UL 4600 Technical Overview

October 10, 2019

Deborah Prince, Underwriters Laboratories Dr. Philip Koopman, Edge Case Research

Webinar Goals

UL 4600: Standard for Safety for the Evaluation of Autonomous Products

Overview for technical stakeholders

• Comments due Friday November 1

Goals for this Webinar

- Orientation to standard for technical audience
- Key principles to keep in mind when commenting
- How to get a copy and submit comments

Why UL?

Underwriters Laboratories: working for a Safer World for 125 years

- Published first safety standard in 1903
- Focus on research, education, and more than 1,700 standards

UL's Standards Development process

- Consensus process
- Open, transparent, and timely
- Continuous standards maintenance

UL 4600 Standards Technical Panel (STP)

STP is the voting consensus body

ANSYS	Bejing Research Institute of Automation for Machinery Industry	Intel Corp	Nanyang Technological University	Robert Bosch LLC	
Argo Al	Center for Auto Safety	Intertek	NIO	UBER ATG	
Aurora Innovations	Consumer Product	Liberty Mutual	Nissan North		
	Safety Commission	Insurance Company	America Inc		
AXA XL	Daimler Trucks North	Locomation	Oak Ridge National	University of York	
	America	Locomation	Laboratory		
Azevtec Inc	Edge Case Research	The MITRE Corp	Penn DoT	University of Waterloo	
Babst, Calland, Clements & Zomnir	Infineon Technologies AG	Munich Re America	Renesas Electronics Europe GBMH	US DoT	

Timeline

Initial drafting

• July 2018: Announced intent to develop UL 4600

STP revisions

- June 2019: STP meeting to discuss first full draft
- Three rounds of STP comment & draft revisions completed

Stakeholder comments

- Oct 2019: Stakeholder preliminary draft available
- Stakeholder comments due Nov 1, 2019
- Target final version release Q1 2020

Technical Overview

Orientation to current preview draft version

Contents and organization subject to change!

UL 4600 Scope

- Fully Autonomous Vehicle (AV) operation
- No human driver/supervisor

Main principles

Safety case is front and center

Guide to review & comments

Carnegie Mellon

University

UL 4600 Key Ideas

Goal: structured way to argue that AV sufficiently safe

- Non-prescriptive, safety case approach
- Trace all safety goals (claims) to evidence
- Checks and balances (self-audit and independent)

Monitoring and feedback

Detect invalid assumptions & gaps in coverage

System Level + Life Cycle approach

Includes fault recovery, supply chain issues, expected misuse

Reference lists to improve completeness

- Prompts & epistemic defeaters for coverage (#DidYouThinkofThat?)
- Ability to argue that some prompts aren't applicable

© 2019 Philip Koopman 7

EDGE CASE RESEARCH

Why UL 4600?

Autonomous systems have unique needs

- No human supervision, non-determinism, ...
- This version: highly automated vehicles
- System level approach needed

- Functional safety, SOTIF, road tests, simulation all play a role
 - But need a framework to put the pieces together
- Adapt as technology evolves
- Cooperate rather than compete
 - Can accept work products from ISO 26262, ISO/PAS 21448, etc.

Goal: guidance on "Is system engineering rigor sufficient?"

Goal Based Approach

Traditional safety standards are prescriptive

- "Here is how to do safety" (process, work products)
 ISO 26262, ISO/PAS 21448, IEC 61508, MIL-STD 882, etc.
- But, we're still figuring out some aspects of AV safety

UL 4600 is goal based: "be acceptably safe"

- Use a Safety Case to argue system is acceptably safe
 - Define what safe means; argue that AV meets that definition
 - Do **<u>NOT</u>** prescribe any particular engineering approach
 - DO require a set of minimum acceptable topics for safety case
- Require use of any good system engineering process (not just V)

What's A Safety Case?

- A structured argument backed by evidence
 - Notation agnostic / use any reasonable notation
- SubGoal/Claim: "AV will not hit pedestrians"
 - Hypothetical Arguments
 - "AV will detect pedestrians of all types"
 - "AV will stop or avoid collision detected pedestrians"
 - "We have identified & mitigated risks caused by difficult to detect pedestrians"
 - Hypothetical Evidence
 - "Here are results of detect & avoid tests"
 - "Here is analysis of coverage of different types of pedestrians"
 - "Reliability growth data shows high pedestrian coverage" © 2019 Philip Koopman 10

UL 4600 Scope

System level safety for autonomous operation & lifecycle

Out of Scope for UL 4600

Related topics

- ADAS features
- AV testing safety (but, see BSI/PAS 1881)
- Ethical guidelines (but, see IEEE P7009)

Human factors

- Human attention (as driver; as safety supervisor)
- How to argue humans will behave as required
- How to argue human safety supervisor will react correctly

Details of security

- Requires security plan; maps security plan to safety
- Does not attempt to define what is in security plan

Prompt Elements: #DidYouThinkofThat?

