
Enabling automatic adaptation in systems with
under-specified elements

Orna Raz
School of Computer Science
Carnegie Mellon University

orna.raz@cs.cmu.edu

Philip Koopman
ECE Department

Carnegie Mellon University

koopman@cmu.edu

Mary Shaw
School of Computer Science
Carnegie Mellon University

mary.shaw@cs.cmu.edu

ABSTRACT
Software that people use for everyday purposes is usually
not mission critical—some failures can be tolerated. How-
ever, this software should be dependable enough for its in-
tended use, even when users change expectations. Software
systems that could adapt to accommodate both failures and
changing user expectations could significantly improve the
dependability of such everyday software. Many adaptation
techniques require specifications of proper behavior (for de-
tecting improper behavior) and problem severity, alterna-
tives and their selection (for mitigation and for repair).

However, the specifications of everyday software are usually
incomplete and imprecise. This makes it difficult to deter-
mine the dependability of the software and even more diffi-
cult to adapt.

We address the problem of detecting anomalies—deviations
from expected behavior—when specifications of expected
behavior are missing. Setting up anomaly detection depends
on human participation, yielding predicates that can serve as
proxies for missing specifications.

We propose a template mechanism to lower the demands on
human attention when setting up detection. We show how
this mechanism may be used in our framework for enhanc-
ing dynamic data feeds with automatic adaptation. We dis-
cuss how the same mechanism may be used in repair. Our
emphasis is on detecting semantic anomalies: cases in which
the data feed is responsive and delivers well-formed results,
but these results are unreasonable.

1. INTRODUCTION
Many systems operate in a closed feedback loop that re-
quires self healing—adapting to failures. Adaptation includes
not only adapting to failures but also adapting to changes.
Enhancing software we use for everyday purposes so that
it could adapt to failures and to changing user expectations
could significantly improve the dependability of such soft-
ware and hence its utility.

Many adaptation techniques rely on detection of improper
behavior, mitigation, repair, and possibly on-going main-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. WOSS ’02, Nov 18-19, 2002, Charleston, SC,
USA. Copyright 2002 ACM 1-58113-609-9/02/0011 ...$5.00

tenance. These activities require knowledge of correct be-
havior, usually in the form of specifications. Detection re-
quires specifications of a model of proper behavior. Miti-
gation and repair require specifications of problem severity
and of available alternatives and their selection. However,
everyday software is often under-specified—it provides only
imprecise and incomplete specifications.

The situation is exacerbated when the software incorporates
third-party elements such as COTS (Commercial-Off-The-
Shelf) components, databases, and dynamic data feeds from
online data sources. The latter case is especially difficult,
because the proprietor of the data feed may change its se-
mantics, format, or availability while it is being used, and
without notice; further, specifications for data feeds are of-
ten even sketchier than those for software components. Ex-
amples of data feeds include stock quotes for a specific com-
pany, airfare for specific origin and destination, prices for a
given product, and news for a specific topic.

We address the challenge of cost-effectively enhancing third-
party, data-providing elements to support adaptation, when
these elements are dynamically changing, outside our con-
trol, and under-specified. Dynamic data feeds are an exam-
ple of such elements, and the one we use in our work.

We concentrate on enabling automatic detection of seman-
tic anomalies—cases in which the data provided by the data
feed is outside the model of proper behavior. Human inter-
vention is essential in setting up this model because proper
behavior is determined by the semantics of the data. Further,
proper behavior may also depend on the user and the goal the
user has for the data. If the providers of a data feed were to
set up the anomaly detection model they would need to spec-
ify the semantics of the data feed, all possible usages, and all
possible changes to the behavior of the data. This is likely to
require much human expertise and time, might produce an
incomplete result in spite of the huge investment, and rarely
occurs for the everyday elements we are concerned with.

We propose having the users of data feeds set up the anomaly
detection. However, to make adaptation practical, the human
intervention must be made manageable, both in terms of ex-
pertise and of time. We propose a template mechanism to
incorporate the human intervention in the adaptation frame-
work. We believe the template mechanism can provide a
means for eliciting expectations and generalizations from the
user. These are essential for building a model of proper be-
havior for anomaly detection and for directing repair.

