Using Architectural Properties to Model and Measure
Graceful Degradation

Charles Shelton, Philip Koopman

Electrical and Computer Engineering Department
Carnegie Mellon University
Pittsburgh, PA 15213, USA

{cshelton, koopman}@cmu.edu

Abstract. System-wide graceful degradation may be a viable approach to
improving dependability in computer systems. In order to evaluate and improve
system-wide graceful degradation we present a system model that will explicitly
define graceful degradation as a system property, and measure how well a system
gracefully degrades in the presence of multiple combinations of component
failures. The system’s software architecture plays a major role in this model,
because the interface and component specifications embody the architecture’s
abstraction principle. We use the architecture to group components into
subsystems that enable reasoning about overall system utility. We apply this
model to an extensive example of a distributed embedded control system
architecture to specify the relative utility of all valid system configurations. We
then simulate working system configurations and compare their ability to provide
functionality to the utility measures predicted by our model.

1 Introduction

Dependability is a term that covers many system properties such as reliability,
availability, safety, maintainability, and security [1]. System dependability is especially
important for embedded computer control systems, which pervade everyday life and
can have severe consequences for failure. These systems increasingly implement a
significant portion of their functionality in software, making software dependability a
major issue.

Graceful degradation may be a viable approach to achieving better software
dependability. If a software system can gracefully degrade automatically when faults
are detected, then individual software component failures will not cause complete
system failure. Rather, component failures will remove the functionality derived from
that component, while still preserving the operation of the rest of the system. Specifying
and achieving system-wide graceful degradation is a difficult research problem.
Current approaches require specifying every system failure mode ahead of time, and
designing a specific response for each such mode. This is impractical for a complex
software system, especially a fine grained distributed embedded system with tens or
hundreds of software and hardware components.

Intuitively, the term graceful degradation means that a system tolerates failures by
reducing functionality or performance, rather than shutting down completely. An ideal
gracefully degrading system is partitioned so that failures in non-critical subsystems do
not affect critical subsystems, is structured so that individual component failures have a

limited impact on system functionality, and is built with just enough redundancy so that
likely failures can be tolerated without loss of critical functionality.

In order to evaluate and improve system-wide graceful degradation, we present a
system model that enables scalable specification and analysis of graceful degradation.
We base the model on using the system’s interface definitions and component
connections to group the system’s components into subsystems. We hypothesize that
the software architecture, responsible for the overall organization of and connections
among components, can facilitate the system’s ability to implicitly provide graceful
degradation, without designing a specific response to every possible failure mode at
design time. We define a failure mode to be a set of system components failing
concurrently. By using the model to measure how gracefully a system degrades, we
predict that we can identify what architectural properties facilitate and impede
system-wide graceful degradation.

We demonstrate the usefulness of our model by applying it to a representative
distributed embedded system and showing how we can achieve scalable analysis of
graceful degradation. Our example system is a gracefully degrading elevator control
system that was designed by an elevator engineer and implemented in a discrete event
simulator (an earlier version of this system was presented in [2]). We use the simulator
to perform fault injection experiments by failing nodes during the system’s operation to
observe how well the system gracefully degrades, and compare the results to the
predictions of our model.

The rest of the paper is organized as follows. Section 2 identifies the problem of
specifying graceful degradation and how our model is scalable. Section 3 provides a
description of the key features of our model. Section 4 details our elevator control
system architecture in terms of the defined components and interfaces. Section 5 shows
how we applied our system model for graceful degradation to the elevator architecture
to specify the system utility function. Section 6 describes a preliminary fault injection
experiment we performed to validate the model. Section 7 describes previous related
work. Finally, section 8 ends with conclusions and future work.

2 Specifying Graceful Degradation

For graceful degradation to be possible, it must be possible to define the system's state as
“working” with other than complete functionality. In many systems, a substantial
portion of the system is built to optimize properties such as performance, availability,
and usability. We must be able to define the minimum functionality required for
primary missions, and treat optimized functionality as a desirable, but optional,
enhancement. For example, much of a car's engine control software is devoted to
emission control and fuel efficiency, but loss of emission sensors should not strand a car
at the side of the road.

Specifying and designing system-wide graceful degradation is not trivial. Graceful
degradation mechanisms must handle not only individual component failures, but also
combinations of component failures. Current graceful degradation techniques
emphasize adding component redundancy to preserve perfect operation when failures
occur, or designing several redundant backup systems that must be tested and certified

separately to provide a subset of system functionality with reduced hardware resources.
These techniques have a high cost in both additional hardware resources and complexity
of system design, and might not use system resources efficiently.

We define graceful degradation in terms of system utility: a measure of the system’s
ability to provide its specified functional and non-functional capabilities. A system that
has all of its components functioning properly has maximum utility. A system degrades
gracefully if individual component failures reduce system utility proportionally to the
severity of aggregate failures. Utility is not all or nothing; the system provides a set of
features, and ideally the loss of one feature should not hinder the system’s ability to
provide the remaining features. It should be possible to lose a significant number of
components before system utility falls to zero.

