
Jini Meets Embedded Control Networking: a case study in portability failure

Abstract

The Robust Self-Configuring Embedded Systems

(RoSES) project seeks to achieve graceful degradation

through software reconfiguration. To accomplish this goal,

systems must automatically reconfigure despite nodes fail-

ing, being replaced by inexact spares, or being upgraded.

Jini seemed to provide the required spontaneous network-

ing infrastructure, but turned out to make deep assumptions

about using TCP and UDP. This is appropriate for the

Internet-enabled devices that the Jini designers envisioned,

but typical distributed embedded systems employ real-time,

reliable data transmission such as the Control Area Net-

work (CAN), rather than TCP. Object-oriented technology

such as Jini is often represented as being suitable for use in

real-time embedded systems. But despite Jini’s goal of plat-

form-independence, it required extensive re-engineering to

function on CAN. This case study of an actual implementa-

tion of Jini on a CAN network demonstrates that the differ-

ences between general purpose and embedded systems can

be more fundamental than is generally appreciated.

1. Introduction

The goal of the Robust Self-Configuring Embedded

Systems (RoSES) project is to create inherently robust,

flexible, maintainable, distributed embedded control sys-

tems that support graceful degradation via in-service

software reconfiguration [8]. Rather than using just a static

configuration established at the factory, such a system

would automatically reconfigure to accommodate failed,

upgraded, or inexact spare components (both software and

hardware).

We envision a system of “smart” sensors and actuators

connected to an embedded real-time network, where every

sensor acts as a “server” to any node desiring its functional-

ity, as shown in Figure 1. Software adapters are loaded into

each node on the embedded network to translate between

architected state variables on the system network and the

control and sensing capabilities of various sensors and ac-

tuators. A customization manager will be used to maximize

system-level functionality by solving an optimization prob-

lem of allocating a subset of possible functionality to maxi-

mize overall utility [9]. Obviously a centralized resource

manager would make the system vulnerable to a single

point of failure, so a distributed implementation of that ca-

pability is highly desirable.

Creating a malleable system along these lines requires

some sort of “plug-and-play” infrastructure to allow nodes

to discover the presence or absence of other nodes at

run-time. Dynamic reconfiguration has been accomplished

on the desktop using middleware for some time. An em-

bedded system differs from the desktop environment, how-

ever, in its need for real-time guarantees, minimal resource

usage, and no single point of failure. Eventually, RoSES

must have middleware that meets all these needs.

To keep our research focused on policy and architecture

issues, we wished to use existing middleware technology.

We therefore sought a well-tested, off-the-shelf solution

with open source and proven capability. But it had to be

made to work on typical embedded hardware platforms to

be useful to us. Section 2 of this paper discusses how we

initially chose Jini as a middleware for the RoSES project.

Meredith Beveridge
Schlumberger

Sugar Land, TX, USA
meredith.beveridge@ieee.org

Philip Koopman
ECE Department

Carnegie Mellon University
Pittsburgh, PA, USA
koopman@cmu.edu

State Variables on Real-Time Embedded Network

SMART SENSORS

Adapter Repository Co-Scheduling & Assigment Tool

SMART ACTUATORS

CUSTOMIZATION MANAGER

Baseline
Sensor SW

Functionality

Dynamic Interface
to Object Bus

Basic S/A
Device

Local
CPU &

Memory

SW
Adapter for
High Level

Logical
Interface

SW
Compute/
Control

Functions

Baseline
Sensor SW

Functionality

Dynamic Interface
to Object Bus

Basic S/A
Device

Local
CPU &

Memory

SW
Adapter for
High Level

Logical
Interface

SW
Compute/
Control

Functions

Figure 1: The generic RoSES architecture.

Section 3 describes why we chose the Control Area Net-

work (CAN) for our testbed and some ways in which it dif-

fers from typical desktop networks. Section 4 discusses the

struggles encountered in porting Jini to CAN and the mes-

sage-passing strategy that was finally successful in getting

Jini functioning on CAN. Section 5 presents experimental

results, and Section 6 summarizes lessons learned.

2. Selecting Jini

The first step in attempting to adopt an off-the-shelf

middleware product for RoSES was identifying essential

embedded system constraints. The major concerns for se-

lecting middleware are the need for a real-time networking

protocol, and a general scarcity of processing power and

memory in inexpensive smart sensor/actuator nodes.