- Extensive lists of safety case topics, hazards, etc.
 - Good practices & Pitfalls (lessons learned & bad practices to avoid)
- Prompts must be considered, not necessarily adopted
 - Mandatory: you have to do this
 - Required: can deviate ONLY if inherently inapplicable
 - E.g., if no machine learning, then can deviate from ML requirements
 - Highly Recommended: can deviate with non-trivial rationale
 - Recommended: entirely optional
 - Examples: illustrative reminders; do not have to address each one

Many processes and technique areas are lightly constrained

• E.g., Identify hazards, but use any reasonable technique 2019 Philip Koopman 13

Operational Design Domain (ODD)

EDGE CASE RESEARCH

Define relevant ODD considering:

- Infrastructure
- Weather & road conditions
- Object & event ontology
- Own and other vehicle conditions
- ... many other things

Exiting ODD must be safe

- Due to environment change (unexpected snow)
- Due to ODD ontology gap ("what the heck is that???")
- Due to equipment failure (potentially using degraded modes)

UL 4600 ODD Prompt Excerpts

Travel infrastructure

EXAMPLES: types of road surfaces, road geometries, bridge restrictions

- **Object coverage** (i.e., objects within ODD)
- **Event coverage EXAMPLES:** interactions with infrastructure
- **Behavioral rules**

EXAMPLES: traffic laws, system path conflict resolution priority, local customs, justifiable rule breaking for safety

Environmental effects EXAMPLES: weather, illumination

Vulnerable populations

EXAMPLES: pedestrians, motorcycles, bikes, scooters, other at-risk road users, other road users

Seasonal effects

EXAMPLES: foliage changes, sun angle changes, seasonally-linked events (e.g., Oktoberfest)

- Support infrastructure, if any is relied upon EXAMPLES: types of traffic signs, travel path geometry restrictions, other markings
- Localization support, if relied upon EXAMPLES: GNSS availability, types of navigation markers, DSRC, other navaids
- **Compliance strategy for traffic rules EXAMPLE:** enumeration of applicable traffic regulations and ego vehicle behavioral constraints

Special road user rules

EXAMPLES: bicycles, motorcycles/lane splitting, construction systems, oversize systems, snowplows, sand/salt trucks, emergency response systems, street sweepers, horse-drawn systems

Road obstructions

EXAMPLES: pedestrian zone barriers, crowd control barriers, police vehicles intentionally blocking traffic, post-collision vehicles and associate debris, other road debris, other artificial obstructions

Autonomy

Autonomy Pipeline candidate best practices & pitfalls

- Sensing
- Perception
- Machine learning
- Planning
- Prediction
- Trajectory & control
- Timing

(e.g., correlated sensor faults)
(e.g., brittle perception, ontology gaps)
(e.g., overfitting)
(e.g., plan exceeds vehicle capability)
(e.g., mis-predictions, sudden changes)

(e.g., degraded vehicle capabilities) (e.g., loss of control loop stability)

System, Environment, Lifecycle

"Item" covered by safety case includes safety related:

- Autonomy (sensors, algorithms, actuators)
- Vehicle (safety related within autonomy purview)
- Maintenance and inspection procedures
- Lifecycle issues and supply chain
- Data sources and feeds, including maps, ML training

Assumptions & supporting requirements

- ODD characterization
- Road infrastructure support
- Procedural support (e.g., safety related inspections)

Maintenance & Inspections

Safety related maintenance

- What maintenance is required for safety?
- Are procedures documented?
- How do you know it is done effectively?

Safety related inspections

- What/when are inspections required?
- Detection of vehicle & infrastructure problems (e.g., loose wheel)
- Are you trusting casual passengers with life critical inspections?
 - (Really? Is that a good idea?)

Lifecycle & Supply Chain

- Item has valid safety case at all times once deployed
 Safety related aspects of lifecycle
 - Requirements/design/ML training
 - Handoff to manufacturing
 - Manufacturing & deployment
 - Supply chain
 - Field modifications & updates
 - Operation
 - Retirement & disposal
- Update distribution & integrity
 - Version control & configuration management

Role of Humans

There is no "captain of the ship"

• Autonomy must assume responsibility

Interacting with people

- Occupants, cargo loading
- Pedestrians & mobility device users
- Other drivers
- Special populations
- Misuse, pranks, malfeasance

Safety related lifecycle participants

- Inspection & maintenance accuracy
- Safety culture for all stakeholders

Is it safe to drive now?