We focus our analysis on distributed embedded computer systems. Distributed
embedded systems are usually resource constrained, and thus cannot afford much
hardware redundancy. However, they have high dependability requirements (due to the
fact that they must react to and control their physical environment), and have become
increasingly software-intensive. These systems typically consist of multiple compute
nodes connected via a potentially redundant real-time fault tolerant network. Each
compute node may be connected to several sensors and actuators, and may host multiple
software components. Software components provide functionality by reading sensor
values, communicating with each other via the network, and producing actuator
command values to provide their specified behavior.

This work is a part of the RoSES (Robust Self-Configuring Embedded Systems)
project and builds on the idea of a configuration space that forms a product family
architecture [3]. Each point in the space represents a different configuration of
hardware and software components that provides a certain utility. Removal or addition
of a component to a system configuration moves the system to another point in the
configuration space with a different level of utility. For each possible hardware
configuration, there are several software configurations that provide positive system
utility. Our model focuses on specifying the relative utility of all possible software
component configurations for a fixed hardware configuration. For a system with N
software components, the complexity of specifying a complete system utility function is
normally O(2"). Our model exploits the system’s decomposition into subsystems to
reduce this complexity to O(2"), where k is the number of components within a single
subsystem. When we have a complete utility function for all possible software
configurations, we can use techniques described in [4] to analyze the utility of system
hardware configurations to determine the best allocation of software components to
hardware nodes.

3 System Model

System utility is a key concept in our model for comparing system configurations.
Utility is a measure of how much benefit can be gained from using a system. Overall
system utility may be a combination of functionality, performance, and dependability
properties. If we specify the relative utility values of each of the 2V possible
configurations of N software components, sensors, and actuators, then we can

determine how well a system gracefully degrades based on the utility differences among
different software configurations.

Our model enables complete definition of the system utility function without having
to evaluate the relative utility of all 2~ possible configurations. Our software data flow
model enables scalable system utility analysis by partitioning the system into
subsystems and identifying the dependencies among software components. Our system
utility model is based on the system’s software configurations, and is primarily
concerned with how system functionality changes when software components fail.

The fault model for our system uses the traditional fail-fast, fail-silent assumption on
a component basis, which is best practice for this class of system. We assume that
components can either be in one of two states: working or failed. Working means that
the component has enough resources to output its specified system variables. Failed
means the component cannot produce its specified outputs. Individual components are
designed to shut down when they detect an unrecoverable error, which enables the rest
of the system to quickly detect the component’s failure, and prevents an error from
propagating through the rest of the system. All faults in our model thus manifest as the
loss of outputs from failed components. Software components either provide their
outputs to the system or do not. Hardware component failures cause loss of all software
components hosted on that processing element. Network or communication failures can
be modeled as a loss of communication between distributed software components.

Section 3.1 describes our system data flow graph, section 3.2 details how we perform
our utility analysis, and section 3.3 identifies some of the key assumptions of our model.

3.1 Data Flow Graph and Feature Subset Definitions

We consider a system as a set of software, sensor, and actuator components. We
construct our system model as a directed data flow graph in which the vertices represent
system components (sensors, actuators, and software components), and the edges
represent the communication among components via their input and output interfaces.
We use these interfaces to define a set of system variables that represent an abstraction
of all component interaction. These variables can represent any communication
structure in the software implementation. Actuators receive input variables from the
system and output them to the environment, while sensors input variables from the
environment to the system. Our data flow graph can be derived directly from the
system's software architecture, which specifies the system's components and interfaces,
as well as component organization and dependencies.

We then partition the data flow graph into subgraphs that represent logical
subsystems that we term feature subsets. These feature subsets form the basis for how
we decompose the system utility analysis. A feature subset is a set of components
(software components, sensors, actuators, and possibly other feature subsets) that work
together to provide a set of output variables or operate a system actuator. Feature
subsets may or may not be disjoint and can share components across different subsets.
Feature subsets also capture the hierarchical decomposition of the software system, as
“higher level” feature subsets contain “lower level” feature subsets as components,
which further encapsulate other software, sensor, and actuator components.

The feature subset data flow graphs can also represent dependency relationships
among components. Each component might not require all of its inputs to provide
partial functionality. For example, in an elevator the door controllers can use the inputs
from the passenger request buttons to more efficiently open and close the doors based on
passenger input, but this is an enhancement to normal door operation that simply waits a
specified period before opening and closing the doors. If the door controllers no longer
received these button inputs, they could still function correctly.

We annotate our feature subset graph edges with a set of dependency relationships
among components. These relationships are determined by each component’s
dependence on its input variables, which might be strong, weak, or optional. If a
component is dependent on one of its inputs, it will have a dependency relationship with
all components that output that system variable. A component strongly depends on one
of'its inputs (and thus the components that produce it) if the loss of that input results in
the loss of the component’s ability to provide its outputs. A component weakly depends
on one of'its inputs if the input is required for at least one configuration, but not required
for at least one other configuration. Ifan input is optional to the component, then it may
provide enhancements to the component’s functionality, but is not critical to the basic
operation of the component.

