Safety Argument Considerations for Public Road Testing of Autonomous Vehicles

Phil Koopman, Carnegie Mellon University
Beth Osyk, Edge Case Research
Overview

■ Tempe AZ fatality
 ● Did we really learn the right lesson?

■ How safe is safe enough?
 ● Challenge: human supervisor effectiveness

■ Safety case for road testing:
 ● Timely human supervisor response
 ● Adequate human supervisor mitigation
 ● Appropriate system failure profile

We shouldn’t be killing people in our haste to get to a safe future.
Can we avoid repeating a tragic death?

Activities that do NOT improve safety of autonomous vehicle (AV) testing:
- Arguing that delaying deployment costs lives
- Deciding which human was at fault
- Finding out why autonomy failed (surprise!)

The issue is safe AV testing platforms
- AV testing platform = autonomy + safety driver + safety support + test procedures
NOT: Blame the victim
- Pedestrian in road is expected

NOT: Blame the technology
- Immature technology under test: Failures are expected

NOT: Blame the supervisor
- Solo human drop-out is expected

The real AV testing safety lesson:
⇒ Ensure human supervisor is effective ⇐
- If human safety driver is unsafe, you are doing unsafe testing
How Safe Is Safe Enough?

- **2016 Police-reported crashes**
 - 3,174,000,000,000 miles
 - 34,439 fatal crashes (0.5%) every 92 Million Miles
 - 2,177,000 injury crashes (29.9%) every 1.5 Million Miles
 - 7,277,000 property damage (69.6%) every 0.6 Million Miles

- **Non-occupant fatalities: 18%** about every 510 Million Miles
 - Motorcyclist fatalities: 14% about every 660 Million Miles
 - *Data includes drunk drivers, speeders, no seat belts*

→ **Expect zero deaths in a 10 million mile road test campaign**
 (On average, expect 0.1 fatalities, 0.02 pedestrian fatalities)
Man reportedly caught sleeping behind the wheel of a self-driving Tesla

Source: Sarah Whitten | @sarahwhitten
Published: 11:30 AM ET Wed, 25 May 2016 | Updated: 9:46 AM ET Thu, 26 May 2016

Google's Waymo Self-Driving Car Crashed After Driver Dozed Off Back in June

Source: JALOPNIK

A Waymo self-driving car sent a motorcyclist to the hospital — but the human driver was at fault

Source: Business Insider
How big and deep is this valley for a particular vehicle?
Safety Case: A structured written argument, supported by evidence, justifying system is acceptably safe for intended use.

Example structure:
- **Timely Supervisor Response** / sub-claims & evidence
- **Adequate Supervisor Mitigation** / sub-claims & evidence
- **Appropriate Autonomy Failure Profile** / sub-claims & evidence
G1. Road Testing is Sufficiently Safe

C1. Test ODD is defined

C2. “Sufficiently safe” is well defined for testing operations

A1. Vehicle is sufficiently safe when manually operated

A2. Non-technical requirements satisfied (e.g., permits, insurance)

C3. Non-Linear nature of Autonomy/Human interactions

S1. Argument based on joint probability of: autonomy failure, timely supervisor response, adequate supervisor mitigation

S2. Argument over elements of supervisor response time

S3. Argument over elements of supervisor response effectiveness

S4. Argument over validation methods: design, closed course test, simulation, ...

G2. Timely supervisor response

G3. Adequate supervisor mitigation

G4. Appropriate autonomy failure profile

G21. Alertness

G22. Autonomy failure detection

G23. Accuracy of mental model

G24. ODD violation detection

G25. Field data confirmation

G31. Situational awareness

G32. Plan correct response

G33. Execute response properly

G34. Vehicle responds to supervisor commands

G35. Field data confirmation

G41. Simulation-Based Validation

G42. Closed Course Validation

G43. Fault injection

G4x. … other verification & validation

G44. Field data confirmation
Timely Supervisor Response

- **Human alertness**
 - Effective for only 15-30 minutes!

- **Autonomy failure detection**
 - Latency in identifying/responding
 - Risk acclimatization & false confidence

- **Accuracy of mental model**
 - How does a human supervisor model an opaque AI system?

- **ODD violation detection**
 - Does supervisor know that light haze is a problem?

- **What if autonomy leaves no error margin?**
When Do You Disengage?

Assume vehicle has avoided obstacles 1000+ times before
Adequate Supervisor Mitigation

- **Situational awareness**
 - Surrounding traffic; environment

- **Plan correct response**
 - Takes time for driver to re-engage
 - Stop? Swerve? Hit?

- **Execute response properly**
 - Risk of incorrect startle response to emergency

- **Vehicle responds to supervisor commands**
 - Disengagement should be natural
 - Does disengagement really work? (conform to ISO 26262)

https://goo.gl/YUC5oU
Humans can’t provide 100% mitigation
- RISK = Prob(vehicle fail) * Prob(supervisor fail) + Prob(supervisor mistake)
- NON-LINEAR effect of supervisor dropout

 Surprise!
 Supervising good autonomy is more difficult!

Need to understand likely vehicle failure rate
- Simulation-based & closed course validation, etc.

Need to understand supervisor performance
- Supervisor training, test plan, vehicle failures

https://goo.gl/YUC5oU
“Disengagements” is the wrong metric for safe testing
- Minimizing disengagements can incentivize unsafe testing

Data collection based on safety argumentation
- Timely supervisor response
- Adequate supervisor mitigation
- Appropriate autonomy failure profile

Show Me The Data!

ALL OTHERS BRING DATA — W. Edwards Deming
Ways To Reduce Testing Risk

- It’s all about testing safely
 - “Human at fault” is still unsafe testing!

- Create a testing safety case
 - Timely Supervisor Response
 - Adequate Supervisor Mitigation
 - Appropriate Autonomy Failure Profile

- Reduce road testing exposure
 - More simulation
 - Validate instead of debug on public roads
 - Collect road data instead of testing
 - Test below 20 mph (reduced pedestrian lethality)

https://goo.gl/dBdSDM