Black Swans & Unknowns

Inductive proofs are never complete

 The black swan problem – you don't know what you don't know

Addressed via:

- Extensive use of prompts for better coverage
- Epistemic defeaters (e.g., pitfalls)
- Monitoring required for assumptions and unknowns

Deploying with uncertainty

- You will deploy believing you are acceptably safe
- Use monitoring to reduce margin of belief uncertainty

Every observed swan is white. Therefore all swans are white.

Assessment: Trust and Verify

Self-audit

- Audit safety case for completeness
- Check technical aspects for reasonableness
- In close collaboration with the development team

Independent assessor

- Independence from developer & competence must be documented
- Check and balance on self-audit
- NOT expected to find technical defects

Developers must "own" safety

Audits & assessments serve as a check and balance

Feedback Loops

Feedback used to mitigate risk of unknowns

- Within product: incidents trigger safety case update
- At Assessment: updates trigger assessments
- Standards Process: emergent issues trigger ~yearly standard update

Component Assessment

Generalized idea of System Element out of Context (SEooC)

- Hardware and/or software
- Idea: design-by-contract component interface
 - Assured properties (services; functions)
 - Assumptions made by component
 - Must match promises made by system
 - Component assurance context
 - Fault model
 - Subset of UL 4600 clauses assessed
 - Can assess SEooC conformance independent of system

© 2019 Philip Koopman 24

EDGE CASE RESEARCH

Change & Impact Analysis

Continual changes

- System functionality update
- Different ODD (changing ODD scope; surprises)
- Assessment in response to changes:
 - Impact analysis
 - If required: Update safety case
 - If safety case updated: Update self-audit
 - If "big" safety case change: Independent Assessment update

"Size" of change relates to safety case, not lines of code

Impact analysis informs scope of self-audit/assessments

Prompt Elements vs. Integrity Levels

Prompt element deviation categories:

- Mandatory / Required / Highly Recommended / Recommended
 - E.g.: "REQUIRED" can only deviate if intrinsically inapplicable

Integrity levels

- Define at least two integrity levels: life critical & injury
 - OK to adopt more and/or existing levels (e.g., ASIL, SIL, DAL)
- Define level of rigor/technique use based on integrity level

Example: Static analysis

- **Required** that static analysis is used to some degree
- Coverage, tools, tool settings based on Integrity level

How UL 4600 Works with Others

ISO 26262 – starting point

- Still relevant to the extent it can be applied
- Assumes traceability of tests to design with "V"

ISO/PAS 21448 & SaFAD – more guidance

Design and validation process framework

UL 4600 – #DidYouThinkofThat?

- Provides a template for technical safety report
- Minimum criteria for complete coverage + feedback requirement
- Lists of positive and negative lessons learned
- Objective assessment criteria for safety case

UL 4600 Chapter Short Titles

Organized by practitioner skill set

- 1. Preface
- 2. Scope
- 3. References
- 4. Terms
- 5. Safety case & arguments
- 6. Risk assessment
- 7. Humans & road users
- 8. Autonomy

9. Software & system engineering 10. Dependability 11. Data & networking 12. Verification & validation **13.** Tool qualification 14. Lifecycle concerns 15. Maintenance **16.** Metrics 17. Assessment

Anticipated UL 4600 Technical Benefits

Catalog of best practices: #DidYouThinkofThat?

- Avoid missed hazards
- Avoid pitfalls

EDGE CASE

- Mechanism for industry to share without sharing detailed data
- Objective, repeatable independent assessment
 - Self-audit is first level of checks and balances
 - Feedback identifies surprises/gaps
 - Independent assessment is about well-formed safety case
 - Not subjective opinion about whether developer tried hard enough
 - Prompt elements provide a safety case coverage floor
 - But, developer assumes burden for safety

Get Involved: Submit Comments

Commenting requires registering as stakeholder

- E-mail to: <Deborah.Prince@ul.com>
- Use supplied spreadsheet for consideration
 - Please make as concrete & actionable as possible

Reviewing Organization:		PUT YOUR ORGANIZ					
Point of Contact:			PUT YOUR NAME and e-mail address HERE; please combine comments				
#	Page	Clause	Old text	New text	Discussion		
			Quote the old text	Your proposed new	Explain (could be just "typo" or "format" if		
1	54	5.2.3.3.c.1	before change	text with change	that is the issue).		
2							
3							

Comments & Timeline

Official version & comment spreadsheet via UL CSDS

• Other public materials and draft at: UL4600.com

■ Timeline:

- Comments due Friday Nov 1st via CSDS upload
- Potentially voting draft in December
- Target for approved standard: Q1 2020.

Will Stakeholder names be public?

- Stakeholder list itself is private
- However, all preliminary review comments are public & attributed to commenter