2.1. Resource constraints

Unfortunately, typical middleware assumes the avail-

ability of abundant computing resources and a desktop net-

work such as Ethernet. While these might be realistic for

high-end “embedded” systems such as set-top boxes, nei-

ther assumption is valid for more prevalent embedded ap-

plications such as cars, elevators, jet engines, building

environmental controls, highway systems, and railways.

Because most embedded systems have severe resource

constraints, we looked for middleware that was “lean” and

could plausibly fit in a $1 to $10 computer system in the

reasonable future. Because embedded networks tend to

have different tradeoffs than desktop networks, we also

looked for middleware that would be portable beyond the

network protocols found in the desktop computing world.

Java is known for its portability, so Sun Microsystems’

Jini seemed most promising because it runs on Java. In fact,

the developers of both Jini and Java had distributed, embed-

ded systems in mind [16]. Although Java is still too large

for many embedded systems and poses real-time chal-

lenges, these problems are being addressed by others

[11,15]. Furthermore, our primary objective was to find a

middleware concept that worked for RoSES prototype sys-

tems, which have loosened size and cost constraints com-

pared to real embedded systems.

The major goal of Jini is to “raise the level of abstraction

of distributed programming from the network protocol

level to the object interface level” [17]. Thus it seemed an

ideal way to attain platform independence in the extremely

varied world of embedded networking.

Although original implementation was intended for

Internet-enabled devices, the Jini inventors were specifi-

cally striving for platform-independence. Jini inventor Bill

Joy stressed the portability of Jini as a central problem that

he was trying to solve when he said “even the simplest in-

compatibility is really inconvenient” [4]. Likewise, Jini’s

lead architect Jim Waldo wrote that the problem with previ-

ous middleware attempts is that they were protocol-centric,

making them inflexible to protocol changes [18].

2.2. Description of Jini

Jini was developed to provide platform-independent,

spontaneous federated networking built on Java and Re-

mote Method Invocation (RMI) [19]. In a Jini community,

services autonomously discover other services as they be-

come available or unavailable. Code can be downloaded

dynamically to allow “clients” to use the service. A central-

ized controlling authority is unnecessary once the system is

running, reducing single point failure vulnerability.

Dynamically downloadable code, or service proxies, is

stored in a lookup service. Nodes must first find the lookup

service via the discovery protocol, then register their prox-

ies with the lookup service. To find other nodes, they per-

form a lookup by sending a template to the lookup service.

If the lookup service contains a proxy that matches the tem-

plate, the proxy is returned to the requestor. The requestor

can then communicate directly with the matching node via

the downloaded proxy. Two additional features enhance au-

tomatic configuration: the lookup service sends out peri-

odic announcements to advertise its presence on the

network, and nodes can sign up with the lookup service to

be notified when other nodes appear or disappear.

2.3. Other relevant middleware

Many middleware solutions exist, such as Salutation,

which performs Jini- like discovery but supports non-Java

devices [13], and the Distributed Embedded Object Model

(DEOM), designed to support distributed embedded sys-

tems [1]. Another interesting project involving realtime re-

mote method invocation on CAN is not addressing

automatic reconfiguration issues [3], but it may be possible

to extend it for this purpose. Our goal, however, was to ac-

quire working middleware on CAN to create a testbed to

explore our areas of interest, so we needed middleware with

well-supported open source and proven capability.

3. Control Area Network (CAN)

In order to be relevant for the majority of embedded sys-

tems, RoSES must be able to operate on established embed-

ded real-time control network protocols. CAN is the

current de facto standard protocol for many embedded ap-

plications, and has stood the test of time. Furthermore,

since it was specifically designed for the automotive arena,

it was attractive for this testbed since the first RoSES exam-

ple systems will be automotive applications.

Internet protocols are designed to provide worldwide

connectivity, but CAN is optimized for operation on a

closed-end control system, typically with 32 or fewer

nodes. So, while Internet protocols identify nodes with a

hostname and IP address and use lengthy packet headers,

CAN messages must fit most relevant header information

in a standard (11-bit) or extended (29-bit) CAN header

field. Additionally, bandwidth is constrained by economic

and physical limitations to 1 Mbit/sec or slower.