3.2 Utility Model

Our utility model exploits the system decomposition captured in the software data flow
view to reduce the complexity of specifying a system utility function for all possible
software configurations. Rather than manually rank the relative utility of all 2" possible
software configurations of N components, we restrict utility evaluations to the
component configurations within individual feature subsets. We specify each
individual component’s utility value to be 1 if it is present in a configuration (and
providing its outputs), and 0 when the component is failed and therefore not in the
configuration.

We also make a distinction between valid and invalid system configurations. A valid
configuration provides some positive system utility, and an invalid configuration
provides zero utility. For graceful degradation we are interested in the utility
differences among valid system configurations, as the system is still considered
“working” until its utility is zero. In general, there are many “trivially” invalid system
configurations. A system configuration that strongly depends upon a component that is
failed provides zero utility regardless of what other components are present. For
example, any system configuration in which the elevator’s drive motor has failed cannot
provide its basic system functionality and is invalid, so examining the rest of the
system’s component configuration is unnecessary. However, there is still a set of
multiple valid configurations that must be ranked for system utility, and we use our
subsystem definitions to specify the utility of these system configurations.

If we restrict our analysis to individual feature subset component configurations, we
only need to rank the relative utility values of all valid configurations within each
feature subset. For feature subsets with a maximum of k << N components, this is a
much more feasible task. We only need to manually rank at most the utilities of 2
possible configurations for each feature subset Additionally, we can significantly

reduce the number of configurations we must consider by using component
dependencies to determine the valid and invalid configurations of each feature subset.

We can then determine overall system utility by examining the system configurations
of the “top level” feature subsets that provide outputs to system actuators. All other
feature subsets utility evaluations are encapsulated within these subsystems that provide
external system functionality. We can completely specify the system utility function
without manually specifying the relative utility values of all 2" possible system
component configurations, but rather specifying the utilities of 2" feature subset
configurations for each feature subset in the system.

We can use this model to develop a space of systems with varying degrees of graceful
degradation. At one end of the spectrum, we have extremely “brittle” systems that are
not capable of any graceful degradation at all. In these systems, any one component
failure will result in a complete system failure. In our model, this would be a system
where every component is a member of at least one required feature subset, and each
feature subset strongly depends on all of its components. Therefore, every component
must be functioning to have positive system utility.

Similarly, any modular redundant system can be represented as a collection of
several feature subsets, where each feature subset contains multiple copies of a
component plus a voter. The valid configurations that provide positive utility for each
feature subset are those that contain the voter plus one or more component copies. This
redundant system can tolerate multiple failures across many feature subsets, but cannot
tolerate the failure of any one voter or all the component copies in any one feature
subset.

At the other end of the spectrum, an ideal gracefully degrading system is one where
any combination of component failures will still leave a system with positive utility. In
our model, this system would be one where none of its feature subsets would be labeled
as required for basic functionality, and every component would be completely optional
to each feature subset in which it was a member. The system would continue to have
positive utility until every component failed.

3.3 Assumptions of Our Model

Our model is never any worse than having to consider 2" system configurations of N
components, and in typical cases will be a significant improvement. We have made
several assumptions with regard to how these software systems are designed. First, we
assume that the parameters of the utility function for each feature subset configuration
are independent of the configuration of any other feature subset in the system. We only
define different utility functions for different feature subset configurations, in which a
configuration specifies whether a component is present and working (providing positive
utility) or absent and failed (providing zero utility).

When a feature subset is treated as a component in a higher-level feature subset, that
component can potentially have different utility values based on its current
configuration, rather than just 1 for working and 0 for failed as with individual software
components, sensors, and actuators. This could potentially mean that in order to define
the higher-level feature subset’s utility function, we would have to define a different
utility function for every possible utility value for every feature subset contained as a

component in the higher-level feature subset. However, this is only necessary if the
encapsulated feature subsets are strongly coupled within higher level feature subsets.
Because system architects generally attempt to decouple subsystems, we assume that
encapsulated feature subsets are not strongly coupled. If some subsystems are strongly
coupled, one could apply multi-attribute utility theory [5] to deal with the added system
complexity within the model.

We also assume that the system is “well-designed” such that combinations of
components do not interact negatively with respect to feature subset or system utility. In
other words, when a component has zero utility, it contributes zero utility to the system
or feature subset, but when a component has some positive utility, it contributes at least
zero or positive utility to the system or feature subset, and never has an interaction with
the rest of the system that results in an overall loss of utility. Thus, working components
can enhance but never reduce system utility. We assume that if we observe a situation in
which a component contributes negative utility to the system, we can intentionally
deactivate that component so that it contributes zero utility instead.

Our utility model only deals with software system configurations, and we do not
directly account for hardware redundancy as a system utility attribute. However, in
general hardware redundancy mechanisms will not affect system functionality, but
rather hardware system reliability or availability. To analyze tradeoffs between system
functionality and dependability, we could again apply multi-attribute utility theory to
judge the relative value of the software configuration’s utility and the hardware
configuration’s reliability and availability to the system’s overall utility. This analysis
may include factors such as system resource costs and hardware and software failure
rates.