Section 2 presents an example of a data feed and techniques

1

time cur dlow w52low beta
10/11/2000 15:30 52.13 48.22 32.53 1.43
10/11/2000 15:40 52.06 48.22 32.53 1.43
...
10/17/2000 14:20 54.00 54.00 32.56 1.43
10/17/2000 14:30 53.50 53.44 32.56 1.43

Table 1: Example of a stock quote data feed

we use throughout the paper. Section 3 describes a feasible
design of an adaptation framework for dynamic data feeds
that is domain independent. Our framework separates steps
in which human intervention is required (setting up adaptive
invariants for anomaly detection, judging the results of the
anomaly detection, providing alternatives and priorities for
repair) from steps that could be fully automated (performing
anomaly detection). Section 4 explores a mechanism for get-
ting users feedback based on templates for adaptive invari-
ants. We believe templates are useful because they could: (1)
be employed in all the steps that require human intervention,
and (2) reduce demands on human intervention. Section 5
describes other work related to increasing dependability and
to making human intervention explicit. Section 6 discusses
some open issues and future work.

2. EXAMPLE
We have been developing a method for inferring invariants
that can serve as a model of normal behavior of the data
feed. This model can then be used to detect anomalies—a
critical first step in automatic repair. We present an example
of a data feed and existing techniques we use for invariant
inference. We use this example throughout the paper.

Table 1 gives an example of a stock quote data feed. The data
feed provides information about a specific stock (CSCO)
from a specific data source ([8]). A data feed is a time or-
dered vector of observations. Each observation (a row in
Table 1) contains a time stamp and a value for each attribute.
This data feed has four attributes: the current value of the
stock cur, the daily low value of the stock dlow, the low
value of the stock during the last 52 weeks w52low, and
a measure of anticipated fluctuations relative to the market
fluctuations beta.

We have investigated two invariant inference techniques:
Daikon [10] and Mean. Daikon was developed for the pro-
gram analysis domain. It dynamically discovers likely pro-
gram invariants over program execution traces by checking
if pre-defined relations hold. Mean is a statistical method
based on estimating a confidence interval for the mean of
an attribute distribution. It estimates the mean and standard
deviation from the data and expects values to be within a
certain number of standard deviations of the mean.

Sections 3 and 4 use this example to illustrate our adaptation
framework for dynamic data feeds and our proposed tem-
plates for invariants, respectively.

3. ADAPTATION OF DYNAMIC DATA FEEDS
Everyday software must be sufficiently dependable for its in-
tended purpose. Because this software is usually not mission-
critical, it may be cost-effective to detect improper behavior

Box

Suite of inference techniques
tuned for the data feedData Feed Gray

Figure 1: Anomaly detection setup. Requires human intervention

and notify the user or take remedial actions. Detection and
repair require specifications. Unfortunately, specifications of
everyday software are often incomplete and imprecise. Sec-
tion 3.1 presents our approach to detection with incomplete
specifications. Section 3.2 describes the sorts of repair that
may follow detection.

3.1 Detection
In [23] we proposed a method for inferring adaptive invari-
ants about the normal behavior of dynamic data feeds, using
and adapting existing techniques for the inference. Adap-
tive invariants are not only static invariants but also relations
and values that are expected to change as the behavior of the
data changes. We demonstrated it is possible to use these
invariants as proxies for missing specifications to perform
on-going semantic anomaly detection in the data feed (for a
single data feed with numeric valued attributes, in the con-
text of stock market tickers). For the rest of this paper, we
use invariants to mean adaptive invariants.

Our invariant inference framework has two major stages:
setup and usage. The frequency with which these stages are
executed differs greatly and therefore so can the automation
level. The setup stage requires human intervention. The us-
age stage permits human intervention, but does not require it.
However, intervention is often desired if repair is to follow.

The setup stage, depicted in Figure 1, can be viewed as a
gray-box into which the user enters a data feed, and from
which the user gets a suite of invariant inference techniques,
tuned for the given data feed. Producing the suite includes
the following steps: (1) match candidate techniques with the
data, (2) if necessary, augment the techniques (e.g., to han-
dle noise) and/or pre-process the data (e.g., make continuous
values discrete), (3) find an effective way to use each tech-
nique over the data—this requires user intervention (find a
training set (moving window) size, find parameter values,
select attributes (aka feature extraction)), and (4) determine
a good-enough subset of techniques.

