 functions with direct
functional equivalence as measured on the
Linux test system. Failure rates on Digital Unix
were lower for some SFIO functions and are
addressed later in Section 5.2

60

into the Ballista data type framework, and inherited much of their functionality from the generic
pointer type. This made implementation a simple exercise, requiring only afew hours to
implement the types, and to test the types themsel ves within the Ballista framework to ensure that
they themselves were robust.

Our testing showed that while the robustness of SFIO is far better than STDIO (Figure 11),
SFIO still suffersfrom afair number of robustness failuresin critical 10 function such as write
and read. Analysis of the testing data showed that there were three broad causes for many of the
SFIO robustness failures. Specifically these were:

* Failureto ensure afilewasvalid
» Failureto ensure file modes and permissions were appropriate to the intended operation
* Failureto check buffers and data structures for size and accessibility

These problems were not a case of defective checking code in the software itself, but rather a
lack of attempting to check for these types of exceptions.

Onceidentified, these potential causes of failures were addressed in a generic fashion across
the eight most important 10 functions in which they occurred: sfopen, sfwrite, sfread, sfclose,
sffileno, sfseek, sfputc, and sfgetc (the s’ prefix indicates a“safe” version of the corresponding
STDIO library call). For every function we were able to reuse the parameter validation code for
each specific failure mode, thus reducing the cost of developing such checksto being linear with
the number of parameter types, rather than the number of functions hardened using our
techniques. For thisfirst version of what we will call Robust SFIO functions, only ordinary
attention was paid to performance — the emphasis was instead placed on reducing robustness
failurerates. Figure 12 shows that the percent of Abort failures (i.e., percent of test cases
resulting in an abnormal task termination instead of an error code) were significantly reduced for
the Robust SFIO software version.

File validity and permissions were relatively easily checked. A call tof st at () was
sufficient to ensure that the file existed, and that our reference to it was currently valid. Once we

determined that our reference wasvalid, acall tof cnt | () was sufficient to obtain the flags and

SFIO 61

Abort Failure Rate for Select Functions

100

@ 80 - —

2

T 60 - _ _

1

5 40 -

<

°\° 20 | |_L

S S S o S A = 1
open | write | read | close |fileno | seek sfputc sfgget

OSTDIO 14 57 52 79 36 8 58 | 50
O Original SFIO | 6.29 | 599 | 9.2 2 1 |501 2 4.5
B RobustSFIO | 0.14 | 1.02 | 2 1 0 006 1 1

Function

Figure 12. Abort Failure Rate for Select SFIO Functions under Linux

permissions associated with the file. These were checked against the intended operation, and
errors were flagged and returned accordingly.

Checking for valid buffers and data structures was more difficult. While SFIO provides some
information to ensure that buffers and data structures are valid, there is always the possibility of
de-referencing an invalid memory pointer when performing those checks, or the checks simply
failing to detect a potential problem. Because the POSIX standard gives no assurance that a
task’s state will be valid after a memory access fault, we validated memory prior to the function
execution by striding (read then write) through the memory structure with a stride size of the
memory page size for the architecture the code was executed on. This alowed usto catch
exceptions during a validation stage before modifying the system state, eliminating issues of
performing rollbacks or otherwise dealing with partial completion of functionsin the event of an

exception that resulted in an error code instead of successful completion of afunction.

SFIO 62

We used the mechanisms described in [1ee83] to set up and perform signal handling on a per
cal basis. While thisis more time consuming than setting up global handlers, it does ensure that
the exact state of the program at the time of the signal is known. This reduces the complexity of
the signal handlers, and makes the recovery from such exceptions easier to design and code.

Figure 12 shows the Abort failure rates for the 8 modified functions, both before and after
trestment. The failures that remain in the modified functions represent cases where the data
values passed into the functions have been corrupted in a manner that is difficult to check with
data structure bounds checking, pointer checking, or other similar techniques. Overal the
unmodified SFIO library had an average normalized Abort failure rate of 5.61%, based on
uniformly weighting the per-function failure rates of 186389 test cases across 36 functions tested.
The underlying operating system can sometimes affect robustness{fernsler99], and our testing
showed that the normalized failure rates for SFIO running on Digital Unix were 2.86% for the 8
functions of interest. The Robust SFIO library had an average failure rate of 0.44% (Digital
Unix) and 0.78% (Linux) across the 8 modified functions.

While even the Robust SFIO library does not achieve perfect robustness failure prevention, it
is significantly better than both STDIO and the original SFIO. Additionally, it is possible that
Robust SFIO could be improved even further by employing techniques for detecting invalid
memory structures (e.g., using techniques from [wilken93][austin94][wilken97]). However,

many of these techniques have a hefty performance penalty without their proposed architectural

File Size

Benchmark Name Description Linux Alpha
Copymw Copies file with a succession of reads and writes |1000MB 2000MB
Getc Reads file one byte at a time 250MB 2000MB
Putc Writesfile one byte at a time 250MB 2000MB
Read Reads file 1000MB 2000MB
Rewrd Reads file in reverse block order 1000MB 2000MB

Seeks to random file position, reads one block,

and writes block to position 0 of same file until a

number of bytes equal to the filesize has been
Seekmw seeked, read, and written 1000MB 2000MB
Write Writes 1000MB | 2000MB

Table 4. SFIO benchmark descriptions

SFIO 63

support to identify “bad data” situations. Thus, further robustness improvements will become

practical only when they are supported by future generations of microprocessor hardware.

6.3 Performance Results

Once the evaluation of SFIO had been completed and several key functions had been
hardened, we measured the performance of the original and hardened versions and compared
them to each other, and to STDIO. To measure the performance of the robust SFIO functions, we
used the benchmarks (Table 4) as described by the authors of the original SFIO [korn91]. The
results presented are the averages from 10 benchmark runs and are presented in Figures 13& 14
(execution time variance across runs was negligible). Each run consisted of a single complete
execution of each benchmark. The benchmarks were run on two diverse architectures with
different development ideologies and goals. Thefirst test system had 333 MHz dua Pentium Il
processors, 128 MB RAM, and executed Redhat Linux version 6, with kernel 2.2.12smp and Gnu
STDIO library version 2.1.2-11. The second system was an AlphaServer 4000 with two 600
MHz 21164 processors and 1GB of physical RAM, running Digital Unix 4.0D and libc version
425.

3000 Elapsed Time x86 | QSTDIO

OOriginal SFIO
2500 = ERobust SFIO
EUnoptimized Robust SFIO

2000

1500

1000

Time in sec

ﬁ\\\ g T g

mmm kEE

0 0 0 0 0 A\ Y 0 0 0
W27 A7 DS AT D A Q7 Q7 @7 o7
NI\ A AR\ N

¢ s’«\‘é\ ¢ v\@'z’é\ € e}‘@ & %‘7’& €9
<

Figure 13. Elapsed time of benchmark running on x86 architecture

SFIO 64

Table 4 describes the operations performed by each benchmark, with a block size of 8K.
Benchmarks with a 757 suffix appended to the name used a block size of 757 bytes. The reason
for the different transfer sizesis due to the difference in how the machines are configured. We
chose sizes that were large enough to ensure the data was not being cached in main memory, and
thus would have to be re-read from disk between each run. The Linux platform had to be run on
smaller benchmarks than the AlphaServer to keep execution times reasonable.

The goal of using two different testing platforms was not to directly compare performance of
the hardware in questions, but to present platforms whose OS devel opers have divergent
philosophies and goals. Digital Unix isa proprietary operating system developed to provide
maximum throughput, and is optimized for a small number of architecturally similar, advanced
processors with fast 10 hardware. Linux is an open source OS that runs on an very wide range of
hardware platforms, from Intel x86 based workstations to the IBM System/390 mainframes. One
side effect of targeting such awide range of architectures for Linux isthat some performance
enhancements can't be included in the code base due to problems with cross platform
compatibility. Further, it can be argued that although Linux iswidely used in small scale server

applications (and occasionally in larger scale ones), it is most commonly used as a workstation

Elapsed Time AXP (Alpha)
2500.00
2000.00 7 |
1500.00 CSTDIO
§ O Original SFIO
1000.00 B Robust SFIO
500.00
0.00 M T Mw W L i
« N SRS NS
&° e.*\é\ &* e“é\ & & 0{\(? e}\& & &
© /\? &9 /\? b? ’\? ? @9 c,? o?
.\0/(0 2 QD Q Q) \S X
& .\é\ e Q \Q’A \S\ OQ* e.é{~ T
& & & ¢ e

Figure 14. Elapsed time of benchmark running on the AXP (Alpha) architecture

SFIO 65

OS and as such is optimized more for latency and less for raw throughput. Finally, commodity
PC hardware is extremely cost sensitive and, even on the high-end system we used, sacrifices
significant bandwidth potential to keep costs down. We hope that by satisfactorily showing that
the cost of achieving ahigh degree of I/O robustnessis|ow on these diverse systems, it islikely
that similar techniques will work on other systems whose design points fall between these two
extremes.

The block 10 benchmarks perform 10 on large files- 1000 MB on the Linux platform and
2000 MB on the AlphaServer. Byte IO benchmarks use a 256 MB file and 2000 MB on the
Linux and Alpha systems respectively. The seek benchmarks performed 125,000(Linux) or
250,000(Alpha) seek + read + write operations, totaling 1000 MB or 2000 M B respectively.
These are in some cases afew orders of magnitude greater than the original SFIO benchmarks
published in 1990 because original sizestended to result in files being entirely cached in memory
buffers and completed too quickly for accurate measurement.

As might be expected, the performance penalty for our original implementation of the more
robust SFIO was in some cases substantial. Execution times of the getc and putc benchmarks
were especially long. Such aresult tends to support the contention that past a certain point,
robust exception handling ssimply costs too much in terms of performance to be worthwhile.
SFIO seemed to find an optimal point where performance isimproved or very close to STDIO,
with large gains in robustness and exception handling ability.

Upon reflection however, we were determined to address the performance concerns and try to
obtain the additional exception handling at aslow a cost possible. One obvious place to look for
performance optimization is getc and putc. Obviously, the overhead of the checks had a
significant negative impact on performance. Thisisin part due to the structure of the code put in
to handle exceptional conditions. Every time abyte isto be read or written, asignal handling
context is set up, and the SFIO data structure is validated in terms of memory accessibility, file
existence and setup. This demonstrates that robustness checks can adversely affect performance
if applied without thought to actual usage. However, we were able to largely eliminated the

speed penalty for performing these checks even on byte-wise I/O with getc and putc.

SFIO 66

To speed up the robust versions of getc and putc we applied a variation of optimistic
incremental speciaization [pu95]. Theideabehind thistechniqueisthat generated code should
be optimized for the most likely, though not guaranteed system state. Thisis similar to the
common programming adage — “ Optimize for the common case.”

We specialized the robust SFIO implementation for the case where the samefile or buffer is
used for 1O many times before moving on to perform 10 on a different file. This seemsto be the
most likely case when performing byte at atime 1O. Thiswas a simplifying design choice, and
could have easily been designed and implemented using a different “common case”, or some
more complicated caching scheme.

To speed up getc and putc, we added caching of validated results to the SFIO data type pointer
and SFIO buffer pointer datatypes. In any function that successfully validates one or both of the
types, their values are cached for future comparison. Functions such as close that destroy types
reset the cached valuesto their NULL value. During execution, the values of the parameters
passed in for execution are compared with the cached values. Those functions with both types
must match both cached values to pass the comparison. Similarly, functions with only one of the
types must only match that corresponding cached value.

In the event the parameter(s) of interest match the cached values, all checks are bypassed.

This includes skipping the construction of the exception-handling context for the function call. In

elapsed usr Sys

Benchmark Relative Relative Relative
Name Original [Robust [Speed |[[Original |Robust [Speed [|Original |Robust |Speed

write 175.30{ 175.40 1.00 0.43 0.50 0.86f 24.88| 24.85 1.00
write757 183.50(183.10 1.00|| 6.94 7.09 0.98 26.09| 26.28 0.99
read 247.10{ 249.00 0.99 3.08 3.35 0.92] 66.28| 66.38 1.00
read757 236.20{ 240.10 0.98 2.15 2.20 0.97f 99.15| 99.23 1.00
rewd 1171.30{1174.50 1.00 0.98 1.19 0.83 48.42| 49.03 0.99
rewd757 2696.40(2693.20 1.00|| 6.22 6.37 0.98 28.27| 28.49 0.99
copynw 428.80| 427.00 1.00|| 3.98 7.27 0.55 93.63| 96.02 0.98
seeknw 1763.20(1761.20 1.00 2.90 3.16 0.92f 88.84| 87.75 1.01
putc 111.10{ 128.30 0.87| 66.22] 94.07 0.70f 10.82] 10.62 1.02
getc 124.70 127.70 0.98 66.39| 99.35 0.67|| 24.24| 18.69 1.30

Table 5. Usr, sys, and elapsed time data for original and hardened SFIO (Intel
Architecture)

SFIO 67

thisway the overhead is reduced to a single branch in the case that the same structure is used
more than once in succession, after the initial penalty for the checks have been paid.

Table 5 gives complete user and system level performance information for the original SFIO
and the final robust SFIO with incremental specialization as described above. Aswith the
previous performance data, the values are the average of 10 complete runs. Total processtimeis

broken down into the user and system components as measured by libc function call time().

6.4 Analysis

It should be no surprise that the performance data clearly show that the common operations
selected for additional hardening are 10 bound. Thisistypical in amodern super-scalar machine
where the CPU can be 10 bound even on simple memory requests. Although there is much work
being done to improve this [griffin00], it seems unlikely that the 10 speed will catch up to the
speed of the processing unit in the near to mid-term future. Thus, hardening of 10 functions can

be accomplished basically for free on latency-based computational tasks.

Processing Time (usr+sys) Intel x86

180

160]

140

120 wu

100 — OSTDIO
O Original Sfio
— W Robust Sfio

Sec.

Figure 15. Total processing time for benchmark on x86 architecture

SFIO 68

In particular, although file 1/0O operations are state rich and reguire much error checking and
handling, the latency added for increasing the ability of the functions to handle exceptions and
behave in arobust manner is mostly hidden by the latency of the overall operations. Block file
operations suffer an execution time penalty of only afew percent compared with the less robust
implementations.