4 Example System: A Distributed Elevator Control System

To illustrate how we can apply our system model to a real system, we use a design of a
relatively complex distributed elevator control system. This system was designed by an
elevator engineer (the second author) and has been implemented in a discrete event
simulator written in Java. This elevator system has been used as the course project in the
distributed embedded systems class at Carnegie Mellon University for several
semesters. Since we have a complete architectural specification as well as an
implementation, we can directly observe how properties of the system architecture
affect the system’s ability to gracefully degrade by performing fault injection
experiments in the simulation.

Our view of the elevator system is a set of sensors, actuators and software
components that are allocated to the various hardware nodes in the distributed system.
The nodes are connected by a real-time fault tolerant broadcast network. All network
messages can be received by any node in the system. Since all communication among
components is via this broadcast network, all component communication interfaces map
to a set of network message types.

Our elevator system architecture is highly distributed and decentralized, and is based
on the message interfaces that system components use to communicate. System inputs
come from “smart” sensors that have a processing node embedded in the sensing device.

These sensors convert their raw sensor values to messages that are broadcast on the
network. The software control system, implemented as a set of distributed software
components, receives these messages and produces output messages that provide
commands to the actuators to provide the system’s functionality.

The elevator consists of a single car in a hoistway with access to a set number of
floors f. The car has two independent left and right doors and door motors, a drive that
can accelerate the car to two speeds (fast and slow) in the hoistway, an emergency stop
brake for safety, and various buttons and lights for determining passenger requests, and
providing feedback to the passengers. Since the sensors and actuators map directly to
the message interfaces among components, we list all the possible interface message
types along with their senders and receivers below to define the components and
interfaces of the system architecture. In the following notation, the values within the
“[]” brackets represent the standard replication of an array of sensors or actuators, and
the values within the “()” parentheses represent the values the sensor or actuator can
output. For example, the Hall call message type maps to an array of sensors for the up
and down buttons on each floor outside the elevator that is f'(the number of floors the
elevator services) by d (the direction of the button; Up or Down) wide, and each button
sensor can either have a value v of True (pressed) or False (not pressed). Unless
otherwise noted, “f” represents the number of floors the elevator services, “d”
represents a variable that indicates a direction of either Up or Down, “j” is a variable that
is a value of either Left or Right (for the left and right elevator doors), and “v”’ denotes a
value that can be either True or False.

The sensor message types available in the system include:

« AtFloor[f](v): Output of AtFloor sensors that sense when the car is near a floor.

« CarCall[f](v): Output of car call button sensors located in the car.

» CarLevelPosition(x): Output of car position sensor that tracks where the car is in
the hoistway. x = {distance value from bottom of hoistway}

« DoorClosed[j](v): Output of door closed sensors that will be True when the door
is fully closed.

« DoorOpen|j](v): Output of door open sensors that will be True when the door is
fully open.

« DoorReversal[j](v): Output of door reversal sensors that will be True when door
senses an obstruction in the doorway.

+ HallCall[f,d](v): Output of hall call button sensors that are located in hallway
outside the elevator on each floor. Note that there are a total of 2f - 2 rather than 2f
hall call buttons since the top floor only has a down button and the bottom floor
only has an up button.

« HoistwayLimit[d](v): Output of safety limit sensors in the hoistway that will be
True when the car has overrun either the top or bottom hoistway limits.

» DriveSpeed(s,d): Output of the main drive speed sensor. s = {speed value}, d =
{Up, Down, Stop}

The actuator command messages available in the system are:

+ DesiredFloor(f, d): Command from the elevator dispatcher algorithm indicating
the next floor destination. d = {Up, Down, Stop} (This is not an actuator input, but
rather an internal variable in the control system sent from the dispatcher to the
drive controller)

{Left, Right}

{Up,Down} prive Speed {1 ... f} AtFloor DoorOpen {Left, Right}
Hoistway Limit Sensor Sensors Sensors Door Reversal
Sensors Sensors
Safety Monitor) {Left, Right} Door\ {Left, Right}
Controller and &Dnve Motor and | Car Position Motors and Door Closed
Emergency Brake Controller Sensor Controllers Sensors
O O o
Fault Tolerant V o
Broadcast Network
Dispatcher 2| [2 o % % [S]
Controller A
{1..fiCarCall (1. f}Hall Call {Up, Down}
Button Sensors,, {Up, Down} Lantern C9ntrollers
Controllers, and nghts Button Sensors’ and nghts Car Positi
; ar Position
[ga;dwarecN“e Controllers, and Lights _ Indicator Controller
O Software Component {1 ... f} Virtual and Lights
v ie?SOtr AtFloor
A Actuator
__ Network Connection Controllers

Figure 1. Hardware View of the Elevator Control System

« DoorMotor[j](m): Door motor commands for each door. m = {Open, Close,
Stop}

* Drive(s, d): Commands for 2-speed main elevator drive. s = {Fast, Slow, Stop}, d
= {Up, Down, Stop}

« CarLantern[d](v): Commands to control the car lantern lights; Up/Down lights
on the car doorframe used by passengers to determine the elevator’s current
traveling direction.