For our Section 2 example, the gray-box takes the stock-
quote data feed presented in Table 1 as input. The gray-
box outputs an augmented Daikon that is capable of han-
dling noisy data, Mean with a parameter set, and for both
Daikon and Mean a recommendation for a training set size
(the amount of observations to use for invariant inference).

The usage stage, depicted in Figure 2, repeatedly infers in-
variants and detects anomalies over a moving window of ob-
servations over the data feed. First, each of the techniques in
the suite is used for invariant inference. Then, each invariant
is evaluated over the moving window data. An anomaly is
detected when an invariant is evaluated to false.

For our example, the anomaly detector uses each of aug-
mented Daikon and Mean to repeatedly infer invariants over

2

Data Feed
 Anomalies

DetectInfer
invariants

Figure 2: Anomaly detection usage. Can be fully automated

Daikon invariants Mean invariants
(1) cur

�
dlow (8) 44.81 � cur � 65.27

(2) dlow � w52low (9) 42.05 � dlow � 64.50
(3) dlow

�
48.22 (10) 32.50 � w52low � 32.56

(4) w52low ��� 32.53 (11) 1.43 � beta � 1.43
(5) beta ��� 1.43
(6) cur � beta
(7) dlow � beta

Table 2: Example of invariants inferred over the data feed of Table 1
by Daikon (left) and by Mean (right)

a moving window of observations over the stock quote data
feed. Table 2 gives an example of invariants Daikon and
Mean may infer over the example data feed of Table 1. Each
of the inferred invariants is evaluated over observations in
the moving window. Table 3 shows an example of detect-
ing an anomaly. The values of dlow and of w52low are
flagged as anomalous because they falsify Table 2 invariants
(invariants number (1),(3),(9) and (4),(10), respectively).

User intervention is not required in the usage stage. How-
ever, user feedback is desired regarding true positives and
false positives, and the severity of true positives. True posi-
tives are correctly detected anomalous data. False positives
are normal data falsely detected as anomalous. Such feed-
back would enable us to further tune the anomaly detector
and is useful for repair.

3.2 Repair
In order to repair a system when anomalies are detected, we
need to make sure the problem is real and a repair is desired.
This often requires user intervention. Only true positives—
anomalies that are actually failures—should trigger repair.
Further, user feedback can determine repair priority. A re-
pair has high priority for true positives the user cares about.
A repair has low priority if the user indicates this is a true
positive but not an interesting one (because, for example, it
involves attributes the user does not currently use). In addi-
tion, user guidance may be needed for repair. For example,
a user may need to indicate alternative data feeds to use.

In [24] we discussed sufficient correctness and homeostasis
in collections of data feeds, and listed a few alternatives for
repair. A repair may result in either restoring and preserving
normal operation or operating in a degraded mode. For ex-
ample, for semantic problems in a data feed, the client may
either restore normal operation by using a redundant data
feed (a data feed that provides equivalent data) or comput-
ing the result another way (e.g., use several other data feeds
from which the result can be inferred), or continue to operate
in a degraded mode by extrapolating from prior data, accept-
ing degradation of service (e.g., update less frequently), or
proceeding without the missing information.

In our example, the user indicates that the anomalies flagged
in Table 3 are indeed a failure. There are two possibilities

time cur dlow w52low beta
...
10/25/2000 11:10 52.38 8.00 8.00 1.43
...

Table 3: Example of anomaly detection. Evaluating the Table 2 in-
variants on the data flags the dlow and w52low values as anomalous

for handling this failure. The user may currently rely only
on the beta value so she indicates this failure is not interest-
ing. As a result, the repair gets low priority and possibly no
repair takes place. If, however, the user relies on the values
of daily low and 52 weeks low, he indicates this, causing a
repair to get high priority. A repair then takes place. For ex-
ample, if the user provided alternative data feeds, the system
uses (possibly temporarily) stock quotes for CSCO from Ya-
hoo!Finance. Otherwise, it extrapolates the current value for
each attribute from previous values.

4. TEMPLATES FOR INVARIANTS
Human intervention is essential for adaptation that relies on
detection and repair because these require specifications (Sec-
tion 1). However, a user may not be able to directly provide
these specifications, because, for example, it may require too
much expertise and time. We propose a template mechanism
to elicit knowledge and expectations from users. We expect
this mechanism to lower the expertise demands and hope it
may also reduce the time demands.