Though the elapsed time for the benchmarks to run to completion tell part of the story, itisn’t
enough to simply look at this data. Elapsed time hides the intricacies of what is going on inside
the OS and hardware that can be critical to the performance of a system, especialy for
throughput-limited operating environments. After al, the time spent during 10 wait can be used
to perform other useful work in a multi-tasking system.

Figures 15 and 16 show the total time spent performing computation (i.e., usr+sys time but not
IO wait time) of the hardened SFIO isin some cases | ess than that of STDIO, and except for the
757 block size and copy benchmarks is within 2% of STDIO on Linux. Both SFIO

implementations used much less actual processing time than did STDIO on the AlphaServer

Processing Time (usr+sys) Compag AXP

300.00
250.00 —
200.00
M OSTDIO

§ 150.00 —— | moriginal Sfio

- H Robust Sfio
100.00
50.00

N NN SN N NS N
& & S RO Y P DY
FFFF N AN
27 A7 O/ A7 D7 A ’ &7 K7
P N S S CuPC
X o N\ O)
& & & @

Figure 16. Total processing time for benchmark on AXP(Alpha) architecture

SFIO 69

platform (except seekrw, copyrw, revrd757 and read757) though the elapsed time tended to be
closeto or slower than STDIO. This seems to indicate that the Digital Unix STDIO libraries
perform afair amount of processing to optimize the disk transfers, and is born out by the fact that
the benchmarks spend lesstime in 10 wait when using the STDIO libraries. From this one can
infer that disk transfer scheduling optimizations consume far more CPU cycles than would
increased robustness checks.

One benchmark that has a significant performance shortfall in both SFIO implementationsis
copyrw. It seemslikely that the STDIO libraries are able to avoid a memory copy that the SFIO
libraries are performing. This seems to be supported by the datain that nearly all of the extra
time manifests as “system” time, typically where large block memory copies would be measured.

The processing time penalty paid by robust SFIO compared to original SFIO consists largely
of occasional exception handling context setup and parameter checks. In addition to the penalty
from constructing exception handling contexts that occurs when the parameters require
validation, there is a mandatory penalty that represents the check to determine if the validation
must be done. However, we expect the processing cost for such checks to diminish significantly
in the near future.

Of the penalties incurred, the penalty for determining if validation should occur is likely to be
almost completely negated by improved hardware branch prediction that will be available in new
processors soon, though fragmenting block size with a branch can still affect
performance[rotenberg96]. Actually achieving this requires creating a compiler that can structure
exception-checking code sequences in away that will help the CPU predict that exceptions will
not occur, but there is no technical reason this should be difficult to accomplish.

Processors that use a trace cache[rotenberg96], such asthe Intel Pentium 4 processor, will
lessen the cost of additional checks by allowing the unit to fetch past branches that may
otherwise throttle fetch bandwidth. While more advanced checking and caching techniques
might degrade performance in ways the trace cache can not help (such as multi branch direction
traces), we anticipate techniques to solve such problems will be incorporated in processorsin the

near future. These include such techniques as completion time multiple branch prediction

SFIO 70

[rakvic 00] and block cacheg[black99]. In general it seems reasonable to expect that exception
checking branches, which are easily predictable as taking the non-exceptiona code path, will
become increasingly efficient as processor hardware incorporates more predictive execution
capabilities.

Thus, robust SFIO libraries can achieve dramatically reduced robustness vulnerabilities
compared to STDIO and even original SFIO implementations. For latency-bound applications
the performance impact of providing extra robustnessis minimal. For throughput-bound
applications there can be a moderate increase in CPU time used to perform extra checking for
some routines, but this can be minimized by caching check results. Furthermore, it islikely that
as CPUsincrease their use of concurrency and branch prediction that any speed penalties for

performing exception checking will decrease dramatically over time.

6.5 Summary

We used the Ballista robustness testing tool to find and address robustness problemsin the
Safe/Fast /O library (SFIO), and found that we were able to improve the robustness of the code
by an average factor of 5.9 across the treated functions, despite the fact that SFIO aready
improves robustness over STDIO robustness by an order of magnitude. The achieved robustness
level was approximately 0% to 2% robustness failure rates, compared to 0% to 79% failure rates
for STDIO. We have found that the remaining failures generally involve incorrect or corrupt data
within otherwise valid data structures, but speculate that such failures might be dealt better with
during interface design.

Contrary to commonly held opinion, very robust software need not come at the price of
reduced performance. The data show that the performance penalty for providing thorough
exception handling and error handling tendsto be low in terms of elapsed time, and similarly
small in terms of processing overhead. Robust SFIO was only ~0%-15%(avg. of 2%) slower than
ordinary SFIO, while providing better robustness. Furthermore, near-term architectural
improvements in processors will tend to reduce the costs of providing robust exception handling
by exploiting the fact that exception checks can be readily predicted and executed concurrently

with mainstream computations.

SFIO 71

7 Hardening and Analysisof Operating System Internals

The theory and techniques developed for building high performance, robust systems were
successfully applied to 10 bound (SFIO) and CPU bound (libm) software systems. To establish
the generality of the approach, athird domain isidentified and treated .

This chapter examines the application of techniques developed for implementing high
performance robust systems on operating system services. The robustness of any software system
can be argued to be dependant on the robustness of the underlying system. Thus any system,
despite the best effort and exacting attention to detail by its creators, may be doomed to low
robustness due to a non-robust underlying operating system.

Speed, in terms of latency and throughput, is often a critical deciding factor when evaluating
operating systems. If the operating system can not be made robust without sacrificing
performance, then spending the time and money to harden application level code may be of
guestionable virtue. Commonly used elements in the Linux API’s memory and process
synchronization modules were selected for study. Each method was hardened to a 0% robustness
failure rate as measured by Ballista. The resulting modules suffered a performance loss of only
5% using a lightweight synthetic application benchmark, when compared to the non-robust

libraries.

7.1 Robustnesstesting of Linux

In order to determine the best system areasto target for robustness hardening, the Ballista
robustness benchmarking tool was run against the Linux API. The results for the complete tests
arefoundin Appendix A.

Although the system calls in the Linux kernel have improved in robustness over the last
several releases, areastraditionally thought of as “too hard” to address have been left in an
unhardened state, and are among the most critical, including process synchronization and
memory/buffer manipul ation.

For example, asillustrated in Figure 17 the semaphore module (in Linux implemented outside

the kernel in athread library) has arelatively poor response to exceptional conditions, with an

OS Internals 72

Failure rates for memory/process synchronization methods
80.0 75:2—#5:2
70.0]] 647 647
59.5 — —
— 60.0 57_8
2
% 50.0 1.2
35.3 —
« 400 313 >
5 30.0]
S 20.0 1-16.4
10.0 *‘7 /3
00 L]
& S & i & & \@\ (g\’z & \‘\’3\\ 4\’5\\
& & & & & o ¢ P &S
& & @ < o 6‘6 92’ %e@ Q&7 P
| | | @ %Q(Q Ko
Mem. Manipulation Module Process Synch. Module
Function name

Figure17. Initia failure rates for memory manipulation and process synchronization methods

average failure rate of 45.4%, normalized per function call. The memory manipulation functions
have an average failure rate of 51.2%, normalized per function call.

These“ too hard” areas are interesting, because execution speed is critical, and they are
commonly used in modern software systems to support multiple threads of control. Additionaly,
problemsin these areas can have dire consegquences, thus making addressing the problems a
potentially high impact activity.

The testing and benchmark results in this chapter were executed on adua Intel Pentium 111

600M hz processor machine with 512MB RAM running Linux 2.2.16 with glibc 6.13.01.

7.2 Hardening of select Linux API calls

In earlier efforts, our ability to address these most problematic areas of robustness (structure
and memory validation) were limited. Thiswas partially due to the fact that the software systems
looked at previously did not suffer many failures of thistype. The math libraries have no failures

in these areas due to alack of using complex structures and buffers. SFIO solved afair number

OS Internals 73

of these problemsinternally, maintaining speed by removing overall inefficiencies within the
standard 10 systems. Thus the number of such failures encountered was small. In contrast,
process synchronization functions and (perhaps obviously) memory manipulation functions such

asmencpy() and memrove() suffer large numbers of failuresin these troublesome areas.

7.2.1 Failure of previoustechniques

The techniques developed earlier in thiswork fell short in their ability to address the class of
robustness failures prevalent in these modules. Checks that satisfied the requirements of largely
bufferless (libm) systems of those already partially hardened (sfio) were not sufficient. Figure 18
contains results from the initial hardening of select Linux API calls using technigues devel oped
during the hardening of the math and SFIO libraries.

While the earlier methods were adequate to harden the simpler functions, several of the
memory functions still exhibited failures. These were instances where the memory locations
being manipulated were valid areas the process had read/write permissions to, but overwriting

them simply cause the process to fail catastrophically as aresult of data or process corruption.

Failure rates for memory/process synchonization methods
after initial treatment

80.0

70.0
~ 60.0
3
g 50.0
©
© 40.0 35.5
o -
5 30.0
K 15.8
w 20.0 1 111 -

1007602 00 00 00 00 00 00

0.0

(‘J(\& @Q CJQ\\ 0\\0 %é\ \(\{\' \S& r»\)e‘ OG} $’b’\\ s’b’\\
S o S 6‘@ & &7 & \\\ S) o7
¢ <® < < < < 6\9 ,qe, ee’é\ Nid ?
£ & &
Function Name

Figure 18. Failure rate of memory and process synchronization functions after initial treatment

OSInternals 74

Unfortunately, these failures are exceptionally difficult to deal with due to the limitationsin
the way systems tend to organize and allocate memory. Many systems (even the widely used
Windows OS) have operating modes that devel opers can use to force allocation routines to put
memory in separate, isolated memory pages. While this aids in detecting faults during testing, it
does nothing to improve robustness at run time issue on deployed (in service) systems running in
“normal” mode.

There is no easy, fast way that a process can tell if it can write to amemory area safely when
the system is deployed and in use running in anormal operational mode. Prior work [wilkin93]
proposes methods of building special purpose hardware into micro architectures and compiler
toolsto aid in the determination that a structure or memory location has been allocated properly
and correctly initialized. Unfortunately, their approach results in a substantial speed penalty if the
special purpose hardware is not available. Recognizing that the micro architecture community is
only recently beginning to seriously address issues of fault tolerance and reliability, it isunlikely
that hardware to enhance robustness will be included in the short term, if ever.

We believe that this represents afundamental limitation on the ability to design afast, robust
system, imposed by the design of the API. Whileit is possible to backfill adesign to have
elements to allow for the safe testing of structures and buffersto determine if they are safe to use,
it would likely result in a substantial speed penalty, and would almost certainly occur in a

somewhat ad-hoc manner.

7.2.2 Approach for enhanced memory robustness checks
The approach we used to overcome this situation was to create a version of malloc (Figure 19)

that added an application transparent 8 byte

tag to each dynamic structure created. This | Taql Structure |

tag allowed us to store information regarding - T

itssize and validity. Building it onto the Malloc returns pointer to

structure facilitates fast lookups and memory offset by the tag
Size

Figure 19. Altered maloc helpsaddress
fundamental robustness limitation

OS Internals 75

verification since the static offset eliminates the need for complex indexing calculations.

In essence, we are adding to the internal state that malloc already keeps for allocated memory.
While malloc does keep size information (as well as other information such as lists of memory
blocks, etc), it is hidden from the process. We provide a mechanism whereby the state of the
memory block is exposed to the robustness checking code. When a process requests for a
memory location to be validated, the added data can be used to determine that the memory has
been properly allocated and sized. The possibility for other, context aware checksis aso possible
by embedding other information into the tag.

Figure 20 shows the results of hardening with the advanced memory checking and validation
techniques. All functions are completely hardened against al robustness failures detectable by

the current suite of robustness tests.

7.3 Performance analysis of hardened code
It is not enough to make a system robust. A system must also be fast enough to meet its

performance goals while still being robust. Of course since the performance goals of

Failure rates for memory/process sychronization methods
after final treatment
80.0
70.0
~ 60.0
Ea
o 50.0
T
& 40.0
g
5 30.0
L 20.0
10.0
00 00 00 00 00 00 00 00 00 00 00
0.0
& X s s .
S & & & £ & & ¥ & & ¢
& & @‘Q & N2 o 3 Y Q&
& &< ¢ &P AN AN GO A
€ & 7 © © ®
=) ee @
Function name

Figure 20. Failure rate of memory and process synchronization functions after final treatment

OS Internals 76

non-embedded applications are * as fast as possible’, the overhead must be kept to an absolute

minimum.

We developed a variation of atechnique known as optimistic incremental specialization as

described in [pu95] to enhance the performance of SFIO. This simple approach worked well, as

IO isroutinely donein large blocks, and the caching of a single validation was cheap and

effective. The performance impact of hardening SFIO was |ess than 1% on average.

Process synchronization and memory manipul ation functions tend to have amuch different
use profile. Thus, our approach from SFIO was adapted to function in an environment where

many resources were being used in conjunction with each other and in varied sequences, thus

complicating matters significantly.

7.3.1 The Robustness Check Cache

To address these issues atraditional cache style approach was used. This allows the

construction of arbitrarily sized structures to track any number of resources that have been

validated by robustness checks, or invalidated by various operations (such asfr ee(), or

sem destroy()).

The robustness check cache isimplemented entirely in software and required no specia

hardware support. The operation of the check cacheis aclose parallel to traditional

Reference—* Clear Invalidate
Module
Lookup ¥
Verification
Module .
Store
l Cache Structure in Memory
Result

Figure 21. The software implemented robustness check cache

OS Internals

77

data/instruction caches, and isillustrated in figure 21. When arobustness check is successfully
performed on a structure by the validation module, its addressis placed in the cache, indexed by
itslow bits. Before acomplete set of robustness checks are performed the cache it checked. A
successful hit bypasses the checks. Any function that destroys or critically modifies a structure or

object calls the clear module which causes the appropriate cache entry (if any) to be invalidated.