CAN is optimized for the short, periodic messages of a

typical control system, so data payloads are limited to 8

bytes. Every message is broadcast on the bus in such a way

that bounded and predictable message delivery time as well

as global message prioritization are guaranteed. Lastly,

CAN’s reliability features are suited for typically harsh em-

bedded environments. Thus, CAN is an attractive choice

for RoSES (and generally representative of embedded net-

works in general), but has dramatically different goals and

design tradeoffs compared to desktop computers.

3.1. Previous middleware on CAN efforts

A previous attempt to put CORBA on CAN [5] required

so many changes that it is unclear if the result was still

“CORBA” in a practical sense. In general CORBA does

not seem lean enough to be viable for RoSES in the near fu-

ture. (Perhaps that will change when an embedded CORBA

standard emerges, but such systems are not yet available.)

Previous work in applying Jini to embedded systems has

been focused on using the “surrogate architecture,” which

uses a JVM-capable device as a gateway between the CAN

devices and the rest of the Jini community [10]. Surrogates

are useful for remotely diagnosing the CAN system over

the Internet, and other similar applications. However, the

success of RoSES hinges on making each smart sensor/ac-

tuator a first-class citizen in the network, meaning that

CAN nodes must be able to form a Jini community them-

selves, so that each CAN node can exploit Jini’s

self-configurability. The developers on the JINI-USERS

mailing list, which include some of the original Jini devel-

opers, knew of no attempts to implement Jini on any proto-

col besides TCP/IP [14]. Similarly, attempts to find a

TCP/IP implementation that runs on CAN were fruitless.

4. Fundamental portability issues

Jini’s promises of spontaneous networking, platform-in-

dependence, and design for embedded systems seemed to

bode well for use as RoSES infrastructure. At first glance,

the limitations of Jini involved only its implementation: it

was written in Java and supported only Ethernet communi-

cation. The use of Java was readily handled by buying

small desktop computers as the first nodes for the testbed

and arguing to Moore’s Law to demonstrate long-term fea-

sibility for embedded systems. Ethernet, however, had to

be replaced with CAN to provide a credible real-time net-

working capability for the testbed.

However, it soon became apparent that Jini did not

achieve its intended abstraction level. An examination of

the Jini specification reveals features specific to TCP and

UDP have crept into the “object interface level” where they

arguably do not belong. While the design does not strictly

prevent the use of other protocols, it does impose unneces-

sary struggles in porting Jini to another network protocol.

The four most serious issues are: a TCP-centric message

identification scheme, an overly restrictive message size

definition, reliance upon RMI, and a unicast/multicast dis-

tinction that could have been avoided.

4.1. TCP-specific identification

When Jini’s protocols were defined, four distinct types

of messages were created for discovering and announcing a

lookup service, as shown in Figure 2.

As can be seen, two of the messages include fields for

hostnames and port numbers. The designers were envision-

ing that these messages would be packed into datagram

packets and sent over UDP, and thus would need the

hostnames and port numbers for further TCP communica-

tion. The other two messages would be sent via streams

over TCP sockets, and thus no hostnames or port numbers

needed to be included within the messages.

However, there are a great many protocols in use in em-

bedded systems, and most such wire protocols use neither

alphanumeric hostnames, nor integer port numbers, nor

socket-based communication. At the very least, requiring

large message fields that only apply to some protocol stacks

is inefficient, which is a severe issue in bandwidth-con-

strained embedded systems. Worse, wire protocols that dif-

fer significantly in their identification schemes must devise

an additional mechanism for indicating appropriate re-

ceiver and transmitter information.

To address the problem of insufficient ID information

for non-TCP protocols, an ID generator was designed that

combined a unique node ID and constants defined for each

type of Jini message into a unique 29-bit (extended) CAN

ID. Further ID information was written in the payload data

as shown in Figure 3.

Multicast
Announce

Multicast
Request

Unicast
Request

Unicast
Response

Protocol

Version

Host

Name

TCP

Port

TCP

Port

Service

ID

Group

Length

Group

Length

Group

Length

Heard

Length

Group

Names...

Group

Names...

Group

Names...

Heard

Names...

Protocol

Version

Protocol

Version

Proxy

Object

Figure 2 - Jini’s four message definitions.