Section 4.1 explains why we believe a template mechanism
may be useful. Section 4.2 presents the template mechanism
we propose. Section 4.3 gives an example of creating and
updating templates. Section 4.4 discusses training and tun-
ing of our augmented anomaly detector.

4.1 Intuition and premises
We assume the user has a purpose in mind for using a data
feed and therefore has some expectations for the behavior of
the data feed. However, the user may not be able to explicitly
state these expectations nor provide useful generalizations
about the data. Therefore, we elicit knowledge about the
structure of the data feed in the form of skeleton predicates,
or templates.

The template mechanism can be viewed as a way to elicit
good-enough specification proxies from the user. These prox-
ies may serve as a model of normal behavior to support se-
mantic anomaly detection for these data feed and user, or
support repair. For anomaly detection, the elicitation takes
place mostly in the setup phase. Corrections and refinements
are permitted and encouraged during the usage stage. Repair
may require eliciting additional information.

Table 6 gives an example of templates that are the result of
interacting with the template mechanism. We will describe
this interaction shortly in Section 4.3. We found these tem-
plates and their classes to be a good-enough specification
proxy for the behavior of the example stock quote data feed.

The following premises lead us to believe that templates
lower the level of human expertise required. We do not know
whether the use of templates reduces the amount of interven-

3

tion required. Premises related to the nature of human inter-
vention (level of expertise) are: (1) it is easier to understand
expectations about the behavior of the data when presented
with examples. It is especially useful to examine examples
that indicate anomalous behavior, along with the rules for
deciding this is anomalous, and (2) it is easier to choose from
a list of inferred invariants than to create this list, so having a
machine synthesize the list is helpful. Our premise related to
the amount of human intervention is that the form of invari-
ants is less likely to change than the parameter values. If this
is true, the amount of human intervention required is smaller
when using templates. This is surely true for invariants that
do not depend on values (e.g., cur

�
dlow). However, we

do not know whether this is the case for adaptive invariants
in general.

4.2 Mechanism
The template mechanism asks the user to provide feedback
about the form of adaptive invariants in a way that indicates
whether the user finds a form useful or meaningless. The
template mechanism augments the anomaly detection pre-
sented in Section 3.1 and the repair presented in Section 3.2
by managing and incorporating user feedback. It does so as
follows: (the augmentation is in italic)

1. Infer invariants over the moving window observations.

2. Evaluate each invariant over observations in the mov-
ing window. Detect an anomaly when an invariant
evaluates to false. Use invariants that

(a) have been certified (even if they were not inferred
for this set of observations) (Item 4d)

(b) match an existing template (Item 4c)
(c) are persistent and involve attributes and relations

the user did not eliminate (not indicated by Item
4a or Item 4b)

3. Show to the user invariants together with anomalies de-
tected due to the invariants (including invariants that
did not trigger anomalies). It may be helpful to only
show a limited number of anomalies per invariant and
to rank the invariants by confidence or limit the number
of invariants.

4. Get user feedback. For each invariant, the user may
specify one of (and may change prior classifications):

(a) never use invariants with these attributes and re-
lation (but if you infer a different relation involv-
ing these attributes it is OK)

(b) never use invariants with these attributes together
(no matter what relation you think holds)

(c) (default) set form of the invariant, update values.
Different template flavors are possible:

i. (default) relate attributes only (any relation
among these attributes would be considered
the same template)

ii. relate attributes and specify relation (a dif-
ferent relation among these attributes would
be considered a different template). This may
cause more intervention during usage, but will
give finer grain detection

(d) remember this invariant—I certify this should al-
ways hold

If repair is desired, a small amount of additional information
is needed for the “set form and update values” type of invari-
ants (Item 4c). In addition to the user’s ability to update the
invariant classification during usage, we want to allow the
user to specify an anomaly detected by these invariants is: a
false positive (should not have been flagged), a true positive
but not interesting, or a true positive and interesting. Repair
is needed only for interesting true positives. It may also be
useful to allow the user to specify a finer grain severity than
interesting/not interesting, in order to enable better prioritiz-
ing of repairs. The repair mechanism may also prompt the
user for information specific to a repair strategy.