7.3.2 Iterative Benchmark

In order to present the worst case application slowdown, the performance of the robust system
functions is measured using simple iterative benchmarks. By this we mean that the performance
of the methods was measured during repetitive calls to the method being benchmarked, with no
useful calculations being performed between calls. In other words, we asked “ what was the

slowdown of function A, given that we call it 20,000,000 timesin arow?’ For thesimple

Slowdown of robust semaphore functions with respect to
number of semaphores, check cache size of 3

100.00
—e— sem_init
§ —— sem_destroy
° sem_getvalue
% 1000 sem_zost
7 —%— sem_wait
—e— sem_trywait
1.00 —F——%
1 2 3 4 5 6
—e— sem_init 1.24 1.18 1.21 86.48 | 87.31 | 80.71
—m— sem_destroy 1.19 1.18 1.20 28.86 | 40.68 | 52.69
sem_getvalue | 1.38 1.29 1.36 38.30 | 62.78 | 66.52
sem_post 1.04 1.02 1.02 4.72 6.94 8.23
—%— sem_wait 1.03 1.03 1.02 4.80 6.93 8.45
—e— sem_trywait 1.03 1.01 1.03 4.55 6.62 7.86

of Semaphore Objects

Figure 22. Iterative performance slowdown of robust process synchronization functions

OS Internals 78

iterative benchmarks we use avery small cache to demonstrate that a smaller, more optimized
cache can further improve performance.

Performance results show three of the treated function performing poorly when compared to
the non-robust function (Figure22). The functionsincludesem i ni t — 24% sowdown,
sem dest r oy — 19% slowdown, and sem get val ue — 38% slowdown.

These functions represent only afew hardware instructions (get_valueisjust an address
calculation and aread), to which we needed to add aread, an integer operation, acompare, and a
branch. Although the overhead seems high, we will show later in thiswork that it represents only
afew cycles of actual CPU time. Additionally, given that the original code was small in relation
to the code added to make it robust, one might think that the measured overhead is smaller than it
should be. This effect isindicative of how our checks are being hidden by the existing
microarchitecture, and will be even further reduced in future chip generations such as the Intel
Pentium 4. A more complete treatment of this expectation is presented in Section 7.4.

Figure 23 shows the performance of the robust memory functions. Even for small buffer sizes

the overhead is 3% or less, with the exception of memset (8%) and memchr (19%). Both memset

Slowdown of robust memory functions with enhanced malloc

125

1.2 \
115

—e— memchr
s —=— memcpy
o
3 11 memcmp
o \/\\ memset
n

1.05 —¥— memmove
1 % e,y

0.95 T T
16 32 64 128 256 512 1024 2048 4096

Buffer size (Bytes)

Figure 23. Iterative performance slowdown of robust memory functions

OS Internals 79

and memchr are both heavily optimizable, especially for small buffer sizes. Obviously, as buffer

lengths increase, the overhead is reduced.

7.3.3 Lightweight Synthetic Application Benchmark

The iterative benchmarks are useful inillustrating a

S Create semaphores
worst case performance bound for individual process P

synchronization functions. Unlike memory functions Create empty queue

Do
which often perform a complete task in and of Foreach semaphore
bt ai n | ock

themselves, the semaphore functions are tools used to _

Enqueue i nt eger val ue
facilitate coordination. As such the functions are used

Dequeue i nteger val ue
in specific sequences.

For each semaphore

To obtain aclear picture of how performanceis Rel ease | ock

)))] Figure 24. Pseudo-code for lightweight
impacted in amanner consistent with use; a synthetic benchmark

lightweight synthetic benchmark was created. This

benchmark performs no significant computation,

rather its purposeis only to call sequences of process synchronization functions that are
consistent with normal use. Figure 24 contains the psuedo-code for the benchmark. In brief it
simply creates semaphores, and then obtains and releases locks, with the small intermediate
computation of the enqueing and dequeuing of an integer value.

The purpose of this benchmark is to avoid burying the overhead of making the functions
robust in the cost of a complex computation. It illustrates the overhead of process
synchronization as a whole rather than isolated by function call, and presents the most pessimistic
operational scenario.

Figure 25 shows the results of the synthetic application benchmark with asmall cache size of
3. On average, slowdown is4%. This approaches the performance impact of sem wai t and
sem post astested inisolation. Thisisto be expected, as the functions with the worst
performance penalty are typically only called once in the course of an applications (i.e.

sem.init andsem destroy). Sem wait andsem post however are the primary

OS Internals 80

Slowdown of synthetic application benchmark(sem) verses
number of semaphore objects, cache size of 3

7 e
5 /

Slowdown

2 ./

1 2 3 4 5 6

[EnY
*
*

Semaphores

Figure 25. Slowdown of synthetic benchmark using robust process synchronization functions

functions used to test and set semaphores for process control purposes, and thus dominate the
performance for the synthetic application.

A second experiment was run to look at the scalability of the approach for a system that
requires checks done on large numbers of objects, and thus alarger cache. Theincreasein cache
size increases slightly the cost of managing the cache by about 1%, with awider range of
performance as the cache fills and an increasing number of conflict misses occur.

Performance of the code using the cache for robustness checks is quite good, with a slowdown
of on average 5% if less than 50 addresses are involved (Figure 26). Performance tapers off to a
penalty of 18% in typical cache manner as the number of addresses increases causing conflict
misses. As expected, when the number of addresses involved exceeds the cache capacity,
performance drops off rapidly as capacity misses force ever increasing numbers of checksto be
performed. Indexing is accomplished by doing address calculation explicitly, rather than

allowing the compiler to generate the array index operation.

OS Internals 81

Slowdown vs Number of Semaphore Objects, cache size=4096
entries(16K)

Slowdown
a1
\

L2 - I A R T T, < EDEN | SR =T B TN~ A
N oY QO QO S N
v NP W e

Semaphores

Figure 26. Slowdown of synthetic benchmark using robust process synchronization functions
with large cache size

7.4 Conclusion

This data shows that a range of speed critical OS services/functions can be enhanced to be
extremely robust with a conservatively attainable speed penalty of 5% for our light weight
synthetic application benchmark. Iterative benchmarks show worst case slowdowns of 3-37%.

Whileit is not clear what an “ average” case is, the synthetic benchmarks show that even the
lightest weight application penalties approach the lower worst case bound. A software system
that performs any non-trivial computation will likely see a near zero overhead.

The actual overhead (in nanoseconds) was determined, and can be found in figures 27 and 28.
Overall the average absolute overhead was 9 nanoseconds for the process synchronization
functions and 8 nanoseconds for the memory functions using asmall cache size. Small cache

synthetic application overhead was an average of 20 ns (for afull cache). For alarge cache, the

OS Internals 82

Average Robustness Overhead of Process
Synchronization Functions (in ns)

sem_trywait |

sem_wait |

sem_post |

sem_destroy |

sem_init |

sem_getvalue

Nanoseconds

Figure 27. Absolute robustness overhead for process synchronization functionsin
nanoseconds

overhead increases to an average of 50 nsfor a 1/4 full cache, increasing to 107ns for a cache at
capacity. Note that the measured overhead for the synthetic benchmark actually includes the
overhead of apair of calls, onetosem wai t (), and onetosem post ().

This overhead is on the order of about 10 cycles per protected call, and is representative of not
only theindex calculation and the branch resolution, but also the wasted fetch bandwidth. The
microprocessor used on the test platform is incapable of fetching past branches, thus even
correctly predicting the branch induces some penalty.

Advances in architecture such as the block cache[black99], multiple branch
prediction[racvik00] and branch predication will effectively reduce the overhead to near zero.
The robustness checks will be performed completely in parallel with useful computation, and
predicated out. Fetch bandwidth will be preserved by the block cache and the multiple branch
predictors. Thus only code with the highest degree of parallelism that utilizes 100% of the
hardware resources will likely have any drop off in performance. Thislevel of paralldismis

seldom seen, and usually occurs only in tightly optimized loops of computational agorithms. Of

OS Internals 83

Average Robustness Overhead Per Callin nanoseconds

memmove

memset

0 5 10 15 20 25
overhead (ns)

Figure 28. Absolute robustness overhead for memory functions in nanoseconds

course code sections such as those only need robustness checks upon method entry, and perhaps

not even then if the method is guaranteed to receive known valid data.

OSInternals 84

8 Understanding Robustness

This chapter examines how well experienced devel opers understand the exception handling
characteristics of their code. Welook at the results from the testing of a DOD simulation
framework known as HLA-RTI, developed in C++ with the explicit goal of having no
undefined/generic exceptions possible. We then look at a series of Java components from the
IBM component library. Datawas collected on how the developers thought their code would
respond to exceptional conditions, and contrasted with the robustness as measured by Ballista.
The resultsindicate that industrial developers cannot predict the exception handling
characteristics of their software systems, and may not have the ability to write robust software
systems without better training in the area of exception handling, and exceptional conditions.

Raobustnessis not a concept addressed in many programming, or even software engineering
classesmaxion98]. Too often theidea of testing software is linked to the idea that a system has
been successfully tested when you can be reasonably sure it provides the correct output for
normal input. Unfortunately, this philosophy overlooks the entire class of failures resultant from
exception inputs or conditions, and exception detection and handling code tends to be the least
tested and least well understood parts of the entire software system[christian95].

While up to two-thirds of all system crashes can be traced to improperly handled exceptional
conditiong| christian95], the reason such failures occur is not certain. Several possibilities exist,
including the classics of “Too hard” to check for, “ Too ow” to berobugt, “ That could never
happen”, “ That was from athird party application”, and one of any number of the litany of
EXCUSES.

Simple human error is yet another possibility. The system devel oper/designer may have
intended to handle exceptions, and simply made a mistake. Almost al errorsfall into one of two
categories - errors of commission and errors of omission [swain83]. Thus the exception checking
and handling code is either designed or implemented incorrectly (commission), or simply omitted
(omission).

In his thorough treatment of this topic, Maxion posits that most exception handling failuresin

his test groups were errors of omission dueto simple lack of knowledge and exposure to

Developer Understanding 85

exceptions, exceptional conditions, and exception handling[maxion98]. Maxion provided
material to the groups with information on exceptions, exception conditions, and a mnemonic to
jump-start their thinking on the topic, and help them to remember exception checking. Maxion
was able to show significant improvement in the exception handling characteristics of the
treatment group software when compared to the control group. This processis known as priming.

Although it clearly demonstrates that ordinary students do not understand robustness and
exception handling, the obvious question with regard to Maxion’ swork is how well professiona
devel opers understand robustness, and the exception handling characteristics of their code. This
isan important issue to address, because before we can succeed in helping devel opers create
robust software systems, we need a better insight into why robust systems are not being built
today.

This chapter examines how well experienced devel opers understand the exception handling
characteristics of their code. Welook at the results from the testing of a DOD simulation
framework known as HLA-RTI, developed in C++ with the explicit goal of having no
undefined/generic exceptions possible. We then look at a series of Java components written by
various corporate devel opment groups within IBM Research. Data was collected on how the
devel opers thought their code would respond to exceptional conditions, and contrasted with the

robustness as measured by Ballista.

8.1 TheDOD High Level Architecture Run Time Infrastructure

The DOD High Level Architecture Run Time Infrastructure (HLA RTI) isastandard
architecture for distributed simulation systems. It was developed by the US Department of
Defense to facilitate model and simulation reuse and interoperability. Simulations run across a
disparate network, and may include disparate components from avariety of vendors. For this
reason the framework was desired to be completely robustf DOD98]. The HLA was adopted as
the Facility for Distributed Simulation Systems 1.0 by the Object Management Group (OMG) in
November 1998, and was approved as an open standard through the Institute of Electrical and
Electronic Engineers (IEEE) - IEEE Standard 1516 - in September 2000.

Developer Understanding 86

Robustness Failures of RTI 1.3.5 for Sun OS 5.6

100
RTI:: AttributeHandle ValuePair Set->getValueLength rtiAmb .requestFederationSave|

rtiAmb.resgisterObjectinstance

RTI::ParameterHandle ValuePairSet->getValue Le ngth
/ WRestart

W Segmentation Fault
EUnknown exception
ERTI Intemal Error exception

90 +

80 -

70

60

50 A
rtiAmb.queryFederateTi
40 A

rtiAmbqueryLBT
rtiAmb.queryLookahead

rtiamb.queryMinNextEventT irvi

30 1

%failure per function

20

10 1

RTI functions (alphabetical)

Figure 29. Robustness failure rate for RTI 1.3.5 under SunOS 5.6. Overall Average failurerate
=10.0% from [fernsler99].

Asrobustness is an explicit design goal, it can be argued that the developers had every reason
to identify and handle all possible exceptional conditions. Thus any remaining exception
handling failures must be the result of human error, rather than adesign decision. Without access
to the source code and extensive review it as unlikely that any determination can be made asto if
the errors were of commission or omission. However, assuming that the standard practice of
code reviews and adequate testing were accomplished, it is likely that the majority of the failures
occurred due to errors of omission.

The RTI was extensively tested across a range of versions and operating systems[fernsler99].
Figure 29 and Figure 30 give the resultant failure rates of RTI version 1.3.5 on Solaris and Digital
Unix respectively. 86 RTI functions were tested, and roughly half had failures. Though the
failure rates are low when compared to most operating systems, there were several functions with

large failure rates.

Developer Understanding 87

Robustness Failures of RTI 1.3.5 for Digital Unix 4.0

100

. . rtiAmb.requestFederationSave —
RTI:AttributeHandleValuePairSet->getValueLength

a

rtiAmb.resgisterObjectinstance

RTI::ParameterHandleValuePairSet->getValueLength \

90

~

80

W Restart

B Segmentation Fault

B Unknown exception

B RTlInternal Error exception

70

60 -

50

rtiAmb.queryFederateTime

40 4

rtiAmbqueryLBTS

rtiAmb.queryLookahead

rtiamb.queryMinNextEventTime \

30 A

%failure per function

20 A

101

RTIfunctions (alphabetical)

Figure 30. Robustness failure rate for RT1 1.3.5 under Digital Unix 4.0. Overall Average failure
rate = 10.1% from [fernsler99].

Failures were diverse, ranging from problemsin the mutex locking agorithmsto infinite
loops, or unwind crashesin the exception handling code. Given the broad failures, and the
assumption that these were all due to errors of omission, it seems likely that there were at |east
several classes of exceptional conditions the designers/devel opers of the RT1 did not think about

or anticipate.

8.2 Commercial Java Objects

While the RTI results show that although the specification mandated robustness the
developers didn’t quite deliver, it fails to help address the question of how well the devel opers
understood the characteristics of their code. Since the spec required robust operation, we assume
the devel opers thought the system was robust. Thisis not necessarily the case however, and is
mostly speculation.