+ CarLight[f](v): Commands to control the car call button lights inside the car call
buttons to indicate when a floor has been selected.

+ CarPositionIndicator(f): Commands for position indicator light in the car that
tells users what floor the car is approaching.

 HallLight[f,d](v): Commands for hall call button lights inside the hall call buttons
to indicate when passengers want the elevator on a certain floor.

« EmergencyBrake(v): Emergency stop brake that should be activated whenever
the system state becomes unsafe and the elevator must be shut down to prevent a
catastrophic failure.

For each actuator, there is a software controller object that produces the commands
for that actuator. The drive controller commands the drive actuator to move the elevator
based on the DesiredFloor input it receives from the dispatcher software object. The left
and right door controllers operate their respective door motors. The safety monitor
software monitors the elevator system sensors to ensure safe operation and activate the
emergency brake when necessary. The various software objects for the buttons and

eI - =" Left Door Tl

- Car Posﬂmr?"ve Speed o~ " Left Door Ope Left Door AtFloor
L Sensor W Reversal genso Closed y
Sensor AtFloor ™, | Sensor Se Sensors \
/" Desired Floor W Sensors | _ v Desired Floor:
! Subsystem - \ 1 Drive Speed Subsystem |
Hoi . S <€ Door |1 gensor !
{Hoistway Limit <&~ - Closed '} > CarCall |
i Sensors 3 Sensors ‘ \ \ 4 @ Buttons |
| Safety @ N R, Hall Call |
" Monitor ' @ 1\ Drive e /
' i - A Left Door _ Buttons/
Door ; Control Left Door |, Controller 4
N Controller DN
Contrel/, “._____ Motor //_,—
o Drlve Motor A\ TN --
JRREEERRS = Left Door _ nght Door
' o Control - Control
Drive Control @ Feature Subs’e\t‘ > Feature Subset
Feature Subset %" Drive LeftDoor v - -Right Door
%‘;é”s’;a;ed Command Message Command Message
<& Feature Subset «— Strong Dependence ?FD::) rngntl:olt
© Software Component <= Weak Dependence , realure Stbse
v Sensor «--- Optional {Left, Right} Door
A Actuator --=~- Feature Subset Boundary Command Messages

Figure 2. Feature Subset Graphs of the Door and Drive Control Subsystems

lights determine when to activate the lights to indicate appropriate feedback to the
passengers. Additionally, since the AtFloor sensors are a critical resource for the
elevator system, we have redundant “virtual” AtFloor software components that can
synthesize AtFloor messages based on data from the car position and elevator drive
speed sensors. If some of the physical AtFloor sensors fail, these software sensors can
be used as backups. The elevator control system consists of 8 + 4f sensors, 5 + 3f
actuators, and 6 + 4f software components, for a total of 19 + 11f components in the
system. Figure 1 illustrates how these system components are allocated to hardware
nodes in the elevator’s distributed control system.

In our experiments, we simulated an elevator with seven floors, meaning that there
were a total of 96 components in the system. To specify how well the system gracefully
degrades with respect to all possible combinations of component failures, the traditional
approach would require a manual ranking of the utility of all 2°° = 7.92 * 10%® possible
system configurations. Our model exploits the information available from the system
architecture to overcome this exponential difficulty.

