
A Graceful Degradation
Framework for Distributed
Embedded Systems
William Nace
Philip Koopman

&Electrical Computer
ENGINEERING

2

RoSES Project
� Robust Self-configuring Embedded Systems (RoSES)
� Robustness gained with automatic graceful degradation

• Must not require human intervention to specify or guide

� First shot ÆÆÆÆ automated reconfiguration when fault
detected

� Domain -- Distributed Embedded Systems
• Distributed – functionality remains after most failures
• Smart sensors – general compute capability
• Most functionality is optimization

� Examples: elevators, autos, copiers, plant control, …
• Not Internet toasters

3

Overview
� System-level customization

• “Customize a system to maximize the functionality of given H/W”

� 3 step, iterative framework for algorithm
• Feature selection – find features to implement
• S/W selection – determine which software components necessary
• Allocation – fit the software to the hardware

4

The Framework: Mission Statement
� “Customize a system so as to maximize the functionality

of given H/W”
• Isn’t this just like:

– Hardware-software co-design? I’m given H/W, not given functionality
– Reconfigurable computing? I’m not using special purpose H/W, different

time constraints
– Load balancing? I select/allocate S/W for robustness/functionality, not

performance

� Example Scenario: Automotive
• Not run-time (yet)

– Exploit ground states

• May require external assistance
– Or fault tolerant subsystem (using standard techniques)

5

The Algorithm from 30,000 feet

1: Choose Features to implement

2: Choose S/W Adapters to form features

3: Allocate Adapters to hardware

Given: Hardware Spec
Product Family Software Spec

Produce: Adapter ÙPE mapping

Iterate on
failure

6

Hardware Specification
� List of Processing Elements (PEs)

• Vector of available resources
– CPU cycles, Flash, RAM, …

• Operational sensors and actuators (attached to PEs)

� Network
• Scalar resource (bandwidth)
• Broadcast, real-time
• Archetype: Control Area Network

CPU RAMROM DIO AIO PIO

7

Software Specification
� Adapter – RoSES terminology for a software object
� Configuration – collection of adapters
� Configurations form data flow graphs (DFGs)

• Vertices are adapters and transducers
– Adapter requirements specified as a vector, same terms as PEs
– Transducers are merely sources/sinks of data (don’t consume PE resources)

• Edges are communications
– Labeled with dataflow requirement

• Flow
– from Sensor(s)
– through 1+ adapters
– to Actuator(s)

Sensor

Adapters

Actuator

8

PFA Specification
� Product Family Architecture (PFA)

• Structured view of all possible configurations

� PFA graph – specifies capability of entire
product/model line
• Merge DFGs for all configurations

– Last year’s models
– High to low end models
– Etc….

• PFA Graph is a supergraph of all configuration DFGs

9

PFA Graph
� Merge DFGs with choice elements

• Data can flow from any one of the inputs

� Specialization: data element
• Network message type

� Ex: Conveyer belt part identification

SorterPlanner

Pattern
Recognit

ion

DecoderBarcode
Reader

Vision
System

Part Number

Machine
Control

Rest of
System

10

What’s a Feature?
� Required as a means to make optimization choices

• I tried “Data path through PFA graph”
– Rejected: Too restrictive

� “Use of a particular adapter”
• Dependencies communicated via PFA graph

– Other adapters automatically selected as “glue”

� Feature is given utility value

� Similar features require organization
• Class-based Feature Model

11

Class-based Feature Model
� Collect similar features into classes

� Only one feature from each class useful
• Do you want multiple transmission control algorithms running

concurrently?

� Some classes may be critical
• A valid feature set includes a feature from all critical classes

∑=
Classes

c
cFeatureSet FeatureUtilityUtility)(

12

Phase 1: Feature Selection
� Goal: Choose a Feature Set

• Maximize utility
– Try highest utility feature set first

 (In general case it won’t fit in H/W)

� Use a combinatorial algorithm
• Start with highest utility feature from each feature class
• Number of feature classes/features is small

13

Phase 2: Adapter Selection
�Goal: Choose adapter set to implement the

feature set
• Prune PFA graph of “dead” adapters
• Discover paths through features of interest
• Select paths based on what policies?

– Heuristic analysis experiment

• Adapters from selected paths form Adapter Set

14

Phase 3: Adapter Allocation
�Goal: Map adapter set to PEs, network

• Well-worn research area
• Bin-packing problem (NP complete)

– Attack as list processing heuristic
» Sort adapters into list (by what criteria?)
» Start with largest, packing onto a PE (chosen how?)
» Success if list gets emptied

15

A Pretty Picture of the Algorithm

Phase 1: Feature Selection

Pick target feature set

Phase 2: Adapter Selection

Pick adapter set that fulfills feature set

Phase 3: Adapter Allocation

Pick PEs to hold each adapter

User Supplied Validity Check

GIVEN: PFA Graph
Processing Elements

Sensors
Actuators
Compute Nodes

Network

Failure

Failure

Failure

Try
Harder

?
Failure

Report Failure

Depends on Feature Model
Select Features from critical classes
May include non-critical features

Prune dead adapters
Determine path alternatives
Select adapters on chosen paths

Foreach adapter in sorted list:
Determine set of available PEs
Choose PE

PRODUCE:
Adapter allocation mapping

Algorithm Adjustments
Speed vs. Quality tradeoff?
Incremental?
Failover safe?

No

16

Backtracking/Failure Feedback
�When Phase n+1 fails, Phase n tries again
�What info does Phase n need to make intelligent choices

for next attempt?
• Type of allocation failure (network or PE overflow)
• How far processing proceeded
• State of algorithm at failure point
• …

� Phase 2 failures provide info for phase 1 to make larger
moves in search space

17

Tar Pits I Want to Avoid Future Work
�Universal Feature Model

• Composability of features, with complex interaction,
without combinatorial explosion

• Class based model is sufficiently expressive for most real
systems

�Validity Checks
• System dependent
• User supplied validity check of resulting allocation

�Scheduling
• Tough. Would obscure proposed work
• Hack: oversize system and apply RMA, or treat as

validity failure

18

Conclusions
� System-level customization

• “Customize a system to maximize the functionality of given H/W”

� 3 step, iterative framework for algorithm
• Feature selection – find features to implement
• Adapter selection – determine which adapters necessary
• Adapter allocation – fit the adapters to the hardware