The sender’s node ID is included in the CAN header to

ensure a unique CAN header field (this is required by the

CAN prioritized message transmission mechanism). In the

case of messages designed to be received by all nodes, this

field is simply ignored, and listeners listen to the entire

range for that type of message (i.e., [prio][msgID][0] -

[prio][msgID][63]). The node IDs can be any 6-bit numbers

as long as each node has a unique number, which encom-

passes the needs of most embedded networking applica-

tions. A 20-bit prioritizer is maintained to support global

prioritization and permit compatibility with concurrent

non-Jini network traffic.

An additional byte is written in the data payload to fur-

ther identify the Jini message type beyond the 3-bit identi-

fier included in the header. At the expense of payload data,

this avoids consuming a larger set of CAN message IDs,

and allows recipients to listen for just one or two message

types, rather than large ranges of messages. Since IDs are

labeled only with the sender’s node ID and not the recipi-

ent’s, the sender of the message puts the intended recipi-

ent’s node ID as the second byte of the data payload. The

recipient can then check to make sure the response was in-

tended for it. This data could have been included in the

message ID instead, but this design benefits from embed-

ded system design experience that teaches conserving CAN

message header bits is highly desirable.

4.2. Message size definition

An additional assumption of TCP/UDP that has crept

into Jini is the requirement that all messages fit within one

UDP packet of 512 bytes. If data exceeds this size, it is frag-

mented and sent in multiple Jini messages. While the no-

tion of fragmentation is important, most older embedded

protocols require additional fragmentation to shorter packet

lengths, thus requiring duplication of fragmentation ser-

vices in both the protocol interface (to get to 512-byte logi-

cal packets) and in Jini (to get to larger application packets

than 512 bytes). This could cause inefficiencies even in

desktop systems if native packet sizes are increased at a

later date.

The message size constraint does not cause a fundamen-

tal problem for CAN, but does result in unnecessary soft-

ware complexity and inefficiency, which is always an issue

for embedded systems.

Because the UDP communication was replaced with a

stream that sent all data directly to the CAN message frag-

mentation algorithm, the Jini-defined message fragmenta-

tion was not used at all. Clearly, the message size was

something that Jini did not really need to define.

4.3. RMI

Once discovery has been accomplished between Jini

services and the lookup services, further communication

transfers entirely to Remote Method Invocation (RMI).

RMI is a powerful tool for distributed applications access-

ing methods on other machines, but it is unfortunately im-

plemented solely using TCP sockets, which are unavailable

on many embedded systems. While Jini services may

choose their preferred method of communication after dis-

covering each other, they must use RMI for all Jini commu-

nication after discovering the lookup service: registering

their proxies, discovering other services, signing up for

event notifications, receiving event notifications, and man-

aging service and event leases.

This problem was solved by implementing a mes-

sage-passing approach that employs Java’s

MarshalledObject and serialization features extensively.

The existing Jini concept of downloading proxies for per-

forming implementation-specific communication proved

invaluable in this solution, since the proxies encapsulated

all the details of serializing/deserializing data, constructing

CAN messages, and so on.

The result is that Jini applications do not see the changes

needed to remove dependence upon RMI. They still call

standard methods defined in proxies’ interfaces, and things

work just as cleanly as if RMI were in operation behind the

scenes. Thus, while RMI might well have been convenient

scaffolding for creating Jini, it is not essential to Jini’s oper-

ation.

4.4. Unicast/Multicast distinction

The last impediment to platform-independent operation

encountered in Jini was the definition of unicast and

multicast messages. In optimizing for TCP, Jini’s current

design sends a few multicast messages and then switches to

unicast communication. However, other wire protocols are

unicast only, multicast only, broadcast only, or various

combinations. Thus, Jini performs operations that are opti-

mized for one platform that might well cause significant

network performance problems in another system.

For instance, CAN is a broadcast bus that can use op-

tional receiver filters to achieve multicast transmission.

Unicast can be emulated on CAN and may still be useful in

some cases, but is generally undesirable because it either

consumes precious header bits or requires application-level

coordination between the sending and receiving nodes.

