
Developing a Software Architecture for Graceful Degradation
in an Elevator Control System

Abstract

Many embedded systems have high safety and
dependability requirements, which makes ensuring
software robustness a top priority in these systems. As
embedded computer systems become more complex and
incorporate increasing functionality, their software
systems become increasingly more difficult to design,
build, and maintain. One approach to achieving software
robustness is graceful degradation. However, graceful
degradation is a difficult property to define or construct.
Traditional hardware redundancy is not enough to achieve
software safety and dependability. The system's software
architecture may be the key to building graceful
degradation into a software system. This paper describes a
proposal for a software architecture that may enhance
graceful degradation for an example elevator control
system, and discussion about implementing and evaluating
the architecture.

1. Introduction

Embedded computer systems continue to present

difficult design challenges due to tight constraints, such as

real-time deadlines, limited hardware resources, and strict

safety and dependability requirements. As these systems

become more complex, their functionality is increasingly

implemented in software. Unfortunately, guaranteeing the

safety and dependability of complex software systems is a

difficult problem that has yet to be solved. Software robust-

ness, where robustness is defined as the ability to perform

correctly in the presence of exceptional conditions or

stressful environmental conditions [IEEE90], contributes

greatly to achieving those safety and dependability system

properties.

One approach to achieving software robustness is grace-

ful degradation. Graceful degradation is the property that

individual component failures reduce system functionality

rather than cause a complete system failure. However, cur-

rent practice for achieving graceful degradation requires a

specific engineering effort enumerating every failure mode

to be handled at design time, and devising a specific proce-

dure for each failure [Herlihy91]. However, in a

fine-grained distributed software system, enumerating all

possible hardware and software failure modes may be in-

tractable, and certainly not feasible for cost-sensitive em-

bedded systems with limited design times. It is desirable to

explore a way to design the system structure in such a way

that it can shed non-critical functionality automatically in

the presence of failures without having to specify every

possible failure and corrective action ahead of time.

Software architecture's high level system abstraction

may be the key to building graceful degradation into the

software system. Software architecture is defined as “the

structure or structures of the system, which comprise soft-

ware components, the externally visible properties of those

components, and the relationship among them [Bass98].”

If reusable software components become more prevalent,

software design will become more a problem of composi-

tion rather than synthesis. Therefore the overall system

structure and decomposition governs how the components

work together and provide system functionality. If an ar-

chitectural style that enhances the property of graceful deg-

radation could be developed and successfully applied to

different domains of embedded systems, the design effort

for these systems would be able to leverage component re-

use while preserving safety and dependability require-

ments.

This research is a part of the RoSES (Robust Self-con-

figuring Embedded Systems) project. RoSES takes the ap-

proach of using automatic reconfiguration to achieve

graceful degradation in the presence of component failures

[Nace2000]. The software architecture of the system de-

fines the interfaces between components, and valid compo-

nent configurations of the system. Thus, a properly

constructed architecture that can inherently shed function-

ality in a controlled manner will aid a reconfiguration man-

ager when reallocating components after a failure to

provide maximum functionality. A step in this direction is

to achieve these properties for an example system.

The remainder of this paper describes a proposal for a

software architecture for an example elevator control sys-

tem. An elevator control system is a sufficiently complex

distributed embedded system, and by developing an archi-

1

Charles P. Shelton
ECE Department

Carnegie Mellon University
Pittsburgh, PA, USA
cshelton@cmu.edu

Philip Koopman
ECE Department

Carnegie Mellon University
Pittsburgh, PA, USA
koopman@cmu.edu

Workshop on Reliability in Embedded Systems (in conjunction with SRDS), October 2001.



tecture for graceful degradation for this system, we hope to

gain insight on an architectural style for embedded systems

that addresses their constraints, and specifically promotes

the property of graceful degradation.

2. Elevator System Model

An elevator is a complex distributed control system. It

has strict safety requirements: it cannot crush people

between the doors; it cannot travel at unsafe speeds in the

hoistway; and it should not trap people in the elevator.

We use a model for an elevator system based on a set of

sensors and actuators and values they can send and receive.

This system does not address some of the more complex

elevator features, such as modes of operation like fire

response modes, maintenance modes, and up-peak and

down-peak modes, but is rich enough to be interesting.

The elevator consists of a single car in a hoistway with

access to a set number of floors. The car has a single door

and door motor, a drive that can accelerate the car to two

speeds (fast and slow) in the hoistway, and an emergency

stop brake for safety. In the notation below, the values

within the “[]” brackets represent the standard replication

of an array of sensors or actuators, and the values within

the “()” parentheses represent the values the sensor or actu-

ator can output. For example, the AtFloor sensor is an array

of sensors that is f (the number of floors the elevator ser-

vices) by d (the direction the car is going; Up, Down, or

Stop) wide, where each element of the array can either be a

value v of True or False. When the elevator approaches a

floor f, it can either be traveling up or down, so there is an

AtFloor sensor for each floor to indicate whether the eleva-

tor car is approaching the floor from above (Down) or be-

low (Up). When the car is close enough to be level with the

current floor, the AtFloor[current floor, Stop] sensor be-

comes True.