5 Specifying the Elevator Control System

We can use the component and interface specifications of the elevator control system to
apply our system model for graceful degradation. We will not reproduce the entire


~~~~~ Hoistway Limit-----------_Hoistway Limit

Sensors  Sensor . Up Senfor I Down Sensor
! Door Reversal & \ Hoistway -} - - --- - 'HO’Stway
| Sensors @ Control g‘ {Floor Limit Up Flmlt Down
' Door < ensors -, Message-.. _ Message
\ Hoistway |
\ it oistway Limi ]
\Contro\‘ &> Limit y /. Hoistway Limit <>
. Sensors / Sensors Hoistway Limit
.. Safety Monitor Feature Subset {Up, Down}
\qu‘lftoller __________ e Messages
. Emergency
BrakeActuator Left Door Right Door
Reversat Sensor- Reversal Sensor
Safety Monltor <& / v )
Feature Subset Leff Doari IRrght Door
Emergenc Left Door 3 Right Door Reversal © Reversal
Brake y CIosedSEsor CIosedSensor Message. - Message
Hessace L?Zagggf ————————— I - '.-""‘ ) Door Reversal
<% Feature Subset bt . Sensors
@ Message, Right Door qeft, Right Feature Subset
 Software Component . Closed Door Reversal
Door Closed
v  Sensor & Message Messages
A Actuator . ?ensgri )
«— Strong Dependence eature subse .
< - Weak Dependence {Left, Right}
«--- Optional DA?’orC/osed
--=-- Feature Subset Boundary essages

Figure 3. Feature Subset Graphs of the Safety Monitor Subsystem

system data flow graph here, but rather show the subgraphs for each feature subset we
identified and how we performed our analysis using these subsystem definitions.

5.1 Elevator Feature Subsets

In the elevator system, there are several functional subsystems that map to feature
subsets. The primary control systems in the elevator operate the drive and the door
motors. Their feature subsets are defined by the inputs and outputs of the drive
controller, and left and right door controller software objects. Figure 2 displays these
feature subsets and the dependency relationships among their components. In the
diagrams we annotated the output variables of each feature subset. The left and right
door control feature subsets are nearly identical with the exception of which door
sensors and actuators they contain, so only the left door control feature subset is shown
in detail.

These feature subsets are responsible for controlling the drive and door actuators, but
they also output their command variables over the network to the rest of the system.
This allows subsystems to loosely coordinate their operation without being strongly



i

|
\
\

T Door Closed e Car Call N

i
1

" AfFloor \ ; AtFloor ",
/ Sensors Sensors Hall Call ™ . ,/ Door Closed ButtFoI:oSreLsor Floor 1 ‘}
Drive Speed & N ’ /

Sensor ‘ CarCall » ‘ /

[ Il

T Buttons ;
) < i\ Car Call Light

i

\ . . Y - /
/
R -  Command Messagel | controller
Desired Floor ‘_ TCarCalr Ao -
Subsystem- <> Floor 1 Button..- (,?:%OC;‘a/I
Feature Subset | pasired Floor  ©ar Call Ligh-t»-"' "
Floor1 e essage
Message Featm_-----------ﬁ: ____________________ Car Call
Feature Subset CarCall ., ~~Floor f
< Software Component Subset‘ Floor 2 ‘ Fséature
v Sensor Carcéil ------ Feature---; ____________. ---Subset
A Actuator Floor 1 ¥ Subset vCarCall v Car Call
«— Strong Dependence Message Floor 2. Floor f
< — Weak Dependence _Message Message
«--- Optional Car Call Buttons
-~~~ Feature Subset Boundary Feature Subset | Car Call {Floor 1 ... f
Messages

Figure 4. Feature Subset Graphs for the Desired Floor and Car Call Button Subsystems

coupled and dependent on each other. For example, the Door Controllers must receive
inputs from the Drive Speed sensor in order to safely operate the door only when the
elevator is not moving. However, the Door Controller can also use the command output
from the Drive Control feature subset to anticipate when the elevator will stop based on
the command sent from the Drive Control feature subset, thus allowing more efficient
door operation via sending the door open command slightly before the elevator is level
with the destination floor. The Drive Control feature subset encapsulates all of its
components, so that it is represented as a single component that outputs the Drive
command system variable in the Left and Right Door Control feature subsets. Likewise
the Door Control feature subset encapsulates all of the components in the Left and Right
Door Control feature subsets.

These feature subsets also contain several identical components, such as the Drive
Speed and AtFloor sensors. These components do not represent multiple copies of the
same component in the software data flow view, but rather that these feature subsets
overlap and share some of their components. The feature subset graphs show
dependencies among components, but not whether individual components are
replicated for multiple subsystems. There may be multiple redundant sensors installed
in the system, but the information about how components are allocated to hardware
would be visible in the hardware architecture and is orthogonal to the software data flow

view of our system model.



Ha||__||Ca||1UP '::L:Lt:r Feature Subset
i oor Desired Floor| Software Component
/Door Closed Button Sensor Sensor v Sensor
i Subsystem /
| Sensors ‘ @ @ @ A Actuator
i - ,' «— Strong Dependence
i Hall C,:‘j'go% Ligh kHa;IIS:rIuUp < — Weak Dependence
“~._Command Message,, | Controller / «--- Optional
ey X --==- Feature Subset Boundary
“>Hall Call Up - Ha//T Cﬂ;” UP‘
Floor1 Button Light | Foor T\ essage ol Call U Hall Call Up
. P 3
 FlOOF2 - Floor f-1
Hall CaII Up _Feature Subset Fe‘ature\ Subset
Floor 1< \
Feature Subsét __________________________________________________
Hall Call Up v Hall Call Up & HaII Call Up
Floor 1 Message Floor 2 Message . Floorf 1 Message
Hall Call Up Hall Call D
Buttons .-~~~ iET oo -a B ?t own
.\, Buttons
Feature SUbS?t‘ Fe.ature Subset
Hall Call Up ~~i

Hall Call VHaII Call Down