CAN message ID
(29 bits)

CAN data payload
(16-64 bits)

Prioritizer
(20 bits)

Message data …
(0-48 bits)

Jini
Message ID

(3 bits)

Jini Message
Type

(8 bits)

Sender’s
Node ID
(6 bits)

Recipient’s
Node ID
(8 bits)

Figure 3. Jini message ID scheme

But in implementing Jini on CAN, it became apparent

that unicast communication was not needed at all, since the

same functionality could be accomplished with the equiva-

lent multicast request and response. Since CAN is broad-

cast, the concept of “unicast discovery” is not very useful in

that context. It could be emulated, but it would be difficult

to ensure unique CAN message IDs at all times. Instead,

multicast discovery can be used in all cases, and unicast dis-

covery abandoned entirely. Since multicast announcements

are used solely to invoke unicast discovery from other

nodes, the multicast announcement is therefore also unnec-

essary. This resulted in using only two of the original four

Jini messages, and multicasting the “Unicast Response”

message.

This overlap of “unicast request” and “multicast re-

quest” leads to the possibility of switching to a generic re-

quest format that would give implementations more

flexibility in achieving efficient operation. An “announce-

ment,” a “request,” and a “response” do not change when

implemented on unicast, multicast, or broadcast networks;

their functions are the same regardless of the underlying

protocol. The lookup service is looking for discovery re-

quests and does not care if they are sent via unicast or

multicast request. Similarly, the discoverer does not care if

the lookup service’s response is sent via unicast or

multicast, but only that it receives the response. At the “ob-

ject interface level,” a unicast/multicast distinction is irrele-

vant and therefore does not seem to really belong in Jini

message protocols.

4.5. End result: Jini ported to CAN

While far more painful than originally envisioned, por-

tability problems with Jini were overcome and it was ported

to a CAN hardware testbed. The significant issues that had

to be resolved were:

1. CAN does not have an IP field, but that can be approx-

imated with clever header exploitation;

2. CAN message sizes are significantly smaller than Jini

message sizes, but Jini messages can be fragmented;

3. CAN does not support TCP, which is required for

RMI communication, but RMI can be replaced with a mes-

sage passing scheme; and

4. CAN does not have the facility for unicast messages,

but messages can be broadcast and identified for single re-

cipients via the header.

Figure 4 shows the message formats of mapping Jini

onto CAN with this design approach. Figure 5 shows the

resultant implementation of the RoSES architecture on the

Jini+CAN testbed. The real-time embedded network was

implemented with CAN, and communication of state vari-

ables and other information was implemented using Jini. A

simple customization manager was implemented via a Jini

Lookup Service, and the Jini ProxyRepository served as an

adapter repository.

Original design:

Multicast
Announce

Multicast
Request

Multicast
Request

Unicast
Request

Unicast
Response

Unicast
Response

Notification

Notification
Ack

Server
Request

Server
Response

Service Registration, Lookup,
Events, Lease Management...

CAN-based implementation:

Protocol
Version

Protocol
Version

Protocol
Version

Protocol
Version

Proxy
Object

Proxy
Object

Message
Type

Message
Type

Message
Type

Message
Type

Host
Name

TCP
Port

TCP
Port

Group
Length

Group
Length

Receiver
ID

Receiver
ID

Receiver
ID

Receiver
ID

TCP
Port

Group
Length

Group
Length

Group
Names..

Group
Names..

Message
Data.....

Message
Data.....

Message
Data.....

Message
Data.....

Service
ID

Group
Names..

Group
Names..

Group
Length

Heard
Length

Heard
Length

Group
Names..

Heard
Names..

Heard
Names..

RMI

Registration, lookup, lease
management, notification sign-up

X

{
Figure 4. Mapping of original Jini messages into a CAN-based implementation

5. Experiences from operating a testbed

After several months of struggle (and traveling down

many blind alleys in pursuit of the eventual solution dis-

cussed above), experiments were run on a RoSES hardware

testbed using a simple automotive example application.

The results of this experience revealed still further issues in

attempting to use Jini for embedded control applications.

5.1. Slow reconfiguration

The most debilitating result of trying to make Jini work

on CAN was the lack of determinacy. Even though CAN is

a real-time network, that does not force software applica-

tions to behave in a real-time fashion. Jini follows a fairly

relaxed approach to managing busy resources, resulting in

nodes taking as long as thirty minutes just to register with

the lookup service, even with no other network traffic.