To better address thisissue, three production Java components were selected, and their

developers reported on the expected robustness of the component. The components were then

Developer Understanding 88

feof() Unknown |Not Robust Semi-Robust Robust N/A

10 UoIjROIPUI ON) JUB|IS
umouun - Buuspuiy
Buoip - BuuspuiH
uondsox3 nydisyun
umouun ul wa)sAs
saARg| ‘Uoidaoxg
b1e1s a|qeISA093IUN
NG ‘UMOUY| Ul WB1sAs
BoAes| - uoidaoxg
b1B1S 2|0BISA0D3)
‘UMoUy Ul walsAs
kaAeaT - uondsoxg

(Joug
Hoqy
alels

Computational/Concurrency

Div by 0

Out of Domain
Overflow/Underflow
MT Unsafe Response

Hardware

Not Enough Disk

Resource Unreachable
Corrupt Memory X
Resource Exhaustion

/O - File

File DNE X
File Pemissions Wrong
File Comupt

File Moved/deleted
Invalid Filename X
File Already Exists
File Locked

Library Function (Shared Object)
Library N /A

Incorrect Version
Incorrect Parameters

Data Input

Empty Data File
Incorrect Delimiter
Data Invalid X

Return Values and ARGS

Data Values Invalid
Wrong # of Arguments
Wrong Type of Arguments

External

Wrong Command Line
Wrong Response to Prompt]
No Response to Prompt
Workflow Overload

Null_Ptr/Memory
Null Ptr X
Inviaid Ptr X
Points to Invalid Data X
Insufficient Memory
Allocation Error

Buffer Owerflow

Figure 31. Sample report form for feof()

tested with a Java version of Ballistawritten specifically for this purpose. The results were then

be compared with their expected robustness.

Developer Understanding 89

Condition Response
8.2.1 Self Report Format Div by 0 NR
Out of domain
In order to alow adevelopment group to report ontheir ' 5verfiow/Underflow
Data invalid
Data values invalid

component’ s expected response to exceptional conditions, a

taxonomy of failures was first developed. Thistaxonomy Wrong num of args
Wrong type of args

borrows heavily from that developed by Maxion in Null pointer
Pointer to invalid data
[maxion98]. Only minor changes were required, inorder to |nsufficient memory R

Table 6. Expected robustness
response for Component C

R
R
R
R
R
R
R
R

better fit the object and safety models that are inherent to

Java. The mgjor categories were retained, and the order was

maintained to preserve the original mnemonic structure,

Method Condition Resonse
“CHILDREN”". Whilethiswas not essentia for this B1 Owerflow/Underflow R
Data invalid SR
specific study, it was done for continuity, and out of Data values invalid | SR

respect for the original work. B2 Owerflow/Underflow R

Data invalid SR
Data values invalid | SR

Figure 31 isan example of the form used to report the

expected robustness of a method within a component.

B3 Owerflow/Underflow | S

This specific exampleisfor feof(), and representsits true Data invalid S
response as measured in earlier Ballistawork. Categories g4 Owerflow/Underflow ' S
arelisted in rows, with expected response to exceptional Data Invalid S

Table 7. Expected robustness
conditions reported in the columns by checking the response for component B
appropriate box. Any row without a check in acolumnis

. . Method Condition Response
by default assumed to mean inapplicable (N/A). AL Overlow/Underfion S
Data invalid R

8.2.2 Self Report Data

A2 Owerflow/Underflow 'S
Data Input R

Once the form was finalized, it was built into a Lotus

Notes database, and placed in service by the IBM Center

A3 Owerflow/Underflow ' S
for Software Engineering Research in Y orktown Heights, Data Input R

NY. Thedatawas collected by IBM Research over the a4 Owerflow/Underflow S

Data Input R
Table 8. Expected robustness response
Tables 6, 7, and 8 contain the expected response of for component A

period of several weeks.

the components, rated by the devel opment teams.

Developer Understanding 90

Component A and B Robustness

25

N
o

=
o

S

%15

i

P O Measured
=

2 W Expected
il

=

)

5

<

(&)]

0 I : I : I : I : I : I : I : [
Al A2 A3 A4 Bl B2 B3 B4

Function

Figure 32. Robustness failure rates for components A & B

Component C consists of 38 methods, al of which had the same expected robustness. In the
response column, R stands for arobust response, SR for semi robust, NR for not robust, and S for
silent failure (A sub-category of not robust). Semi-robust means that the response is some error

code or language supported exception that |eaves the program in an indeterminate state.

8.2.3 Test Results

Three components comprising 46 discrete methods were rated by the devel opment teams and
tested using Ballista. The components, labeled A, B and C were written by teams 1, 2 and 3
respectively.

Results for testing components A and B can be found in Figure 32. Overall average failure
rates were 5% and 0% respectively. One method suffers from an abort failure due to invalid data
(memory reference), and some conditions marked as semi-robust actually could not occur due to
language constraints placed on the testing system that made it impossible to create corrupt data
for certain base level data types(both teams anticipated divide by zero failures).

Figure 33 contains the test results for object constructors of component C, and Figure 34

contains the test results for all other component C methods. Overall average failure rate was

Developer Understanding 91

Component C Constructor Robustness

[N

O Measured
W Expected

Abort Failure Rate (%)
OFRP NWMOoOIToOON 0O O

S X Q&] A Q&
75 o O S N N & 9 o N)
& NN P ¢ < &
% RY 3 o N\
\(\\ & oa\”
&f 3

x X

S)

S Q\eo

Y
RS

Constructor parameters

Figure 33. Component C Constructor abort failure rates by parameter

10.2%. The methods are separated into two classifications, those that do cal culation, and those

that merely return object datain a specific form or data type.

8.3 Analysis

The RTI development team delivered fairly solid code, with an overal failure rate of
approximately 10% for the most recent versions examined. The Solaris version suffered from a
high rate of abort failures, apparently due to an underlying problem with the C++ language
exception system under Solaris. The Digital Unix version suffered a similar failure profile,
converting nearly all of the abort failuresto * Unknown exception” failures.

It islikely that the RTI team thought they had handled all possible exceptions correctly. This
conclusion is drawn from anecdotal evidence developed from reading the specification and
conversations with project engineers. When our testing results were presented, the failures were
fixed, and suitable tests were added to the RTI regression test suite.

Teams 1 and 2 closely estimated how their system would respond to exceptional conditions.
With the exception of asingle failed pointer check instance, their expected robustness matched
the measured robustness of the systems. This excludes conditions that could not be generated due

to language constraints to check the presence of failures as aresult of invalid base data types.

Developer Understanding 92

Component C Robustness

w
o

N
6]

N

o
\
\
\
\
\
\
\
[

H
o
\

\

\

\

\

\

\

\

\

[

Abort Failure Rate (%)
=
(6]

|
|
\
\
|
|
\
]
I

62]
\
\
\
\
\
\
\
\
\
[

NI R

N o © A) N > o a N & X K &
S X R S R I e)

Method Designation - Findicates atype conversion method vs calculation
method

Figure 34. Component C Abort Failure rate

Asisevident from the test data, component C suffered abort failuresin roughly 60% of its
methods. Team 3 indicated that the only failures would be resultant from divide by zero, and that
all other exceptiona conditions would be handled correctly. In fact, they suffered from several
failures common in most software, including memory reference/data corruption issues, and
failing to handle legal, but degenerate data conditions. The most prevalent exceptiona conditions
not handled correctly were caused by values at the extreme end of their legal ranges.

Although not normally detectable using the Ballistatool, a number of silent errors were
detected within component C. These were detected when resultant values from method calls that
returned without error caused a subsequent robustness failure during test cleanup. Consider the
following example:

* An attempt to allocate memory failed, but returned a non-null value without an error
condition being indicated.
* The system attempts to free the memory for use.

e An abort failureisthe result.

Developer Understanding 93

Beyond the obvious observation that we can make about the robustness of the memory release
method, we can also conclude that the all ocation method suffered asilent failure. In essenceit
did not flag an error, and allowed it to propagate through the system where it could cause damage
later during program execution. In this example, it manifested as an abort failure. But
potentially, it could have been much worse if it simply caused the system to to the wrong thing -
say deploy the airbags when no crash had occurred while the vehicle was traveling at speed along
an interstate highway.

Figure 35 contains the silent failure rate for component C. The input conditions that induce
the silent failures were examined for each case. The failureswere al caused by conditions which
caused abort failures in other methods. Silent failures are usually indicative of incomplete range
testing for algorithmic bounds. In this case, the fact that the silent failures seem to be occurring
instead of abort failures suggests that the devel opment team did not have a cohesive strategy for

addressing exceptional conditions, and any approach was uneven and ad-hoc at best.

Component C Silent Failures

60

a1
o

N
o
Il
\

Silent Failure Rate (%)
N w
o o
| |

A
o
I
\

0 m 0 m]

c2 C3 C4 C5 C6 C7 (C8 Cl2z Ci13 Ci4 Ci15 Ci6 C17 C26F

Method Designation

Figure 35. Component C silent failure rates

Developer Understanding 94

Component C Total Failure Rate

N
o
L
\

\
\
\
\
\
\
\
\
\
\
\

60
50
S 40 {1
T
o @ Measured
Q30 I
3 - - - W Expected
®
(T8
3
|_

[Eny
o
I
\

\

\

\
\
\
\
\
\
\
\
\

0 H

NS S A DN D B A KK & & X
o PPN NN N X S A
S Y A N N

Method Designation

Figure 36. Total failure rate for component C

Figure 36 contains the total and expected failure rates for component C’ s non-constructor
methods. Average measured failurerateis 24.5%.

There were three methods computationally susceptible to the expected failure for divide by
zero. The expected failure rates were calculated by determining the percentage of tests that
would result in adivide by zero, and was 25%. All other functions are listed as a 0% expected
failure rate, since they are not susceptible to the only expected failure.

Component C did not suffer from any of the expected divide by zero failures. So even though

group 3 anticipated some failures, they were not the ones that occurred.

8.4 Conclusions

We present the results of testing systems written by 4 distinct programming groups ranging in
complexity from a small utility module to full blown distributed simulation frameworks. In each
case we know how the devel opment teams thought their systems would respond to exceptional

conditions, either by inference in the case of the RTI team, or by survey as was the case with the

Developer Understanding 95

3 corporate development groups. Of these groups, 2 were able to classify how well their code
would respond to exceptional conditions to areasonable extent. The other two overestimated the
robustness of their systems, one to a significant degree.

This data seems to provide evidence to support the conclusion that Maxion’s work [maxion98]
is applicable to professional development teams. Perhaps contrary to popular wisdom, even hard
won industry experience is no guarantee that a team possesses the knowledge required to build a
robust system capable of handling exception conditionsin a graceful manner.

Although the anecdotal results presented here cannot be considered conclusive, they provide
useful evidence and may help to shape the direction of future experimentation in this area. Some
outstanding questionsinclude:

* Wastheindividua responsible for reporting expected robustness in a position to have a
good feedl for the code base? Were they very junior, or perhaps management too far
removed to really know?

* Some Java|DEs build exception handling wrappers around applications that mask
exceptions. It is possible that teams using such environments (such as Visua Age Java)
arein fact testing for these conditions, but they are being caught and ignored by the

application level exception handler.

8.5 Acknowledgments

Special thanksto IBM Corporation for implementing my ideafor developer self-reporting,
collecting the data on their teams, and then allowing me to useit in this dissertation. Particularly
Melissa Buco for writing the Lotus Notes database for data reporting and collection, and Peter

Santhanam for going to the devel opment teams and getting their cooperation in this matter.

Developer Understanding 96

9 Conclusions

Thiswork has focused on gaining a better understanding of exception detection and handling.
Specifically, it established a quantitative relationship between performance cost and robust
exception handling across awide range of software systems that is arguably general in scope, and
determined that the performance penalty associated with robust code islow. It measured the
ability of aset of professional developersto accurately classify the exception handling abilities of
their software systems, and determined that for this particular case study, Maxion’ shypothesis
that devel opers without specific training on the topic might not fully grasp exceptional conditions
seems to hold. It developed generic models of common exception failures, and devel oped

generically applicable methods to fix them.

9.1 Contributions
Thiswork makes the following contributions:

* Tractability : Provesthat common robustness problems can be fixed, contrary to popular
wisdom

* Generality : Presents a new methodology that can be used to address robustness problems
without sacrificing performance

» Speed : Establishes that the performance cost of making a software system robust can be
made negligible

* Developer Understanding : Provides a case study using data collected from corporate
devel opment groups supporting the assertion that Maxion’ s hypothesis can hold true for

professional developers

9.1.1 Tractability and Generality

Over the course of developing the work that preceded and isincluded in this dissertation, it
has become clear that most robustness failures stem from memory issues (for instance improperly
referenced memory). A smaller number of failures manifest from structure state (for instance file
status and permissions). Fewer still are aresult of algorithmic boundary conditions (for instance

attempting to calculate the inverse sine of 2).

Conclusions 97

The dominant form of these failures (memory) can be addressed generically across any
application by using the checkMem() function developed as a part of thiswork. Thisfunction,
and its associated structures can greatly reduce the number of robustness failures, without
significant performance loss. It can be easily included in any system, and provides robust,
recoverable exception detection and handling. Further, the structure is easily extensible to

provide context aware exception checking for arbitrary structures.

9.1.2 Speed

Three distinct software system domains were protected using the hardening techniques
developed in this work, and benchmarked for performance. Cost was on average <1% for
hardened math functions, <2% for hardened 10 functions, and <5% for OS service primitives.
With the exception of the 1O benchmarks, the benchmarks used stressed the actual calls being
tested rather than building them into arealistic application. For this reason we believe the costs
reported to be conservative, and suspect the true cost to a system implementation will be lower in
real application code. Additionally, newer micro architectures will hide the latency of the checks
better, as processors with block caches, predication, and multiple branch prediction become

prevalent.

9.1.3 Developer Understanding

Thiswork analyzed data collected from three distinct development groups reporting on how
they expected their software systems to respond to exceptional conditions. The systems were
then tested, and the measured robustness was related to the expected values. Additionally, one
group with a design mandate for robustness was included in the testing portion of the anaysis,
with no self report data.

Only 2 of the 3 sal-reporting groups were able to classify the robustness of their software
systems to areasonable degree. The RTI group, with a mandate to build robust code, left a 10%
abort failure in their system. Group 3 anticipated a nearly 100% robust system, when in redlity it

had an average failure rate of 17.7% overall.