{Floor 1. ”} “<@>Buttons  {Floor 2 ... f
lessages
All Hall Call |  Feature Messages

Messages + Subset

Figure 5. Elevator Hall Call Button Feature Subsets

We defined several other feature subsets for our elevator system in addition to the
Door Control and Drive Control feature subsets. The Safety Monitor software
component and its inputs and outputs defines the Safety Monitor feature subset. The
Safety Monitor feature subset is responsible for detecting when the elevator system state
becomes unsafe, such as the doors opening while the elevator is moving, the doors
failing to reverse direction if they bump into a passenger while closing, or the elevator
crashing into the top or bottom of the hoistway. In any unsafe situation, the Safety
Monitor must trigger the Emergency Brake actuator that shuts down the elevator system
to prevent a catastrophic failure. Figure 3 shows the Safety Monitor feature subset
along with some of the sensors from which it receives inputs. The Safety Monitor must
receive inputs from both the Door and Drive Control feature subsets to ensure that their
commands are consistent with the elevator’s actual operation determined from the drive
speed and door sensors.

The Door Control, Drive Control, and Safety Monitor feature subsets represent the
critical elevator subsystems that provide an elevator’s basic functionality. An efficient
elevator should also respond to passenger requests to move people quickly to their
destination floors. The Drive Controller listens to the DesiredFloor system variable to
determine its next destination, and this variable is the output of the Desired Floor feature
subset. The Desired Floor feature subset contains the Dispatcher software component
that implements the algorithm for determining the next floor at which the elevator



ition "™~~~ Desired Floor "
-~ Desired Floor Car Position /Door Closed AtFloor
/ Sensor . ! Subsystem \
Subsystem v Drive Spee d\‘ / Sensors & ensors |
/ AtFloor Sensor ‘ |
! Sensors | | i
\ o \ Lantern Up
Car Position ., Carlantern | Controller -
Indicator  Car Position *-. Up Light
*~.._Controller Indicator / T T
Lights ./ =
e T Lantern ,.-===""""""Down Feature Subset
= Control Up™. <>
Feature Subset < J
Car Position <% Car Position Indicator e -€afr Lantern
Indicator Command Feature Subset ar Laniem _Down Light
Message Up Light ..  Command
Message ™. < Message
Feature Subset «— Strong Dependence Car Lantern <&
¢ Software Component < — Weak Dependence Feature Subset | Car Lantern
v Sensor «--- Optional {Up, Down}
A Actuator --=-- Feature Subset Boundary Command Messages

Figure 6. Car Position Indicator and Car Lantern Feature Subsets

should stop. The Dispatcher receives inputs from the Car Call and Hall Call buttons to
determine passenger intent and compute the elevator’s next destination. The Car Call
and Hall Call buttons in turn form their own feature subsets that provide the button
sensor messages to the rest of the system, but also control the button lights to provide
appropriate passenger feedback. Figures 4 and 5 show the feature subset definitions for
the Desired Floor, Car Call and Hall Call feature subsets. The feature subsets for the Car
Call and Hall Call buttons are similarly defined for each floor since each Car Call and
Hall Call software controller have similar input and output interfaces. Each Car Call
and Hall Call controller outputs the value of its respective sensor on the network for the
rest of the system, but only sends the command messages for its button light to its
actuator.

In order to encourage people to move quickly in the elevator, the Car Lantern and Car
Position Indicator lights provide feedback to let the passengers know the elevator’s
current traveling direction, and the elevator’s next floor destination. Figure 6 displays
the feature subsets for the Car Position Indicator and up and down Car Lantern light
subsystems. These features are not essential for the elevator’s basic operation, but
provide information to the passengers to help them use the elevator more efficiently.

One essential subsystem that is required by all of the other major elevator subsystems
is the AtFloor Sensors feature subset. Nearly every feature subset strongly depends on
AtFloor sensor information to provide functionality. For example, the Drive Control
and Door Control feature subsets need the AtFloor sensor information to correctly
operate the drive and door motors. Since this is such a critical feature in the elevator
system, our elevator design also has redundant software components. The Virtual
AtFloor software components can synthesize AtFloor sensor messages from the Car



Drive Speed  Car Position ™
P . ‘ Feature Subset
Sensor Sensor
v
JAN
‘_
< -
«---

/ \ Software Component
/ AtFloor ¢ ‘

i Floor1 SensorY‘__‘

R Loy Virtual AtFloor

Sensor
i Floor 1 Controller

Strong Dependence

Actuator
- \ Weak Dependence

B E Optional
¥ AtFloor --=~- Feature Subset Boundary
‘ Floor 1 Message™  AtFloor
AtFloor. .- 7-""““"““'!:"99!‘2 """"""""" ~~--__AtFloor
Floor 1 Feature Subset \\\Floor ;
Feature Subset & Feature Subset
“mizsmdnmmmm s Ao b AtFloor-+--==~
AtFloor i Floor 2 v Floorf-3
Floor 1 "o Message .Message

Message  atFioor Seh's'b'rs---"""'

Feature Subset | 4tfioor fFioor 1 ..
Messages

Figure 7. AtFloor Subsystem Feature Subset Graph

Position and Drive Speed sensors when the physical AtFloor sensors fail. Thus they are
included in the AtFloor sensor feature subset graphs. Figure 7 shows the AtFloor
feature subset description for the elevator system in our model.

5.2 Utility Analysis

The elevator system has a total of 19 + 11fsystem components, meaning there are 2'* 'V
possible system configurations. The system can provide basic functionality if the
minimum components necessary to operate the drive motor, door motors, and maintain