While this might be appropriate for metropolitan area net-

works and durable computing nodes, it is unsuitable for

many embedded applications and for RoSES in particular.

For example, waiting a half-hour between turning on the ig-

nition and being able to drive a car is unacceptable.

An additional problem is that the amount of network

traffic caused by the large message sizes is not just ineffi-

cient, but unrealistic for a network full of safety-critical

messages: the large amount of data transmitted frequently

results in over 255 CAN messages per Jini communication

“message”. The inefficiency of the entire design is restric-

tive for resource-scarce embedded systems: overhead of the

enforced message sizes is as much as 14% of the entire

message length. The bandwidth spent on IP routing infor-

mation comprises as much as 33% of a Jini message. This

bandwidth was wasted when we implemented Jini on a dif-

ferent network protocol, because the IP information is

irrelevant to CAN. Further, additional bandwidth must be

consumed to transmit the relevant CAN ID information.

Lease management is another issue which must be ad-

dressed to efficiently operate Jini on a real-time system.

Currently, services register their proxies with the lookup

service and receive a lease for a certain amount of time. If

the lease is not renewed before it expires, the lookup service

discards its reference to that service’s proxy. For real-time

systems, some nodes need to know immediately when other

nodes fail, but the lookup service cannot send event notifi-

cations until the failed node’s lease has expired. The leases

could be set for the shortest time possible, but that would

significantly increase network traffic from nodes trying to

renew their leases frequently. The large number of mes-

sages would likely result in many nodes having to re-regis-

ter frequently with the lookup service because of timed out

lease renewal attempts, further increasing network traffic.

To get the testbed operational, an extra background task

was added to query nodes at periods of several seconds and

kill off leases for any that didn’t respond. This method is

undesirable, since it subverts the Jini system and requires

knowledge of every node’s processes and node IDs. But, it

was expedient for getting the testbed operational and veri-

fies the nature of problems observed with Jini. One way

Jini could solve this problem is by adding a separate timer

for fault detection that is independent of the lease time.

5.2. Issues with other embedded protocols

The issues we discovered in Jini are not restricted to

CAN, and will probably pose similar problems on most

real-time embedded systems. Jini reflects its heritage of

the desktop computing world and an implicit definition of

“embedded systems” that really only includes miniaturized

versions of a desktop paradigm. Because of this, the true

extent of Jini portability is limited, and suffers fundamental

incompatibilities with traditional embedded systems.

As brief examples, the following embedded protocols

are either in use or are actively being considered for wide-

spread adoption in embedded applications:

• The Train Control Network uses a combination of

fixed-format periodic and aperiodic messages for

controlling high-speed trains in two different protocols

(one for short-length runs within a vehicle; one for a

network spanning an entire train). Messages have 50 to

100 msec deadlines, and run at 1 to 1.5 Mbps.

Maximum message payload is 32 bytes. TCP/UDP and

IP are not supported. [6]

• TTP (Time Triggered Protocol) is an emerging

automotive network protocol that emphasizes

determinism and is designed to possibly replace CAN.

All messages occur at precisely identified times in a

fixed message sequence. Maximum message size of the

Jini and Control Area Network

SMART SENSORS

ProxyRepository

SMART ACTUATORS

Jini Lookup Service

Baseline
Sensor SW

Functionality

Dynamic Interface
to Object Bus

Basic S/A
Device

Local
CPU &

Memory

Jini Proxy:
High Level Logical

Interface;
Compute/Control

Functions

Baseline
Sensor SW

Functionality

Dynamic Interface
to Object Bus

Basic S/A
Device

Local
CPU &

Memory

Jini Proxy:
High Level Logical

Interface;
Compute/Control

Functions

Figure 5. RoSES implemented with Jini on CAN

first version of TTP/C (for critical networking) was 16

bytes, although newer versions approach 256-byte

payloads. TCP/UDP and IP are not supported. [7]

• Some higher-level standards have been able to embrace

both Ethernet and embedded protocols. One example of

this is BACnet for building automation control. [2]

However, this level of standard requires use of specific

information formats that do not support off-the-shelf

middleware such as Jini, and does not supply the

dynamic discovery services needed by RoSES.