Conclusions 98

We conclude that although this particular experiment was not scientifically rigorousin its
experimental method, it provides a useful data point in validating the extension of Maxion’s

hypothesis to professional development teams.

9.2 FutureWork
Although this work addresses some of the critical outstanding issues regarding robustness, and
building robust software systems, there is much work that still needs to be done. Welook at

several outstanding issues directly related to this work.

9.2.1 Architectural Improvements

We assert that advanced microarchitectural features will result in faster determination of data
as exceptional or normal. Unfortunately, the bulk of this work was completed just prior to new
systems becoming available. Out assertion that the performance cost decreases as architectural
enhancements become available needs to be validated.

Additionally, an in depth look at the robustness checking code should be done at the
microarchitectural level. Such an investigation, using simulator tools such as SimpleScalar will
provide better insight as to how to better structure the software to take maximum advantage of the
hardware features. By natural extension, it will help identify potential enhancements to

architecture that will speed robustness checks.

9.2.2 Compiler Support

We have shown that our techniques are generally applicable to any software. The next logical
step isto build specific support for robustness checks into the compiler. Thiswill allow for
maximum protection with a minimum of effort while hiding the complexity of the checking

structure.

9.2.3 Controlled Study

We presented a case study of how well professional developer understand the robustness

response of their software systems. Although Maxion performed a careful scientific study with
university programming teams, thereis still no good scientific study involving professional

teams. Such a study would be a huge undertaking, but would establish with certainty the need for

Conclusions 99

better education with respect to exception conditions and exception handling. Further, it would
either validate or discredit the hypothesis that devel opers learn enough about exception handling

in current educational processesto reliably design and develop robust software systems.

9.2.4 Tool Integration

Thetools and techniques presented here are tenuously joined through scripts or manual
manipulation. It islikely that wide scale adoption of these techniques will only occur if they are
built into a consolidated, coherent, cross platform toolset. Such an undertaking, while largein

scope, would enable a broader base of practitionersto use the methods presented here.

9.2.5 Detailed Performance Evaluation

While the benchmarks used within this work to evaluate the performance impact present a
pessimistic upper bound, the actual overhead is unknown. Further, the implications of changing
the memory footprint of a system through adding tags within alocated memory and a software
cache are not clear. Research into this area could give further insight as to how the performance

of robust code could be further enhanced.

Conclusions 100

10 References

[Austind4]

[Avizienis85]

[Barton90]

[Beizeros]

[Black9g]

[BUhr00]

[Carreiradsg]

[Carrette96]

[Cristian95]

[Czecks6]

[Dahmann97]

[DeVale9q]

[Dingman95]

References

Austin, T.M.; Breach, S.E.; Sohi, G.S., “ Efficient detection of al pointer and
array access errors,” Conference on Programming Language Design and
Implementation (PLDI) ACM SIGPLAN ‘94

Avizienis, A., “The N-version approach to fault-tolerant software,” |IEEE
Transactions on Software Engineering, vol.SE-11, no.12, p. 1491-501

Barton, J., Czeck, E., Segdll, Z., Siewiorek, D., “Fault injection experiments
using FIAT,” IEEE Transactions on Computers, 39(4): 575-82

Beizer, B., Black Box Testing, New Y ork: Wiley, 1995

Black, Bryan, Bohuslav Rychlik and John Paul Shen, “The block-based trace
cache,” Proceedings of the 26th annual International Symposium on Computer
Architecture ISCA 1999

Buhr, Peter, Mok, Russell, “ Advanced Exception Handling M echanisms,”
|EEE Transactions on Software Engineering, vol. 26, number 9

Carreira, J.; Madeira, H.; Silva, J.G., “ Xception: atechnique for the
experimental evaluation of dependability in modern computers,” |EEE
Transactions on Software Engineering, vol.24, no.2 p. 125-36

Carrette, G., “CRASHME: Random input testing,” (no formal publication
available) ple.delphi.com/gjc/crashme.html accessed July 6, 1998

Crigtian, F., “Exception Handling and Tolerance of Software Faults,” In:
Software Fault Tolerance, Michael R. Lyu (Ed.). Chichester: Wiley, 1995. pp.
81-107,Ch. 4

Czeck, E., Feather, F., Grizzaffi, A., Findlli, G., Segall, Z. & Siewiorek, D.,
“Fault-free performance validation of avionic multiprocessors,” Proceedings of
the IEEE/AIAA 7th Digital Avionics Systems Conference, Fort Worth, TX,
USA; 13-16 Oct. 1986, pp. 803, 670-7

Dahmann, J., Fujimoto, R., & Wesatherly, R, “The Department of Defense High
Level Architecture,” Proceedings of the 1997 Winter Smulation Conference,
Winter Conference Board of Directors, San Diego, CA 1997

DeVale, J., Koopman, P., Guttendorf, D., “ The Ballista Software Robustness
Testing Service,” 16th International Conference on Testing Computer
Software, 1999. pp. 3342

Dingman, C., “ Measuring robustness of afault tolerant aerospace system”,
25th International Symposium on Fault-Tolerant Computing, June 1995. pp.
522-7

101

[Dingman97]

[DoD9g]

[Dony9Q]

[Edelweisso8]

[Fernsler99]

[Garcia99]

[Garcial0]

[Gehani92]

[Ghoshog]

[Goodenough75]

Dingman, C., Portable Robustness Benchmarks, Ph.D. thesis, Dept. of
Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh,
PA, May 1997

U.S. Department of Defense, High Level Architecture Run Time Infrastructure
Programmer’s Guide, RTI 1.3 Version 5, Dec. 16, 1998, DM SO/SAIC/Virtual
Technology Corp

Dony, C., “Improving Exception Handling with Object-Oriented
Programming,” 14th International Conference on Computer Software and
Applications, 1990

Edelweiss, N.; Nicolao, M., “ Workflow modeling: exception and failure
handling representation,” 18th International Conference of the Chilean Society
of Computer Science, 1998

Fernder, K. & Koopman, P., “ Robustness Testing of a Distributed Simulation
Backplane,” 10th International Symposium on Software Reliability
Engineering, November 1-4, 1999

Garcia, A.F., Beder, D.M., Rubira, C.M.F., “ An Exception handling
mechanism for devel oping dependabl e object-oriented software based on a
meta-level approach,” 10th International Symposium on Software Reliability
Engineering, 1999

Garcia, A.F., Beder, D.M., Rubira, C.M.F., “ An exception handling software
architecture for devel oping fault-tolerant software,” 5th International
Symposium on High Assurance System Engineering, 2000

Gehani, N., “Exceptional C or C with Exceptions,” Software — Practice and
Experience, 22(10): 827-48

Ghosh, A .K.; Schmid, M., “An approach to testing COTS software for
robustness to operating system exceptions and errors,” Proceedings 10th
International Symposium on Software Reliability Engineering ISRE 1999

Goodenough, J., “Exception handling: issues and a proposed notation,”
Communications of the ACM, 18(12): 683-696, December 1975

[Govindargjan92] Govindargjan, R., “ Software Fault-Tolerance in Functional Programming,”

[Griffin00]

[Hagen9g]

[Hastings92]

References

16th International Conference on Computer Software and Applications, 1992

Griffin, J.L.; Schlosser, SW.; Ganger, G.R.; Nagle, E.F., “ Modeling and
performance of MEM S-based storage devices,” International Conference on
Measurement and Modeling of Computer Systems ACM SIGMETRICS ‘2000

Hagen, C., Alonso, G., “Flexible Exception Handling in the OPERA Process
Support System,” 18th International Conference on Distributer Computing
Systems, 1998

Hastings, R.; Joyce, B., “ Purify: fast detection of memory leaks and access
errors,” Proceedings of the Winter 1992 USENI X Conference

102

[Hill71]

[Hof97]

[Hofstede9g]

[Hul88]

[|EEES5]

[|EEE90]

[|EEE93]

[Jones96]

[Kanawati9Z]

[Koopman97]

[Koopman99]

[Koopman00]

[Korn91]

References

Hill, I., “ Faultsin functions, in ALGOL and FORTRAN,” The Computer
Journal, 14(3): 315-316, August 1971

Hof, M., Mossenbock, H.,Pirkelbauer, P., “ Zero-Overhead Exception Handling
Using Metaprogramming,” Proceedings of the 24th Seminar on Current Trends
in Theory and Practice of Informatics, 1997

Hofstede, A.H.M., Barros, A.P., “ Specifying Complex Process Control Aspects
in Workflows for Exception Handling,” 6th International Conference on
Advanced Systems for Advanced Applications 1999

Hull, T.E., Cohen, M.S., Sawchuk, J.T.M., Wortman, D.B., “Exception
Handling in Scientific Computing,” ACM Transactions on Mathematical
Software, Vol. 14, No 3, September 1988

| EEE standard for binary floating point arithmetic, IEEE Std 754-1985,
Institute of Electrical and Electronics Engineers, 1985

|EEE Standard Glossary of Software Engineering Terminology, |[EEE Std
610.12—-1990, |EEE Computer Soc., Dec. 10, 1990

|EEE Standard for Information Technology - Portable Operating System
Interface (POSX) Part 1: System Application Program Interface (API)
Amendment 1: Realtime Extension [C Language], |IEEE Std 1003.1b—-1993,
IEEE Computer Society, 1994

Jones, E., (ed.) The Apollo Lunar Surface Journal, Apollo 11 lunar landing,
entries 102:38:30, 102:42:22, and 102:42:41, National Aeronautics and Space
Administration, Washington, DC, 1996

Kanawaeti, G., Kanawati, N. & Abraham, J., “ FERRARI: atool for the
validation of system dependability properties,” 1992 | EEE Workshop on
Fault-Tolerant Parallel and Distributed Systems. Amherst, MA, USA, July
1992, pp. 336-344

Koopman, P., Sung, J., Dingman, C., Siewiorek, D. & Marz, T., “ Comparing
Operating Systems Using Robustness Benchmarks,” Proceedings Symposium
on Reliable and Distributed Systems, Durham, NC, Oct. 22—24 1997, pp.
72-79

Koopman, P., DeVae, J.,"Comparing the Robustness of POSIX Operating
Systems,” 28th Fault Tolerant Computing Symposium, June 14-18, 1999, pp.
30-37

Koopman, P.; DeVale, J., “The exception handling effectiveness of POSIX
operating systems,” |EEE Transactions on Software Engineering, vol.26, no.9
p. 837-48

Korn, D & Vo, K.-P., “SFIO: safeffast string/file 10,” Proceedings of the
Summer 1991 USENIX Conference, 10-14 June 1991, pp. 235-56

103

[Kropp9sg]

[Lee83]

[Leveson93]

[Lions96]

[Lippert0Q]

[Maes87]

[Maxion98]

[Marick95]

[Miller9o]

[Millerog]

[Mukherjee97]

[Musag6]

[Numega01]

[OMGY5]

References

Kropp, N., Koopman, P. & Siewiorek, D., “ Automated Robustness Testing of
Off-the-Shelf Software Components,” 28th Fault Tolerant Computing
Symposium, June 23—-25, 1998, pp. 230-239

Lee, P.A., “Exception Handling in C Programs,” Software Practice and
Experience. Vol 13, 1983

Leveson, N.G., Turner, C.S., * An investigation of the Therac-25 accidents,”
IEEE Computer, Vol 26, N/o. 7

Lions, J.L. (chairman) Ariane 5 Flight 501 Failure: report by the inquiry
board, European Space Agency, Paris, July 19, 1996

Lippert, Martin, Lopes, Cristina, “ A Study on Exception Detection and
Handling Using Aspect-Oriented Programming,” Proceedings of the 2000
International Conference on Software Engineering, 2000

Maes, P., “ Concepts and experiments in computational reflection,” Conference
on Object Orientated Programming, Systems, Languages and Applications,
OOPSLA 1987

Maxion, R.A.; Olszewski, R.T., “Improving software robustness with
dependability cases,” Twenty-Eighth Annual International Symposium on
Fault-Tolerant Computing, FTCS 1998

Marick, B., The Craft of Software Testing, Prentice Hall, 1995

Miller, B., Fredriksen, L., So, B., “An empirical study of the reliability of
operating system utilities,” Communication of the ACM, (33):32—44, December
1990

Miller, B., Koski, D., Lee, C., Maganty, V., Murthy, R., Natargian, A. & Steidl,
J., “Fuzz Revisited: A Re-examination of the Reliability of UNIX Utilities and
Services,” Computer Science Technical Report 1268, Univ. of
Wisconsin-Madison, May 1998

Mukherjee, A., Siewiorek, D.P., “ Measuring software dependability by
robustness benchmarking,” |EEE Transactions on Software Engineering, June
1997

Musa, J., Fuoco, G., Irving, N. & Kropfl, D., Juhlin, B., “The Operational
Profile”, in: Lyu, M. (ed.), Handbook of Software Reliability Engineering,
McGraw-Hill/IEEE Computer Society Press, Los Alamitos CA, 1996, pp.
167-216

Numega. BoundsChecker.
http://www.compuware.com/products/numega/bounds/, accessed 10/12/2001

Object Management Group, The Common Object Request Broker: Architecture
and Specification, Revision 2.0, July 1995

104

[Ostrand88]

[Paradl]

[Pu9s)

[RekvicO0]

[Rational01]

[Romanovsky0Q]

[Rotenberg96]

[Schuettes6]

[Sedgewick92]

[Shelton0Q]

[Siewiorek93]

[Srivastavad4]

[Swaing3]

References

Ostrand, T.J., Bacer, M. J., “ The category-partition method for specifying and
generating functional tests,” Communications of the ACM, 31(6), 676-686

Parasoft. Insure++. http://www.parasoft.com/products/insure/index.htm,
accessed 10/12/2001

Pu, C.; Autrey, T.; Black, A.; Consd, C.; Cowan, C.; Inouye, J.; Kethana, L.;
Walpole, J.; Ke Zhang, “ Optimistic incremental specialization: streamlining a
commercial operating system,” Proceedings of the fifteenth ACM symposium
on Operating systems principles, SIGOPS 1995

Rakvic, Ryan, Black,Bryan, & Shen, John, “ Completion time multiple branch
prediction for enhancing trace cache performance,” The 27th Annual
International Symposium on Computer architecture, ISCA 2000

Rational. Purify. http://www.rational .com/products/pqc/index.jsp, accessed
10/12/2001