4.3 Example
The template mechanism maintains a template classification:
accept for invariants the user accepts as is (Section 4.2, Item
4d), update for invariants the user accepts but their values
should be updated (Section 4.2, Item 4c), and reject for in-
variants the user rejects (Section 4.2, Items 4b and 4a).

We re-examine one of the stock quote data feed experiments
we ran in [23] to show how the template mechanism creates
and updates this classification. The templates seem to stabi-
lize rather quickly (around 3 iterations). This indicates the
initial template creation can be done during the setup stage.

The Section 2 example is a simplified version of the data
feed and invariant inference techniques we used in the exper-
iment. For this data feed, we began with the invariants that
Table 2 displays. The template mechanism presents these
invariants to the user, along with anomalies each invariant
detects (if any). The user then marks each invariant with
one of the options presented in Section 4.2, Item 4. Table
4 presents the classification we, as users, chose for each of
the Table 2 invariants, along with the resulting templates the
template mechanism produces.

Tables 5 and 6 present the results of two additional itera-
tions of template updates. In each iteration, invariants are
inferred over new data. The template mechanism asks for
user feedback only regarding invariants that have new tem-
plates (marked with (*) in the tables). In addition, the user
can update existing templates. We explain a subset of our
classification decisions. These decisions resulted from gain-
ing a better understanding of the behavior of the data due to
evolving invariants.

In Table 5 we get an invariant with the one of relation for
w52low. From the anomalies detected we realize this in-
variant is better than the one with the ’ ��� ’ relation because
w52low usually has a few but more than one values in the
time period of the moving window. Therefore, we update our
previous (Table 4) classification and move the invariant with
the ’ ��� ’ relation from the update class to the reject class.
Unfortunately, in the next iteration (Table 6) the updated in-
variant with the one of relation includes an anomalous value
(8.00). Though it is probably possible to better tune the in-
ference engine, there will always be a trade-off between the
detection strength and false positive rate.

4

Class Invariant Template
accept cur

�
dlow cur

�
dlow

dlow � w52low dlow � w52low
reject cur � beta cur, beta, any relation

dlow � beta dlow, beta, any relation
update 44.81 � cur � 65.27 # � cur � #

42.05 � dlow � 64.50 # � dlow � #
dlow

�
48.22 dlow

�
#

32.50 � w52low � 32.56 # � w52low � #
w52low ��� 32.53 w52low ��� #
beta ��� 1.43 beta ��� #

Table 4: Our initial classification for the invariants in Table 2. #
indicates a numeric valued variable

Class New(*)/updated invariants Template
accept cur

�
dlow

dlow � w52low
reject cur, beta, any relation

dlow, beta any relation
w52low ��� #

(*)w52low ��� 1 mod 3 w52low ��� # mod #
update 44.99 � cur � 62.20 # � cur � #

29.14 � dlow � 74.00 # � dlow � #
dlow

�
48.22 dlow

�
#

21.07 � w52low � 43.30 # � w52low � #
(*)w52low one of

�
32.53,32.56 � w52low one of

�
�

beta ��� 1.43 beta ��� #
1.28 � beta � 1.64 # � beta � #

Table 5: Invariant classification after the first update iteration

In the Table 6 iteration we move the beta invariant with
the ’ ��� ’ relation from the update class to the reject class
because this invariant produces too many false positives. We
keep the range invariant for beta because it better tolerates
the small fluctuations which we now believe are normal for
the value of beta.

In the Tables 4 and 5 iterations we get, fordlow, an invariant
with the ’

�
’ relation in addition to a range invariant. Though

this seems fine at first, the next iteration (Table 6) produces
instead an invariant with the ’ � ’ relation. We realize that
this invariant reflects the trend of the stock price and this
trend changes frequently, whereas the range invariant better
describes the behavior of this attribute. Therefore, we move
the invariants with the ’ � ’ and ’

�
’ relation to the reject class.

As a result of these iterations, the Table 6 templates seem to
provide a reasonable description of the behavior of the data.

4.4 Training and tuning
In the anomaly detection setup stage, human intervention
is required to help find an effective way to use each can-
didate technique over the data. This is an iterative process.
This process has a number of variables: training set size, at-
tributes to use, and values for tunable technique parameters.
We suggest concentrating on finding a good training set size
and attribute selection. Once this is done, the setup can be
run again with these variables fixed, if the user wishes to find
better than default values for tunable parameters (the default
is determined by each technique).