5.3. Lessons learned

From this experience and extensive previous experience
with other embedded systems and network protocols, we
can glean a list of things to keep in mind when designing a
system for possible embedded use:

1. Embedded systems tend not to use TCP/IP. Any sys-
tem that assumes desktop network protocol stacks are
available is generally not portable to embedded systems
other than high-end desktop-like platforms.

2. Because most control messages have just a few bits of
state variables, embedded systems are optimized for short
messages, which breaks fragmentation assumptions on
desktop networks. It also means headers are skimpy on ad-
dress bits and node addresses tend to be ambiguous glob-
ally — applications have to know which network they are
on to identify which physical node has a particular address.

3. Embedded systems do not support sophisticated
mechanisms like sockets. They must use the simplest, spar-
est means possible, to both meet costs and simplify verifi-
cation and certification for critical applications. Therefore,
if something can be adequately accomplished in a single
way, embedded systems typically will not support addi-
tional mechanisms (especially for communication) that re-
quire additional cost and verification.

4. Embedded systems use a variety of network schemes,
and tend toward periodic broadcast transmission rather
than event-based unicast messaging. Middleware should
avoid making assumptions about relative efficiencies of
different messaging services.

5. Determinacy and reliability are crucial in many em-
bedded systems no matter the network protocol used. For
example, an automotive braking message can’t afford to
wait indefinitely to find an opening on the network. In this
case study we have observed the following issues:

• large message lengths, requiring perfect transmission

of large numbers of fragments and re-assembly by

the receiver (on embedded networks that don’t

ensure in-order delivery);

• timely response for crucial actions (for example, with

Jini this would include registering with the lookup

service and noticing failed nodes); and

• complex sequences of communications that become

brittle to message losses that are likely in noisy

embedded system operating environments.

The Jini concept needn’t have been restricted to a desk-

top world (and it wasn’t intended that such a restriction

should occur in practice -- but it did). Jini could have been

suitable for real-time embedded environments if desk-

top-only details had not crept into the “object interface

level.” This case study suggests that the differences in tech-

nology between embedded real-time and desktop comput-

ing environments are more significant than many designers

appreciate. It also provides some lessons on types of issues

to consider with care in creating portable middleware:

1. Hardware is not the only variable in creating portable

systems. Software operating environments including oper-

ating systems and protocol stacks vary too. TCP/IP is not a

universal protocol. RMI is not universally available even

on platforms with Java.

2. It is important to justify everything that “leaks”

through an abstraction layer. Jini messages seem to have let

a bit of how they were accomplishing things seep into rep-

resentations of what they were trying to accomplish, espe-

cially with respect to multicast/unicast distinctions.

3. Don’t over-optimize for today’s common case if to-

morrow’s common case may be different. Optimizing for

UDP-sized message fragments and a particular

multicast/broadcast tradeoff point complicated attempts to

port to another protocol.

During these efforts we corresponded with several Sun

employees that were very familiar with Java and Jini. They

were surprised by our struggles. Apparently, while touting

platform-independence, they had never actually worked

out the details of porting to a non-desktop platform and had

not encountered the problems that emerge.

6. Conclusion

For the Robust Self-Configuring Embedded Systems

(RoSES) project to succeed in its goal of graceful degrada-

tion via software reconfiguration, an appropriate run-time

infrastructure must be in place to facilitate the

“plug-and-play” functionality required for nodes to form a

dynamic, ad hoc, distributed network. We investigated var-

ious middleware technologies to supply such a run-time in-

frastructure on top of CAN, ultimately choosing Jini.

In the process of porting Jini to CAN, we discovered that

the design of Jini made assumptions about the use of TCP

and UDP, including choices of packet sizes and message

fields. This did not prevent porting to CAN, but imposed a

significant source of inefficiency and difficulty. Unfortu-

nately, higher-level problems lead to very slow reconfigu-

ration times, leading to an overall conclusion that Jini is

unsuitable for use on traditional embedded real-time con-

trol applications without significant changes.