Romanovsky, A., “ An exception handling framework for N-version

programming in object-oriented systems,” Proceedings Third |IEEE

International Symposium on Object-Oriented Real-Time Distributed
Computing, 2000

Rotenberg, Eric, Bennett, Steve, & Smith, James E., “Trace cache: alow
latency approach to high bandwidth instruction fetching,” Proceedings of the
29th annual IEEE/ACM International Symposium on Computer Architecture,
ISCA 1996

Schuette, M., Shen, J., Siewiorek, D. & Zhu, Y., “Experimental evaluation of
two concurrent error detection schemes,” Digest of Papers. 16th Annual
International Symposium on Fault-Tolerant Computing Systems, Vienna,
Austria; 1-4 July 1986, pp. 138-43

Sedgewick, Robert. Algorithmsin C++. Addison-Wesley, 1992

Shelton, C.P.; Koopman, P.; Devae, K., “ Robustness testing of the Microsoft
Win32 API,” Proceedings of the International Conference on Dependable
Systems and Networks. DSN 2000

Siewiorek, D., Hudak, J., Suh, B. & Segdl, Z., “ Development of a benchmark
to measure system robustness,” 23rd International Symposium on
Fault-Tolerant Computing, June 1993. pp. 88-97

Srivastava, A., Eustace, A., ATOM: A system for building customized program
analysistools, Research Report WRL—94/2, Digital Western Research
Laboratory, Palo Alto, CA, 1994

A.D. Swain and H.E. Guttmann, * Handbook of Human Reliability Analysis
with Emphasis on Muclear Power Plant Applications,” Technical Report
NUREG/CR-1278, U.S. Nuclear Regulatory Commission, 1983

105

[Thekkatho4]

[Tsai95]

[Uhligos]

[V097]

[Wilking3]

[Wilking7]

[Zilles99]

References

Thekkath, C., Levey, H., * Hardware and Software Support for Efficient
Exception Handling,” Sxth International Conference on Architectural Support
for Programming Languages, October 1994

Tsai, T., & R. lyer, “ Measuring Fault Tolerance with the FTAPE Fault
Injection Tool,” Proceedings Eighth International Conference. on Modeling
Techniques and Tools for Computer Performance Evaluation, Heidelberg,
Germany, Sept. 20—22 1995, Springer-Verlag, pp. 26-40

Uhlig, R., Nagle, D., Mudge, T., Sechrest, S., Emer, J., “Instruction fetching:
Coping with code bloat,” Proceedings 22nd Annual International Symposium
on Computer Architecture, 22—24 June 1995, ACM: New Y ork, pp. 345-56

Vo, K-P., Wang, Y-M., Chung, P. & Huang, Y ., “ Xept: a software
instrumentation method for exception handling,” The Eighth International
Symposium on Software Reliability Engineering, Albuquerque, NM, USA; 2-5
Nov. 1997, pp. 60-69

Wilken, K.D.; Kong, T., “Efficient memory access checking,” The
Twenty-Third International Symposium on Fault-Tolerant Computing,
FTCS-23

Wilken, K.D.; Kong, T., “ Concurrent detection of software and hardware
data-access faults,” |EEE Transactions on Computers, vol.46, no.4 p.
412-24[2] Beizer, B., Black Box Testing, New Y ork: Wiley, 1995

Zilles, C.B.; Emer, J.S.; Sohi, G.S,, “The use of multithreading for exception

handling,” Proceedings of the 32nd Annual ACM/IEEE International
Symposium on Microarchitecture, 1999

106

Appendix A

Complete robustness failure rates(%o) for Linux kernel 2.2.16.

Call Rate Call Rate Call Rate Call Rate Call Rate
abs 0.0]|feof 1.4|]isxdigit 8.0[|rmdir 0.3||strncat 55.8
access 0.2||ferror 1.4(|labs 0.0||sched_get priority max| 0.0f|strncmp 31.3
acos 0.0]|fflush 1.4]|Idexp 0.0||sched get priority min 0.0||strncpy 76.7
alarm 0.0]|fgetc 1.6(|div 3.7||sched _getparam 4.3]|strpbrk 31.7
asctime 20.8||fgetpos 48.7{]link 5.6[|sched getscheduler 0.0]|strrchr 95
asin 0.0]|fgets 3.3||localtime 8.3||sched setparam 4.3]|strspn 31.2
atan 0.0}|fileno 0.7|]log 0.0[|sched setscheduler 3.9||strstr 33.9
atan2 0.0]|floor 0.0]|log10 0.0||sem_close 5.9]||strtod 195
atof 9.2]|fmod 0.0[]longjmp 78.6[|sem _destroy 35.3|]|strtok 40.4
atoi 9.2||fopen 10.5]|Iseek 0.0||sem_getvalue 59.5(|strtol 7.3
atol 9.2||fpathconf 0.0]|malloc 0.0||sem init 7.3|]|strtoul 7.3
calloc 0.0]|fprintf 18.0||mblen 7.7(]sem_open 0.0]|strdfrm 446
ceil 0.0]|fputc 1.5|[mbstowcs | 32.4|[sem post 64.7 [|sysconf 0.0
cfgetispeed 0.0]|fread 33.4[| mbtowc 15.9||sem_ trywait 41.2||tan 0.0
cfgetospeed 0.0]|free 76.5[|memchr 16.4[|sem_unlink 0.3||tanh 0.0
cfsetispeed 0.0]|freopen 8.7[|memcmp | 31.3||sem_wait 64.7 [|tcdrain 0.0
cfsetospeed 0.0]|frexp 36.4[|memcpy [75.2{|setbuf 3.3]|tcflush 0.0
chdir 0.3]|fscanf 38.8[|memmowve| 75.2||setgid 0.0||tcgetattr 0.1
chmod 0.0]|fseek 1.5[[memset 57.8||setjmp 0.0||tcgetpgrp 0.0
chown 0.2]|fsetpos 59.7 [|mkdir 0.0||setlocale 24||tcsendbreak| 0.0
clearerr 1.4]|fstat 21.1 || mkfifo 0.0||setpgid 0.0]|tcsetattr 0.0
close 0.0]|fsync 0.0||mktime 20.8||setuid 0.0]|time 125
closedir 42.5]|fell 1.6]|mlock 0.0{|setvbuf 26.3||times 45
coS 0.0]|ftruncate 0.1]|mlockall 0.0]|sigaction 14 [|tmpnam 50.8
cosh 0.0]|fwrite 4.4]mmap 0.0]|sigaddset 6.8||tolower 0.0
creat 0.0]|getc 1.6|[modf 15.4||sigdelset 6.8||toupper 0.0
ctermid 12.3]]getcwd 47.1|| mprotect 0.0]|sigemptyset 22.2||ttyname 0.0
ctime 8.3||getenv 9.2[|msync 0.0]|sidfillset 16.7 [Jumask 0.0
diffime 0.0}]getgrgid 0.0[]munlock 0.0]|sigismember 45[luname 0.4
div 4.0]|getgmam 8.7[|munmap 0.0]|siglongjmp 78.6[|ungetc 15
dup 0.0]|getgroups | 21.6]|open 0.0]|sigpending 0.0 [junlink 0.3
dup2 0.0]|getpwnam| 8.7||opendir 18.1(|sigprocmask 0.2]|utime 0.0
execl 14.8]|getpwuid 0.0]|pathconf 16.3||sigsetimp 0.0]|wait 0.0
execle 14.8]|gmtime 8.3|| perror 7.7{]sin 0.0||waitpid 0.0
execlp 38.9]|isalnum 8.0[]| pow 0.0]|sinh 0.0]||wcstombs 21.1
execv 2.0|]isalpha 8.0[| printf 34.0||sprintf 89.3[|wctomb 8.6
execve 19.1}|isatty 0.0]|putc 1.5(|sqrt 0.0]|write 0.0
execvp 18.9]|iscntrl 8.0|| putchar 0.0||srand 0.0]|strchr 9.6
exp 0.0]|isdigit 8.0|| puts 20.0||sscanf 48.7||strcmp 31.2
fabs 0.0]]isgraph 8.0[|readdir 80.8||stat 7.3|]strcoll 31.2
fchmod 0.0]]islower 8.0[|realloc 57.3||strcat 55.6|strcpy 47.2
fclose 2.3|]isprint 8.0[|remove 0.3||strcspn 31.2

fentl 0.0]]ispunct 8.0[|rename 5.6||strerror 0.0

fdatasync 0.0]|isspace 8.0 rewind 1.6||strftime 58.9

fdopen 6.7|]isupper 8.0[|rewinddir | 47.9(|strlen 9.2

List of Tables 107

Appendix B

/1 b_ptr_sigactionLINUXtpl : Ballista Datatype Tenplate for signal
/1 action pointer

/1

/1 Copyright (C) 1998-2001 Carnegie Mellon University

/1

/1 This programis free software; you can redistribute it and/or
/1 modify it under the ternms of the GNU CGeneral Public License

/1 as published by the Free Software Foundation; either version 2
/1 of the License, or (at your option) any later version.

/1

/1 This programis distributed in the hope that it will be useful,
/] but W THOUT ANY WARRANTY; without even the inplied warranty of
/1 MERCHANTABI LI TY or FITNESS FOR A PARTI CULAR PURPCSE. See the
/1 GNU General Public License for nore details.

/1

/1 You shoul d have received a copy of the GNU General Public License
/1 along with this program if not, wite to the Free Software

/1l Foundation, Inc., 59 Tenple Place - Suite 330, Boston, MA

/1 02111-1307, USA.

name structSigactionPtr b_ptr_sigaction;
parent b_ptr_buf;

i ncl udes

[
{

#define struct Si gactionPtr struct sigaction*
#i ncl ude <signal . h>
#include "b_ptr_buf. h"

}
]

gl obal _defi nes

[
{

struct sigaction sigaction_tenp;
void foo_handler1(int a){
}
void foo_actionl(int sig, siginfot * b, void * c){
}
}
]

di al s
[
enumdi al SA HANDLER : NULL, SIGDFL, SIGIG\, USR FUNC, SIG ERR;
enumdi al SA MASK : EMPTY, FULL, SI GABRT, SIGSEGVY, SIG NT, SIGdLL,
ZERO, MAXI NT;

Appendix B 108

enumdi al SA_FLAGS : SA NOCLDSTOP SET, SA_SI G NFO SET, SA ONSTACK,
SA_RESTART, SA ALL, NO EXTRA, SA ZERO, SAMAXI NT;

enum di al SA_SI GACTION : ACTI ON_NULL, ACTI ON.USR FUNC,
]

access

[

{
sigaction tenp.sa_flags = O;
sigaction tenp.sa_mask.__val[0] = O;

}

NULL
{

}
SI G DFL

{

}
SIGGN

{

}
USR_FUNC

{

}
SI G_ERR

{
}

EMPTY
{//no signals blocked
i f((sigenmptyset (&sigaction_tenp.sa_mask))!=0)
{
FI LE* | ogFil e = NULL;

si gaction_tenp.sa_handl er NULL;

si gaction_tenp.sa _handl er S| G DFL;

si gaction_tenp.sa _handl er SIGIGN,

si gaction_tenp.sa _handl er f oo_handl er 1;

si gaction_tenp.sa _handl er SI G_ERR;

if ((logFile = fopen ("/tnp/tenpl ateLog.txt","a+")) == NULL)
{
exit(99);
}
fprintf (logFile, "b _ptr_sigaction - sigenptyset at EMPTY fail ed.
Function not tested\n");
fclose(l ogFile);
exit(99);
}
}
FULL
{//all signals blocked.
if((sigfillset (&igaction_tenp.sa_mask))!=0)

{
FI LE* | ogFile = NULL;

Appendix B 109

if ((logFile = fopen ("/tnp/tenplatelLog.txt","a+")) == NULL)

exit(99);

}

fprintf (logFile,

Function not tested\n");
fclose(l ogFile);

exit(99);

}
}
SI GABRT
{

}
SI GSEGV

{

}
SI G NT

{

}
SIG LL

{

}
ZERO

{
}
MAXI NT
{

}

si gacti on_t enp.

si gacti on_t enp.

si gacti on_t enp.

si gacti on_t enp.

si gacti on_t enp.

si gacti on_t enp.

SA_NOCLDSTOP_SET, SA ALL

{

sa_nmask.

sa_nmask.

sa_nask.

sa_nmask.

sa_nask.

sa_nmask.

"b_ptr_sigacti

__val[0]

__val[0]

__val[0]

__val[0]

__val[0]

__val[0]

on - sigfullset at FULL failed.

S| GABRT;

SI GSEGV,

SI G NT;

SI A LL;

MAXI NT;

sigaction_tenp.sa flags | = SA NOCLDSTOP

}

SA_SI G NFO SET, SA ALL

{

sigaction_tenp.sa flags | = SA Sl G NFQ

}

SA_ONSTACK, SA ALL

{

sigaction_tenp.sa flags | = SA ONSTACK

}

SA RESTART, SA ALL

{

}
SA_ZERO

{

sigaction_tenp.sa fl ags

Appendix B

| = SA_RESTART,;

110

sigaction_tenp.sa flags | = 0;
}
SA_MAXI NT

{

}
SA_ALL

{
sigaction_tenp.sa flags | = SA RESTART | SANODEFER | SA RESETHAND
| SA NOCLDWAIT

sigaction_tenp.sa flags | = MAXI NT;

}
ACTI ON_NULL
{
sigaction_tenp.sa sigaction = NULL;
}
ACTI ON_USR_FUNC
{
sigaction_tenp.sa sigaction = foo_actionl;
}
{
_theVari abl e = &si gaction_tenp;
}
]
conmi t
[
]
cl eanup

[
]

Appendix B 111

/*

b _ptr_sigaction.cpp Cenerated by the Ballistatm Project data

obj ect conpiler

Copyright (C) 1998-2001 Carnegie Mellon University

This programis free software; you can redistribute it and/or
nmodi fy it under the terns of the GNU General Public License

as published by the Free Software Foundation; either version 2
of the License, or (at your option) any |later version.

This programis distributed in the hope that it will be useful
but W THOUT ANY WARRANTY; wi thout even the inplied warranty of
MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the
GNU Ceneral Public License for nore details.

You shoul d have received a copy of the GNU General Public License
along with this program if not, wite to the Free Software
Foundation, Inc., 59 Tenple Place - Suite 330, Boston, MA

02111-1307, USA.