The sensors available in the system include:

• AtFloor[f,d](v): Floor proximity sensor. f = floor, d

= {Up, Down, Stop}, v = {True, False}

• CarCall[f](v): Car call buttons. f = floor, v = {True,

False} All located in the car.

• DoorClosed(v): Door closed switch. v = {True,

False} Indicates True when door is fully closed.

• DoorOpen(v): Door open switch. v = {True, False}

Indicates True when door is fully open.

• DoorReversal(v): Door reversal sensor. v = {True,

False} Indicates True when door senses an obstruc-

tion in the doorway.

• HallCall[f,d](b): Hall call buttons. f = floor, d = {Up,

Down}, b = {Pressed, Idle} Located in hallway on

each floor.

• HoistwayLimit[d](v): Safety limit switches in the

hoistway. d = {Up, Down}, v = {True, False} Indi-

cates True when the car has overrun the top or bottom

hoistway limits.

• DriveSpeed(s,d): Main drive speed sensor. s = {Fast,

Slow, Stop}, d = {Up, Down, Stop}

The actuators available in the system are:

• DoorMotor(m): Door motor. m = {Open, Close,

Stop}

• Drive(s,d): 2-speed main elevator drive. s = {Fast,

Slow, Stop}, d = {Up, Down, Stop}

• CarLantern[d](k): Car lanterns. d = {Up, Down}, k

= {On, Off} Up/Down lights on the car doorframe

used by passengers to determine current car direction.

• CarLight[f](k): Car call button lights. f = floor, k =

{On, Off} Lights inside the car call buttons to indi-

cate when a floor has been selected

• CarPositionIndicator(f): Position indicator in car. f

= floor

• HallLight[f,d](k): Hall call button lights. f = floor, d

= {Up, Down}, k = {On, Off} Lights inside hall call

buttons to indicate when passengers want the elevator

on a certain floor

• EmergencyBrake(b): Emergency stop brake. b =

{On, Off}

This is far from a complete description of a modern ele-

vator, but is a fairly complex model that has resources to

provide several possible levels of operation. The next sec-

tion discusses our approach to building a software architec-

ture for an elevator control system using this model that

aims to provide graceful degradation as a system property.

3. Proposed Software Architecture

Since graceful degradation emphasizes system surviv-

ability in the face of internal component errors, it is proba-

bly necessary to have few dependancies between individual

software components, especially for critical functions.

However, this would mean that every software component

would need to have its own direct connection to each hard-

ware sensor and actuator necessary to do its work, and it is

unlikely that every task in the system would require only

one software component without coordination with other

components in the system.

A fine-grained distributed system will require that com-

ponents work together to complete tasks, so to make grace-

ful degradation work we should couple components as

loosely as possible, and make components autonomous

when feasible, or when the function is especially critical.

2



The key idea behind this elevator control system archi-

tecture is partitioning the system functionality into critical

and non-critical components. We specify a base level of

functionality in the system that is the least level of opera-

tion before we declare the system “broken.” If we make the

components that handle these key tasks autonomous and

highly fault tolerant, then we can treat the additional

non-critical components and functionality as enhancements

to the core set. As long as these components do not violate

any of the constraints of the core set, when they fail, these

components can be removed from the system while still

preserving at least the base functionality.

To apply this idea to our elevator model: An elevator at

its basic level must only be able to move between floors in

the hoistway, open and close the doors at each floor, and en-

sure passenger safety. The elevator can move slowly in the

hoistway, stopping at each floor to admit and release pas-

sengers, opening and closing the doors at each floor, ignor-

ing all passenger requests and not providing any passenger

feedback, and still be an elevator, albeit a very inefficient

one (this is in fact an operating mode used in real elevator

systems when passenger request information is

unavailable). All other functionality in the system; pro-

cessing passenger requests, providing passenger feedback,

and only stopping at desired floors, are enhancements to in-

crease efficiency.

In our architecture the components that provide the min-

imum functionality are the Door Control, Drive Control,

and Safety components (Figure 1). Note that they all have

direct connections to the sensors they require for correct

operation and do not communicate with each other. The

Door Control must know when the Drive is moving and

when the car is stopped at a floor to determine when to open

the door, so it has access to the relevant sensors. The Drive

Control must know when the doors are completely closed

and when to stop at a floor. It should also have access to the

Hoistway Limit sensors for internal safety checks. The

safety object must be able to detect when and if the drive

and door perform any unsafe actions, such as moving when

the door is open, opening the door between floors, or mov-

ing the car past the hoistway limits. These represent “logi-

cal” sensors in the software architecture as they can be

either multiple I/O channels to the same physical sensor in

the system, or multiple different physical sensors for each

software component. This choice represents a cost/reliabil-

ity tradeoff that does not affect the software architecture.

The software components will have the same interfaces to

the sensors regardless of the physical configuration. The

replication of sensors for these critical components would

prevent single points of failure that might lead to cata-

strophic system failures. If any of these components fail in

the system, the system must fail safe and no longer be oper-

ational.