In the anomaly detection usage stage, human intervention is
desired as feedback regarding true positives and false posi-
tives. Repair requires this information. We map the feedback
options of the template mechanism (Section 4.2, Item 4) to

Class New(*)/updated invariants Template
accept cur

�
dlow

(*)dlow
�
w52low dlow

�
w52low

reject cur, beta, any relation
dlow, beta, any relation
w52low ��� #
w52low ��� # mod #
dlow

�
#

(*)dlow � 57.25 dlow � #
beta ��� #

update 42.60 � cur � 63.48 # � cur � #
28.35 � dlow � 73.83 # � dlow � #
20.73 � w52low � 44.78 # � w52low � #
w52low one of

�
32.53,32.56,8.00 � w52low one of

�
�

1.32 � beta � 1.69 # � beta � #

Table 6: Invariant classification after the second update iteration

true positives and false positives. Items 4a and 4b map to
false positives, because these are invariants the user elimi-
nates. Item 4d maps to true positives because these are in-
variants the user certifies should always hold. An attribute
value that falsifies such an invariant is therefore an anomaly.
Item 4c may produce both true positives and false positives.
These are invariants the user finds well-formed yet expects
values specified for these invariants to change. We can as-
sume the invariants indicate true positives, unless told other-
wise by the user.

5. RELATED WORK
Efforts to increase dependability include prevention and de-
tection/mitigation of problems. Our approach concentrates
on detecting semantic problems by the client of a data feed.
In general, prevention and detection/mitigation are comple-
mentary as complete prevention is rare.

Preventing problems. Our approach deals with the situa-
tion as it is today. The Semantic Web [3] suggests a grand
vision for a comprehensive solution to syntax/form and se-
mantic failures, requiring many additions to the current Web.

We concentrate on detecting semantic anomalies. Web Ser-
vices emphasize service discovery and automatic informa-
tion exchange/integration. This is mainly related to connec-
tivity and syntax/form failures.

Our work can be viewed as concerned with data quality.
Most data quality research is concerned with the producer
of the data. Our emphasis is on measuring and increasing
data quality by the consumer.

Detecting/Mitigating problems. Solutions to all types of
problems are needed for improved dependability. Many so-
lutions exist for specific connectivity [12, 4, 11] and syn-
tax/form [15, 6, 16] problems. However, solutions to seman-
tic problems are scarce and either require domain knowledge
[22, 19, 6, 16] or provide a specific technique [13].

Our approach of inferring the characteristics of a data feed
from its behavior is similar to work in the areas of program
analysis [10, 9, 5], testing [7], and intrusion detection [17].
However, these naturally have a different domain, and often
concentrate on a specific technique.

Our long term vision is to increase the dependability of soft-

5

ware systems through self-healing [25]. The “artificial im-
mune system” [14] concentrates on the security domain. It
compares sequences of events as the basic detection method
for intrusion detection. IBM’s eLiza [2] is an autonomic
computing [1] project dealing mainly with connectivity prob-
lems in self-managing servers. BEAM [20] is an end-to-end
method for real-time fault detection and characterization for
deep space probes. It separates the two major forces of sen-
sor data: deterministic and stochastic. Our approach resem-
bles BEAM’s approach for the stochastic data.

Making human intervention explicit. Langley [18] rec-
ommends that systems supporting computational scientific
discovery provide more explicit support for human interven-
tion. He observes that user effort is often required to modu-
late an algorithm’s behavior for the input data. Our template
mechanism can be viewed as a way to help users do this.
However, our goal is making expectations analyzable, not
insights worthy of a scientific publication in their domain.

Lapis [21], a tool for lightweight structured text processing,
includes an outlier finder as a way to focus human attention
where human judgment is needed. We use anomaly detec-
tion in a similar way, though our domain is different.

6. DISCUSSION
Human intervention is inherent in adaptation that relies on
detection and repair. We expect the template mechanism to
be useful for incorporating human intervention in adaptation
and hope this mechanism may also reduce the demands on
human expertise and time. We expect this mechanism to
help in eliciting expectations from the user and in obtaining
information for bridging anomaly detection and repair. The
template mechanism could be useful for (1) relation extrac-
tion: finding relations that are reasonable among attributes
and (2) dimensionality reduction: finding attributes that are
meaningful to compare and co-varying attributes. It may
also be useful as a means for users to tune the anomaly de-
tection engine for a balance they find comfortable between
false positives and true positives.