TI

*/

#i
#i
#i
#i
#i
#i
#i
#i
#i

#i

st

Fil e generated Tuesday, October 02 at 04:09 PM EDT

TLE
b _ptr_sigaction.cpp

ncl ude <errno. h>

ncl ude <i ostream h>
ncl ude <stdi o. h>

ncl ude <stdlib. h>
ncl ude <stream h>
ncl ude <string. h>
ncl ude <sys/types. h>
ncl ude <sys/stat. h>
ncl ude <uni std. h>

ncl ude "b_ptr_sigaction. h”

ruct sigaction sigaction_tenp;

void foo_handler1(int a){

}

void foo_actionl(int sig, siginfot * b, void * c¢){

CLASSNAME : CLASSNAME()

{

/1 DI AL DECLARATI ONS HERE

Appendix B

112

/I gener at ed

strcpy(_b_ptr_sigacti onTYPENAME CLASS_STRI NG) ;
strcpy(_b_ptr_sigacti onNULL, "b_ptr_sigaction NULL");
strcpy(_b_ptr_sigactionSIGDFL,"b_ptr_sigaction_SI G DFL");
strcpy(_b_ptr_sigactionSIGIGN, "b_ptr_sigaction_SIGIGN');
strcpy(_b_ptr_sigacti onUSR FUNC "b_ptr_sigacti on_USR FUNC') ;
strcpy(_b_ptr_sigactionSIGERR, "b_ptr_sigaction_SIG ERR");
strcpy(_b_ptr_sigacti onEMPTY, "b_ptr_sigacti on_EMPTY");
strcpy(_b_ptr_sigactionFULL, "b_ptr_sigaction FULL");
strcpy(_b_ptr_sigactionSI GABRT, "b_ptr_sigacti on_SI GABRT") ;
strcpy(_b_ptr_sigactionSI GSEGY, "b_ptr_sigacti on_SI GSEGV') ;
strcpy(_b_ptr_sigactionSI G NT, "b_ptr_sigaction SIG NT");
strcpy(_b_ptr_sigactionSIG LL "b_ptr_sigaction SIGLL");
strcpy(_b_ptr_sigacti onZERQ "b_ptr_sigacti on ZERO');
strcpy(_b_ptr_sigacti onMAXI NT, "b_ptr_si gacti on MAXI NT");
strcpy(_b_ptr_sigacti onSA NOCLDSTOP_SET, "b_ptr_si gacti on_SA NOCLDSTOP_S
ET")
strcpy(_b_ptr_sigacti onSA SI G NFO _SET, "b_ptr_sigacti on_SA SI G NFO SET")

strcpy(_b_ptr_sigacti onSA ONSTACK, "b_ptr_si gacti on_SA ONSTACK') ;
strcpy(_b_ptr_sigacti onSA RESTART, "b_ptr_sigacti on_SA RESTART");
strcpy(_b_ptr_sigacti onSA ALL,"b_ptr_sigaction SA ALL");
strcpy(_b_ptr_sigacti onNO EXTRA, "b_ptr_si gacti on_NO EXTRA");
strcpy(_b_ptr_sigacti onSA ZERO "b_ptr_si gacti on_SA ZERO');
strcpy(_b_ptr_sigacti onSA MAXI NT, "b_ptr_sigacti on_SA MAXI NT");
strcpy(_b_ptr_sigacti onACTI ON NULL, "b_ptr_si gacti on ACTI ON_NULL");
strcpy(_b_ptr_sigacti onACTI ON USR FUNC, "b_ptr_si gacti on_ACTI ON_USR FUNC

)
}
e e
b _param *b_ptr_sigaction::b_ptr_sigacti onNULL()
{
return & b ptr_sigacti onNULL
}
b _param *b_ptr_sigaction::b_ptr_sigactionSI GDFL()
{
return & b _ptr_sigactionSl GDFL;
}
b _param *b_ptr_sigaction::b_ptr_sigactionSIG.IGN()
{
return & b ptr_sigactionSl Gl GN;
}
b _param *b_ptr_sigaction::b_ptr_sigacti onUSR FUNC)
{
return & b _ptr_sigacti onUSR FUNC,
}

b _param *b_ptr_sigaction::b_ptr_sigactionSl G ERR()
{

Appendix B 113

return & b _ptr_sigactionSl GERR,

}
b _param *b_ptr_sigaction::b_ptr_sigacti onEMPTY)
{
return & b _ptr_sigacti onEMPTY,
}
b _param *b_ptr_sigaction::b_ptr_sigacti onFULL()
{
return & b ptr_sigactionFULL
}
b _param *b_ptr_sigaction::b_ptr_sigacti onSlI GABRT()
{
return & b _ptr_sigacti onSl GABRT;
}
b _param *b_ptr_sigaction::b_ptr_sigacti onSI GSEGU)
{
return & b _ptr_sigactionSl GSEGV,
}
b _param *b_ptr_sigaction::b_ptr_sigactionSI G NT()
{
return & b _ptr_sigactionSlI d NT,;
}
b _param *b_ptr_sigaction::b_ptr_sigactionSI G LL()
{
return & b ptr_sigactionSlId LL;
}
b _param *b_ptr_sigaction::b_ptr_sigacti onZERQ)
{
return & b _ptr_sigacti onZERQ
}
b _param *b_ptr_sigaction::b_ptr_sigacti onMAXI NT()
{
return & b_ptr_sigacti onMAXI NT;
}

b _param *b_ptr_sigaction::b_ptr_sigacti onSA NOCLDSTOP_SET()
{

}

b _param *b_ptr_sigaction::b_ptr_sigacti onSA Sl G NFO SET()
{

}

b _param *b_ptr_sigaction::b_ptr_sigacti onSA ONSTACK()

return & b ptr_sigacti onSA NOCLDSTOP_SET;

return & b ptr_sigacti onSA SI G NFO_SET;

Appendix B 114

{
}

b _param *b_ptr_sigaction::b_ptr_sigacti onSA RESTART()
{

}

return & b _ptr_sigacti onSA ONSTACK;

return & b _ptr_sigacti onSA RESTART,

b _param *b_ptr_sigaction::b_ptr_sigacti onSA ALL()
{

}

return & b ptr_sigacti onSA ALL;

b param *b_ptr_sigaction::b_ptr_sigacti onNO EXTRA()
{

}

return & b _ptr_sigacti onNO EXTRA;

b _param *b_ptr_sigaction::b_ptr_sigacti onSA ZER(()
{

}

return & b _ptr_sigacti onSA ZERG,
b _param *b_ptr_sigaction::b_ptr_sigacti onSA MAXI NT()
{
}

b _param *b_ptr_sigaction::b_ptr_sigacti onACTI ON NULL()
{

}

b _param *b_ptr_sigaction::b_ptr_sigacti onACTI ON USR FUNQ)
{

return & b _ptr_sigacti onSA MAXI NT;

return & b ptr_sigacti onACTI ON_NULL;

return & b ptr_sigacti onACTI ON_USR_FUNC

//type name return mnethod
b_param * CLASSNAME: : t ypeNane()

{
return & b_ptr_sigacti onTYPENAME

i nt CLASSNAME: : di st anceFr onBase()

Appendix B

115

{

return CLASSPARENT: : di st anceFronBase() +1;

voi d CLASSNAME :typelList(b_paramlist[], int

{

strcepy(list[nunj, (char *) typeNane());
CLASSPARENT: : typeLi st (list, numtl);

voi d *CLASSNAME : access(b_param data[])

{

if (strcmp(data[0], (char *)typeNane())!=0)
return CLASSPARENT: : access(dat a) ;

/| ACCESS CODE

b ptr_sigacti
b ptr_sigacti
b ptr_sigacti
b ptr_sigacti
b ptr_sigacti
b ptr_sigacti
b ptr_sigacti
b ptr_sigacti
b ptr_sigacti
b ptr_sigacti
b ptr_sigacti
b ptr_sigacti
b ptr_sigacti
b ptr_sigacti
b ptr_sigacti
b ptr_sigacti
b ptr_sigacti
b ptr_sigacti
b ptr_sigacti
b ptr_sigacti
b ptr_sigacti
b ptr_sigacti
b ptr_sigacti

on null = 0;
on_sig dfl = 0;
on_sig_ign = 0;
on_usr_func = 0;
on_sig err = 0;
on_empty = 0O;
on full = 0;
on_sigabrt = 0;
on_sigsegv =0
on_si gi nt
on sigill
on_zero = 0O;

on_nmaxint = 0;
on_sa_nocl dstop_set =
on_sa_siginfo set = 0;
on_sa_onstack = 0;
on_sa restart = 0;
onsa all = 0;
on_no_extra = 0;
on_sa_zero = 0;
on_sa_naxint = 0;
on_action_null = 0;
on_action_usr_func = 0;

0;

i nt dataPTR =0;

dat aPTR++;
if (strcnp(data[dataPTR], _b_ptr_sigacti onNULL) ==0)
b ptr_sigactionnnull =1
else if (strcnp(data[dataPTR,_b_ptr_sigactionSl G DFL) ==0)
b ptr_sigaction sig dfl = 1;

else if (strcnp(data[dataPTR, b _ptr_sigactionSlI G |G\ ==0)
b ptr_sigactionsig_ ign = 1;

else if (strcnp(data[dataPTR, b ptr_sigacti onUSR FUNC) ==0)
b ptr_sigaction usr_func = 1;

Appendix B 116

else if (strcnp(data[dataPTR, b _ptr_sigacti onSlI G ERR)==0)
b ptr_sigactionsig err = 1;
el se
{
cerr<<"Error: Unknown setting for the
<<" SA HANDLER"
<<" dial of the data object
<<CLASS_STRI NG
<<". "<<endl
<<"The offending string is :
<<dat a[dat aPTR
<<endl;
exit(1);
}

dat aPTRt+;
(strcnp(dat a[dat aPTR], _b_ptr_si gacti onEMPTY) ==0)
b ptr_sigaction enpty = 1;
else if (strcnp(data[dataPTR, b _ptr_sigacti onFULL)==0)
b ptr_sigaction full = 1;
else if (strcnp(data[dataPTR, _b_ptr_sigacti onSl GABRT) ==0)
b _ptr_sigaction sigabrt = 1;
else if (strcnp(data[dataPTR, _b_ptr_sigacti onSlI GSEG) ==0)
b _ptr_sigaction sigsegv = 1;
else if (strcnp(data[dataPTR, b _ptr_sigacti onSlI @ NT)==0)
b ptr_sigactionsigint = 1;
else if (strcnp(data[dataPTR, b _ptr_sigactionSlId LL) ==0)
b ptr_sigactionsigill = 1;
else if (strcnp(data[dataPTR, b _ptr_sigacti onZERQ ==0)
b ptr_sigaction zero = 1;
else if (strcnp(data[dataPTR, b _ptr_sigacti onMAXI NT) ==0)
b _ptr_sigaction maxint = 1;
el se
{
cerr<<"Error: Unknown setting for the
<<" SA MASK"
<<" dial of the data object
<<CLASS_STRI NG
<<, "<<end|
<<"The offending string is :
<<dat a[dat aPTR
<<endl;
exit(1);
}

dat aPTR++;
(strcnp(dat a[dat aPTR], _b_ptr_si gacti onSA NOCLDSTOP_SET) ==0)
b ptr_sigaction sa_nocl dstop_set = 1;

else if (strcnp(data[dataPTR, b _ptr_sigacti onSA SI G NFO _SET) ==0)

b ptr_sigaction sa_siginfo set = 1;

else if (strcnp(data[dataPTR, b _ptr_sigacti onSA ONSTACK) ==0)
b _ptr_sigaction sa_onstack 1;

else if (strcnp(data[dataPTR, b _ptr_sigacti onSA RESTART) ==0)
b ptr_sigaction sa restart 1;

Appendix B

117

else if (strcnp(data[dataPTR, b ptr_sigacti onSA ALL) ==0)
b ptr_sigactionsa_all = 1;
else if (strcnp(data[dataPTR, _b_ptr_sigacti onNO EXTRA) ==0)
b ptr_sigaction no_extra = 1;
else if (strcnp(data[dataPTR, b _ptr_sigacti onSA ZERO) ==0)
b ptr_sigaction sa_zero = 1;
else if (strcnp(data[dataPTR, b _ptr_sigacti onSA MAXI NT) ==0)
b ptr_sigaction sa_maxint = 1;
el se
{
cerr<<"Error: Unknown setting for the
<<" SA FLAGS"
<<" dial of the data object "
<<CLASS_STRI NG
<<". "<<endl
<<"The offending string is :
<<dat a[dat aPTR|
<<endl;
exit(1);
}

dat aPTR++;
if (strcnp(data[dataPTR], b _ptr_sigacti onACTI ON NULL) ==0)
b ptr_sigaction action_null = 1;

else if (strcnp(data[dataPTR, b _ptr_sigacti onACTI ON USR_FUNC) ==0)

b ptr_sigaction action_usr_func = 1;
el se
{
cerr<<"Error: Unknown setting for the
<<" SA S| GACTI ON'
<<" dial of the data object "
<<CLASS_STRI NG
<<". "<<endl
<<"The offending string is :
<<dat a[dat aPTR
<<endl;
exit(1);
}

sigaction_ tenp.sa_flags = O;
sigaction tenp.sa_mask. _val[0] = O;

if (b_ptr_sigaction_null==1)
{

si gaction_tenp.sa_handl er = NULL;

}

if (b_ptr_sigaction_sig dfl==1)
{

si gaction_tenp.sa_handl er = SI G DFL;

Appendix B

118

}

if (b_ptr_sigaction_sig_ ign==1)
{

sigaction tenp.sa_handler = SIGI G\

}

if (b_ptr_sigaction usr_func==1)

{

si gaction_tenp.sa_handl er = foo_handl er1;

}

if (b_ptr_sigaction_sig err==1)
{

si gaction_tenp.sa_handl er SI G_ERR;

}

if (b_ptr_sigaction _enmpty==1)
{

i f((sigenptyset (&sigaction_tenp.sa nask))!=0)

{
FI LE* | ogFile = NULL;

if ((logFile = fopen ("/tnp/tenpl ateLog.txt","a+")) == NULL)

{

exi t(99);

}

fprintf (logFile, "b _ptr_sigaction - sigenptyset at EMPTY fail ed.
Function not tested\n");

fclose(l ogFile);

exit(99);
}
}
if (b_ptr_sigaction full==1)
{
if((sigfillset (&sigaction_tenp.sa _nask))!=0)
{