Above this base configuration we can add a real-time

network bus for component communication and coordina-

tion. Then we add hall button and car button controllers to

manage user input from passengers; the car lantern control-

lers and car position indicator controller for user feedback;

and a dispatcher component to schedule efficiently the ele-

vator car's destinations (Figure 2). With the addition of the

real-time network, each additional component need not

have a direct connection to each sensor, and control state

may be passed between components as “advice” for the

critical controllers to increase functionality. An example

advisory command would be that the Dispatcher compo-

nent could notify the Drive controller that the next floor

where passengers are waiting for elevator service is floor

six, and to stop at that floor. If the car is at floor two, the

Drive controller can decide to skip the floors between and

go directly to floor six. The Drive controller still decides

when it is safe to leave floor two, and cannot be com-

manded to move by the Dispatcher, only receive advice

about where to stop. If the Dispatcher stops sending out ad-

visory commands, the Drive controller can declare the Dis-

patcher failed and default to its base functionality of

stopping at each floor. If any non-critical component fails,

3

Safety

AtFloor DriveSpeed

DoorClosed

EmergencyBrake HoistwayLimit

Door
Control

DriveSpeedAtFloor

DoorOpen
DoorClosed

DoorMotor

DoorReversal

Drive

Control

DoorClosed

AtFloor

DriveSpeed

Drive

HoistwayLimit

Actuator

Sensor

Software

Component

Listens to

Controls

Figure 1. Critical Components in our Elevator

Software Architecture



it should not interfere with the operation of any critical

component or, ideally, none of the other non-critical com-

ponents. The standard assumption is that these components

will “fail silent,” i.e. stop sending messages.

One of the major challenges to implementing this

scheme is how individual components determine other

components' or their own failure. If components fail silent,

that can be detected via a timeout, but it is more difficult to

determine when a component is broken and is sending in-

correct messages and providing misinformation.

Another challenge is how to verify that the non-critical

components do not violate constraints of the critical core

components. Our approach is to specify a tight interface in

the form of a well-defined data dictionary of all the mes-

sages that can be sent between components, and ensure that

as long as components adhere to this interface, they will

preserve the constraints.

4. Conclusions and Future Work

The software architecture described above has several

properties that should provide graceful degradation and

may be extensible to other types of systems. The main ap-

proaches behind this architecture are: specifying a core set

of minimum functionality that defines working operation;

making the components that handle this core functionality

as autonomous and fault tolerant as possible; ensuring that

the interfaces between components are well defined and do

not violate internal component constraints; and treating the

non-critical components in the system as enhancements

that provide advice to the core components to improve effi-

ciency. Safety is the explicit responsibility of one compo-

nent, but other components such as the drive and door

controllers have access to relevant sensors for internal

safety checks as well. This eliminates single points of fail-

ure in the control system.

There are several challenges to implementing an archi-

tecture with these properties. It may not be feasible or pos-

sible to partition functionality in a fine-grained distributed

embedded system so that all critical functions can be per-

formed by autonomous components. Components may fail

in ways such that they continue to send incorrect but not in-

valid messages, making it more difficult for other compo-

nents to detect failures. Such failure modes require

byzantine fault tolerance that may not be feasible in a re-

source limited real-time embedded system. Additionally,

there must be a metric designed to evaluate the system and

determine if it really achieves graceful degradation.

The elevator model described in Section 2 has been im-

plemented in a simulation package that has been used in

several iterations in embedded systems classes at Carnegie

Mellon University. We are currently implementing the ar-

chitecture for this control system in simulation, and investi-

gating how to model failures and evaluate graceful

degradation.

4

AF

Dr
DO

DC

DR

DrS

DM

EB

Drive

Control Safety
Door

Control

AF

AF DrS

HWL

DC AF DrS DCLHWL

Actuator

Sensor

Software

Component

Listens to

Controls

Network

Car Call

Control

Hall Call

Control

Car Pos Ind

Control

Listens/Broadcasts

HallLightHallCallCarCall CarLight

CarPosition

Indicator

Car Lantern

Control

CarLantern

Dispatcher

Figure 2. Complete Elevator Software Architecture



5. Acknowledgements

This work was supported by the General Motors Satel-

lite Research Lab at Carnegie Mellon University, and Lu-

cent Technologies.

6. References

[Bass98] Bass, L., Clements, P., Kazman, R., Software
Architecture in Practice, Addison-Wesley, Reading, MA, 1998.

[Herlihy91] Herlihy, M., Wing, J., “Specifying Graceful
Degradation,” IEEE Transactions on Parallel and Distributed
Systems, 2(1):93-104, January 1991.

[IEEE90] IEEE Standard Glossary of Software Engineering
Terminology (IEEE Std610.12-1990), IEEE Computer Soc., Dec.
10, 1990.

[Nace2000] Nace, W., Koopman, P., “A Product Family
Approach to Graceful Degradation,” DIPES 2000, Paderborn,
Germany, October 8-19, 2000.

5