This case study suggests that the differences in technol-

ogy between embedded real-time and desktop computing

environments are more significant than many designers ap-

preciate. When evaluating the suitability of an existing OO

technology for use in embedded real time systems it is im-

portant to question all the underlying assumptions made,

especially with respect to network and operating system

services. Things to keep in mind when taking something

from the desktop world to the embedded world:

• Embedded networks often do not provide all distribution

modes (unicast, multicast, broadcast)

• Port numbers, hostnames, and IP addresses are not

available in embedded networking

• Message sizes can vary widely, and typically will be

significantly smaller than messages destined for a

desktop environment

• Determinacy and reliability are not just convenient −

they’re critical in a real-time world

• Sophisticated mechanisms, especially for

communication, are not found in embedded systems;

stick to the simplest single way of accomplishing a task

7. Acknowledgments

This work was supported by the General Motors Satel-

lite Research Laboratory at Carnegie Mellon University,

Robert Bosch GmbH, the NSF fellowship program, and the

Intel IMAP fellowship program. We would also like to ac-

knowledge Bill Nace, Keith Thompson, Greg Frazier,

Geoffrey Clements, and Mike Bigrigg for their invaluable

assistance.

8. References

[1] Bacellar, L.F., and Upender, B.P. “A Dependable

Distribution-Transparent Remote Method Invocation

Model for Object-Oriented Distributed Embedded

Computer Systems,” in Proc. of the First International

Symp. on Object-Oriented Real-Time Distributed

Computing, Kyoto, Apr. 1998, p. 467-76.

[2] Haakenstad, L.K., “The open protocol standard for

computerized building systems: BACnet,” Proc. Int. Conf.

On Control Applications, 1999, vol. 2, pp. 1585-1590.

[3] Kaiser, J., and Livani, A. “Invocation of Real-Time

Objects in a CAN Bus-System,” in Proceedings of the First

International Symposium on Object-Oriented Real-Time

Distributed Computing, Kyoto, April 1998, p. 298-307.

[4] Kelly, K., and Spencer, R. “Creating One Huge

Computer,” in Wired magazine, Aug. 1998.

[5] Kim, K., et al. “Integrating subscription-based and

connection-oriented communications into the embedded

CORBA for the CAN bus,” in Proc. of the Sixth IEEE

Real-Time Technology and Applications Symp.,

Washington, D.C., June 2000, p. 178-187.

[6] Kirrmann, H.& Zuber, P.A., “The IEC/IEEE train

communication network”, IEEE Micro, vol. 21 #2,

March-April 2001, pp. 81-92.

[7] Kopetz, H.; Grunsteidl, G., “TTP - a protocol for fault-

tolerant real-time systems,” IEEE Computer, vol. 27 #1,

Jan. 1994, pp. 14-23.

[8] Nace, W., and Koopman, P., “A Product Family

Architecture Approach to Graceful Degradation,” in

Proceedings of the International IFIP WG 10.3/10.4/10.5

Workshop on Distributed & Parallel Embedded Systems,

Paderborn, Germany, Oct 2000.

[9] Nace, W. & Koopman, P., “A Graceful Degradation

Framework for Distributed Embedded Systems,”

Workshop on Reliability in Embedded Systems, October 28,

2001 (in press).

[10] Nusser, G. and Gruhler, G. “Dynamic Device

Management and Access Based on Jini and CAN,” in

Proceedings of the Seventh International CAN Conference,

Amsterdam, Oct. 2000.

[11] Pawlan, M., “Introduction to Consumer and

Embedded Technologies,” Sun Microsystems Java

Developer Connection, Aug. 2000.

[12] Robert Bosch GmbH. Control Area Network

specification version 2, Sept. 1991.

[13] The Salutation Consortium. Salutation specification

version 2.0c, June 1999.

[14] Thompson, K., Frazier, G., and Clements, G. Online

correspondence with Jini developers, July 2000 - Feb.

2001.

[15] Tryggvesson, J., et al. “JBED: Java for Real-Time

Systems,” in Dr. Dobb’s Journal, Nov. 1999, p. 78-86.

[16] Veneers, B., “The Jini Vision: A glimpse into the

vision behind Jini technology,” in JavaWorld, Aug. 1999.

[17] Veneers, B., “Objects, the Network, and Jini: How Jini

raises the level of abstraction for distributed systems

programming,” in JavaWorld, June 1999.

[18] Waldo, J. “The End of Protocols”, Sun Microsystems

Java Developer Connection, June 2000.

[19] Waldo, J. “The Jini Architecture for Network-Centric

Computing,” in Communications of the ACM, vol. 42, no.

7, July 1999, p. 76-82.