FI LE* | ogFile = NULL;
if ((logFile = fopen ("/tnp/tenplatelLog.txt","a+")) == NULL)

exit(99);
}

Appendix B 119

fprintf (logFile, "b _ptr_sigaction - sigfullset at FULL fail ed.
Function not tested\n");
fclose(l ogFile);

exit(99);
}
}
if (b_ptr_sigaction_sigabrt==1)
{
sigaction_ tenp.sa_mask. __val[0] = Sl GABRT,
}
if (b_ptr_sigaction_sigsegv==1)
{
sigaction_ tenp.sa_mask. __val[0] = SI GSEGV,
}
if (b_ptr_sigaction_sigint==1)
{
sigaction_ tenp.sa_nmask. __val[0] = SId NT;
}
if (b_ptr_sigaction_sigill==1)
{
sigaction_tenp.sa_nmask. __val[0] = SIGdLL;
}
if (b_ptr_sigaction zero==1)
{
sigaction tenp.sa_mask. _val[0] = O;
}
if (b_ptr_sigaction_maxint==1)
{
si gaction_tenp.sa_nmask. __val[0] = MAXI NT;
}
if (b_ptr_sigaction sa nocldstop_set==1 || b_ptr_sigaction_sa all==1)
{

sigaction tenp.sa_flags | = SA NOCLDSTOP,

Appendix B 120

}

if (b_ptr_sigaction sa siginfo set==1 || b_ptr_sigaction sa_all==1)

{

sigaction tenp.sa_flags | = SA SI G NFO

}
if (b_ptr_sigaction sa onstack==1 || b_ptr_sigaction_sa_all==1)
{
sigaction tenp.sa_flags | = SA ONSTACK;
}
if (b_ptr_sigaction sa restart==1 || b_ptr_sigaction _sa_all==1)
{
sigaction tenp.sa_flags | = SA RESTART,;
}
if (b_ptr_sigaction sa zero==1)
{
sigaction_ tenp.sa_flags | = O;
}

if (b_ptr_sigaction sa_nmaxint==1)

{
sigaction_ tenp.sa_flags | = MAXI NT;
}

if (b_ptr_sigaction sa all==1)
{

sigaction tenp.sa_flags | = SA RESTART | SA NODEFER | SA RESETHAND |
SA_NOCLDWAI T;

}

if (b_ptr_sigaction_action_null==1)

{

sigaction_ tenp.sa_sigaction = NULL;

}

if (b_ptr_sigaction_action_usr_func==1)

Appendix B 121

sigaction_tenp.sa_sigaction = foo_actionl;

_theVari able = &sigaction_tenp;
return & theVari abl e;

i nt CLASSNAME : conmi t (b_par amt nane)
{
if (strcmp(tnane, (char *)typeNane())!=0)
return CLASSPARENT: : commi t (t name) ;
/1 COWM T CODE HERE
/ / gener at ed

return O;
}
e e
i nt CLASSNAME : cl eanup(b_par am t nane)
{

if (strcmp(tnane, (char *)typeNane())!=0)
return CLASSPARENT: : cl eanup(t nane) ;

/ | CLEANUP CODE
/ / gener at ed

return O;
}
e e
i nt CLASSNAME: : nunDi al s(b_paramt nane)
{

if (!strcnp(tname, (char *)typeNane()))
return NUMBER _OF DI ALS;
el se return CLASSPARENT: : nunDi al s(t name) ;

i nt CLASSNAME: : numl t ens(b_paramt nane, i nt di al Nunber)
{
if (strcmp(tnane, (char *)typeNane())!=0)
return CLASSPARENT: : numl t ens(t nane, di al Nunber) ;
switch (dial Nurber)
{
/1 NUM TEMS SW TCH CASES HERE
/I gener at ed

case 1:
return 5;

Appendix B 122

br eak;

case 2:
return 8;
br eak;

case 3:
return 8;
br eak;

case 4:
return 2;
br eak;

/1 end generated

defaul t:
cerr<<"Error, invalid dial number passed to
<<CLASS STRI NG<<": :numtens\n"
<<"Pl ease check declaration files. Dial nunber passed was
<di al Nunber<<endl ;
exit(1);
}

return O;

b_param * CLASSNAME: : par amNane(b_par am t nane,
i nt di al Nunber,
int position)

{
if (strcmp(tnane, (char *)typeNane())!=0)
return CLASSPARENT: : par amName(t nane, di al Nunber, position);

switch (dial Nurber)
{
/ | PARAMNAME SW TCH CASES HERE
/I gener at ed

case 1:
switch (position)
{

case 1:
return b_ptr_sigacti onNULL();
br eak;

case 2:
return b_ptr_sigactionSl GDFL();
br eak;

case 3:
return b_ptr_sigactionSIGIGN\();
br eak;

Appendix B 123

case 4:
return b_ptr_sigacti onUSR FUNC();
br eak;

case b5:
return b_ptr_sigactionSl GERR();
br eak;

defaul t:
cerr<<"Error, invalid position nunber passed to
<<CLASS_STRI NG<<": :par ammNane\ n"
<<"Pl ease check declaration files. Dial nunber passed

was
<<di al Number<<" position "<<position<<".\n";
exit(1);
}
br eak;
case 2:
switch (position)
{
case 1:
return b_ptr_sigacti onEMPTY);
br eak;
case 2:
return b_ptr_sigactionFULL();
br eak;
case 3:
return b_ptr_sigactionSl GABRT();
br eak;
case 4:
return b_ptr_sigactionSl GSEGU) ;
br eak;
case 5:
return b_ptr_sigactionSI G NI();
br eak;
case 6:
return b_ptr_sigactionSIdLL();
br eak;
case 7:
return b_ptr_sigacti onZERQ);
br eak;
case 8:
return b_ptr_sigacti onMAXI NT() ;
br eak;
defaul t:
cerr<<"Error, invalid position nunber passed to "
<<CLASS_STRI NG<<": :par ammNane\ n"
<<"Pl ease check declaration files. Dial nunber passed
was"
<<di al Number<<" position "<<position<<".\n";
exit(1);
}
br eak;

Appendix B 124

case 3:
switch (position)

{
case 1:
return b_ptr_sigacti onSA NOCLDSTOP_SET() ;
br eak;
case 2:
return b_ptr_sigacti onSA SI G NFO SET();
br eak;
case 3:
return b_ptr_sigacti onSA ONSTACK() ;
br eak;
case 4:
return b_ptr_sigacti onSA RESTART();
br eak;
case 5:
return b_ptr_sigacti onSA ALL();
br eak;
case 6:
return b_ptr_sigacti onNO EXTRA();
br eak;
case 7:
return b_ptr_sigacti onSA ZER(Q() ;
br eak;
case 8:
return b_ptr_sigacti onSA MAXI NT();
br eak;
defaul t:
cerr<<"Error, invalid position nunber passed to "
<<CLASS_STRI NG<<": :par ammNane\ n"
<<"Pl ease check declaration files. Dial nunber passed
was"
<<di al Number<<" position "<<position<<".\n";
exit(1);
}
br eak;
case 4:
switch (position)
{
case 1:
return b_ptr_sigacti onACTI ON NULL();
br eak;
case 2:
return b_ptr_sigacti onACTI ON USR FUNQ) ;
br eak;
defaul t:
cerr<<"Error, invalid position nunber passed to "
<<CLASS_STRI NG<<": :par ammNane\ n"
<<"Pl ease check declaration files. Dial nunber passed
was"

Appendix B 125

<<di al Nunmber<<" position "<<position<<".\n";

exit(1);
}
br eak;
defaul t:
cerr<<"Error, invalid dial number passed to "
<<CLASS_STRI NG<<": :par amName\ n"
<<"Pl ease check declaration files. D al number passed was "
<di al Number<<endl
exit(1);
}
return NULL;
}
/*

b ptr_sigaction.h CGenerated by the Ballista(tn) Project data
obj ect conpiler
Copyright (C) 1998-2001 Carnegie Mellon University

This programis free software; you can redistribute it and/or
nmodi fy it under the terns of the GNU General Public License

as published by the Free Software Foundation; either version 2
of the License, or (at your option) any |ater version.

This programis distributed in the hope that it will be useful
but W THOUT ANY WARRANTY; wi thout even the inplied warranty of
MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the
GNU Ceneral Public License for nore details.

You shoul d have received a copy of the GNU General Public License

along with this program if not, wite to the Free Software

Foundation, Inc., 59 Tenple Place - Suite 330, Boston, MA
02111-1307, USA

Fil e generated Tuesday, October 02 at 04:09 PM EDT

TI TLE
b ptr_sigaction.h
*/

//include contro

#i f ndef B_PTR_SI GACTI ON H
#define B PTR_SI GACTI ON H
#i ncl ude <errno. h>

#i ncl ude <i ostream h>

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#i ncl ude <stream h>

#i ncl ude <string. h>

#i ncl ude <sys/types. h>

#i ncl ude <sys/stat.h>

#i ncl ude <uni std. h>

#i ncl ude "bTypes. h"

Appendix B 126

#define structSigactionPtr struct sigaction*

#i ncl ude <si gnal . h>

#i nclude "b_ptr_buf.h"

#defi ne CLASSTYPE struct Si gactionPtr
#defi ne CLASSNAMVE b_ptr_sigaction
#define CLASS STRING "b ptr_sigaction"
#defi ne CLASSPARENT b_ptr _buf

#defi ne NUMBER_OF_DI ALS 4

cl ass CLASSNAME publ i ¢ CLASSPARENT
{ .
private:

/1 CLASS DI AL SETTI NG STRI NG VARI ABLES

b_param _b_ptr_si gacti onTYPENAME
b _param _b_ptr_sigacti onNULL;
int b_ptr_sigaction null;
b _param _b_ptr_sigacti onSl G DFL;
int b_ptr_sigaction_sig dfl;
b _param _b_ptr_sigactionSI G| G\
int b_ptr_sigaction_sig_ign;
b _param _b_ptr_sigacti onUSR_FUNC
int b_ptr_sigaction_ usr_func;
b _param _b_ptr_sigactionSl G ERR;
int b_ptr_sigaction_sig_err;
b _param _b_ptr_sigacti onEMPTY,
int b_ptr_sigaction enpty;
b _param _b_ptr_sigactionFULL;
int b_ptr_sigaction full;
b _param _b_ptr_sigacti onSlI GABRT,
int b_ptr_sigaction_sigabrt;
b _param _b_ptr_sigacti onSlI GSEGV,
int b_ptr_sigaction_sigsegyv;
b _param _b_ptr_sigacti onSI G NT,
int b_ptr_sigaction_sigint;
b _param _b_ptr_sigactionSlI G LL
int b _ptr_sigaction_sigill;
b _param _b _ptr_sigacti onZERQ
int b_ptr_sigaction zero;
b _param _b_ptr_sigacti onMAXI NT;
int b_ptr_sigaction_maxint;
b _param _b _ptr_sigacti onSA NOCLDSTOP_SET;
int b_ptr_sigaction_sa_nocl dstop_set;
b _param _b_ptr_sigacti onSA SI G NFO_SET;
int b _ptr_sigaction sa_siginfo_set;
b _param _b_ptr_sigacti onSA ONSTACK;
int b_ptr_sigaction_sa_onstack;
b _param _b_ptr_sigacti onSA RESTART;
int b_ptr_sigaction sa restart;
b _param _b_ptr_sigacti onSA ALL;
int b _ptr_sigaction sa all;
b _param _b_ptr_sigacti onNO EXTRA;
int b_ptr_sigaction no_extra;

Appendix B

127

b _param _b_ptr_sigacti onSA ZERQG,

int b_ptr_sigaction sa_ zero;

b _param _b_ptr_sigacti onSA MAXI NT;

int b_ptr_sigaction_sa_naxint;

b param _b_ptr_sigacti onACTI ON NULL;

int b_ptr_sigaction_ action_null;

b param _b _ptr_sigacti onACTI ON USR_FUNC,

int b_ptr_sigaction_action_usr_func;
/I TYPE VARI ABLE TO SAVE VALUE FOR DESTRUCTI ON
CLASSTYPE _theVari abl g

publi c:
/1 CLASS

DI AL SETTI NG STRI NG ACCESS METHODS

b _param *b_ptr_sigacti onNULL();

b _param *b_ptr_sigactionSlI G DFL();

b _param *b_ptr_sigactionSIGIG\);

b _param *b_ptr_si gacti onUSR FUN() ;

b _param *b_ptr_sigactionSlI G ERR() ;

b _param *b_ptr_sigacti onEMPTY() ;

b _param *b_ptr_sigacti onFULL();

b _param *b_ptr_sigacti onSI GABRT() ;

b _param *b_ptr_sigacti onSI GSEGY) ;

b _param *b_ptr_sigactionSI G NT();

b _param *b_ptr_sigactionSId LL();

b _param *b_ptr_si gacti onZERQ) ;

b _param *b_ptr_sigacti onMAXI NT() ;

b_param *b_ptr_si gacti onSA NOCLDSTOP_SET() ;
b _param *b_ptr_si gacti onSA SI G NFO_SET() ;
b _param *b_ptr_sigacti onSA ONSTACK() ;

b _param *b_ptr_sigacti onSA RESTART() ;

b _param *b_ptr_sigacti onSA ALL();

b _param *b_ptr_si gacti onNO EXTRA() ;

b _param *b_ptr_sigacti onSA ZER(Q() ;

b _param *b_ptr_sigacti onSA MAXI NT() ;

b _param *b_ptr_sigacti onACTI ON NULL();
b_param *b_ptr_sigacti onACTI ON USR_FUNC() ;

/' | CLASS

CONSTRUCTOR

CLASSNAVK() ;

public:

/1 Mandat ory Met hods
b_param *t ypeNanme() ; /lreturns the type of paraneter

vi r t ual
vi r t ual
vi r t ual

vi rtual
vi rtual
vi rtual
position);

vi r t ual
vi r t ual

Appendix B

voi d *access(b paramdatal]);
int conmt(b_paramtnane);
i nt cl eanup(b_paramtnane);

i nt nunDi al s(b_paramt nane) ;

i nt num tems(b_paramtnane, i nt di al Nunber);
b_param *par amNane(b_paramt nane, i nt di al Nunber, int

i nt di stanceFronBase();
voi d typelList(b_paramlist[],int nunj;

128

#endi f / | CLASSNAME _H

Appendix B 129