Open issues related to the template mechanism include ver-
ifying the mechanism lowers the demands on human exper-
tise. The expertise level is directly related to our premises
presented in Section 4.1. We are exploring necessary re-
finements and basic implementation details over a specific
data feed. A good technical mechanism for incorporating
user feedback is necessary, but probably not sufficient, for
effectively interacting with a user. The design of a good user
interface is challenging, but is beyond the scope of our work.

7. ACKNOWLEDGEMENTS
This research is supported by the National Science Founda-
tion under Grant ITR-0086003, by the Sloan Software In-
dustry Center at Carnegie Mellon University, by the High
Dependability Computing Program from NASA Ames co-
operative agreement NCC-2-1298, and by DARPA and US
Army Research Office under Award No. C-DAAD19 01-1-
0646.

8. REFERENCES
[1] IBM. Autonomic Computing. URL: http:

//www.research.ibm.com/autonomic/overview/.
Accessed November 2001.

[2] IBM. eLiza: self-manging servers. URL: http://www-1.ibm.
com/servers/eserver/introducing/eliza/. Accessed
November 2001.

[3] W3C. The Semantic Web, Activity. URL:
http://www.w3.org/2001/sw/. Accessed November 2001.

[4] Alexa browser enhancement. URL: http://www.alexa.com.
Accessed April 2001.

[5] G. Ammons, R. Bodik, and J. Larus. Mining specifications. In POPL,
2002.

[6] M. Bauer and D. Dengler. Trias: Trainable information assistants for
cooperative problem solving. In Intl’ Conf’ on Autonomous Agents,
1999.

[7] W. Dickinson, D. Leon, and A. Podgurski. Finding failures by cluster
analysis of execution profiles. In ICSE, 2001.

[8] Stock quotes data source. URL:
http://quote.pathfinder.com. Accessed
September–November 2000.

[9] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as
deviant behavior: A general approach to inferring errors in systems
code. In SOSP, 2001.

[10] M. Ernst, J. Cockrell, W. Griswold, and D. Notkin. Dynamically
discovering likely program invariants to support program evolution.
In IEEE TSE, 2000.

[11] Google search engine (caching service). URL:
http://www.google.com. Accessed April 2001.

[12] Go!Zilla download manager. URL: http://www.gozilla.com.
Accessed April 2001.

[13] Rulequest. GritBot, autonomous data quality auditor. URL:
http://www.rulequest.com/gritbot-info.html.
Accessed January 2002.

[14] S. Hofmeyr and S. Forrest. Architecture for an artificial immune
system. In Evolutionary Computation Journal, 2000.

[15] C. Knoblock, K. Lerman, S. Minton, and I. Muslea. Accurately and
reliably extracting data from the web. In Data Engineering Bulletin,
1999.

[16] N. Kushmerick. Regression testing for wrapper maintenance. In
AAAI, 1999.

[17] T. Lane and C. E. Brodley. Approaches to online learning and
concept drift for user identification in computer security. In KDD,
1998.

[18] P. Langley. The computational support of scientific discovery.
Human-Computer Studies, 2000.

[19] K. Lerman and S. Minton. Learning the common structure of data. In
AAAI, 2000.

[20] R. Mackey, M. James, H. Park, and M. Zak. BEAM: Technology for
autonomous self-analysis. In Aerospace Conference, 2001.

[21] R. C. Miller and B. A. Myers. Outlier finding: Focusing user
attention on possible errors. In UIST, 2001.

[22] V. Raman and J. M. Hellerstein. Potters wheel: An interactive data
cleaning system. In VLDB, 2001.

[23] O. Raz, P. Koopman, and M. Shaw. Semantic anomaly detection in
online data sources. In ICSE, 2002.

[24] O. Raz and M. Shaw. An approach to preserving sufficient
correctness in open resource coalitions. In IWSSD, 2000.

[25] M. Shaw. Sufficient correctness and homeostasis in open resource
coalitions. In ISAW, 2000.

6