safety are present. Thus these 17 components (Drive Controller software, drive speed
sensor, drive motor, Left and Right Door Controller components, left and right door
motors, all door sensors, Safety Monitor software, hoistway limit sensors, emergency
brake actuator) are fixed and must be present in every valid configuration. All other
components (such as the button lights and sensors and passenger feedback lights) can be
considered optional and present in any configuration. There are 1 + 9/ optional
components that can have 2' * ¥ possible configurations.

Enough components to provide working AtFloor feature subsets for each floor must
be present as well. Therefore, on each floor there must be a working AtFloor sensor or a
working VirtualAtFloor component with a working Car Position sensor. If the Car
Position sensor breaks, then all AtFloor sensors must work. Since all the AtFloor
sensors must work in this situation, they are fixed and have one configuration.
However, the Virtual AtFloor components can either work or not work since their failure



Table 1. Valid Configurations in each Feature Subset

Feature Subset # Sin;il:irsziesature Config#u:'IaatIiI:ns per C;)f:glu\rl:tlitins
Feature Subset

Drive Control 1 8 8
Left/Right Door Control 2 16 32
Top Door Control 1 3 3
Door Closed Sensors 1 1 1
Door Reversal Sensors 1 1 1
Hoistway Limit Sensors 1 1 1
Safety Monitor 1 1 1
Desired Floor 1 4 4
AtFloor per floor f 9 9f
Top AtFloor 1 f f
Car Call per floor f 8 8f
Top Car Call 1 f f
Hall Call per floor 2f-2 16 32f- 32
Top Hall Call Up/Down Buttons 2 f-1 2f-2
Top Hall Call Buttons 1 3 3
Lantern Control Up/Down 2 1 2
Top Car Lantern 1 3 3
Car Position Indicator 1 8 8
Totals: 16 + 4f 33 +53f

will not affect the availability of the AtFloor system variables, making 2’ valid
combinations for the various VirtualAtFloor components. If the Car Position sensor
works, then one or both AtFloor sensor and VirtualAtFloor component must work for
each floor, so the only invalid combinations are when both have failed for at least one
floor. This means there are 3 valid combinations per floor, making 3/ valid
combinations out of the possible 2¥. Thus there are 2’ + 3/ valid combinations of
components in the AtFloor feature subset.

The total number of possible valid system component configurations after
eliminating all configurations that will always have utility zero is (2 + 3)(2' ). For
our elevator with seven floors this is approximately 4.27 * 10** configurations that still
must be manually ranked. This is a significant reduction from the 7.92 * 10*® total
possible system configurations, but still intractable for specifying system-wide graceful
degradation. However, we can exploit the structure of the system design captured in the
feature subset definitions to reduce the number of configurations we must rank to
completely specify the system utility function.



We have defined 16 + 4f distinct feature subsets in the elevator system. If fis small,
the largest feature subsets are the left and right door control feature subsets, with 11
components each. Thus we must rank a maximum of 2'' = 2048 configurations in any
one feature subset.

Since we can determine the valid and invalid configurations in each feature subset by
examining the component dependencies, we can significantly reduce the number of
configurations we must consider in each feature subset. For example, in the left and
right door control feature subsets, 7 of the 11 components are required for the feature
subset to provide utility, meaning we only need to consider the 16 possible
configurations of the 4 optional components. If fis large, the number of configurations
in feature subsets that contain f components (AtFloor, Car Call, and Hall Call Up/Down)
will dominate. However, these feature subsets contain components that are largely
orthogonal since each component’s functionality is restricted to a different floor.
Therefore we can simplify the utility specification of these feature subsets to a linear
combination of the utility values of their components, requiring only that we specify f
weights for each component utility in the feature subset. Table 1 summarizes the
number of valid configurations that must be assigned utility values in each feature
subset for a total of 33 + 53ffeature subset configurations that must be considered across
the entire elevator system. For our seven floor elevator, this totals 404 valid feature
subset component configurations for the entire system.

We can then determine overall system utility by composing the system
configurations of the “top level” feature subsets that provide system functionality. In
the elevator system, these feature subsets are the Drive Control, Door Control, Safety
Monitor, Car Call, Hall, Call, Car Lantern, and Car Position Indicator feature subsets.
All other feature subsets are encapsulated within these seven subsystems that provide
external system functionality. Since the Drive Control, Door Control, and Safety
Monitor feature subsets must be present to provide minimum elevator functionality, that
leaves only 2* = 16 possible configurations of the other four feature subsets in the
system. Once we specify the relative utilities of these 16 configurations in addition to
the 404 total feature subset configurations, we can completely specify the system utility
function. We have greatly reduced the number of configurations we must evaluate from
4.27 * 10* system component configurations to 420 feature subset configurations to
assess the system’s ability to gracefully degrade.

6 Experimental Validation

If our model accurately predicts the relative utility of all system configurations, we can
assess how well the system gracefully degrades by observing how system utility
changes when the system configuration changes as components fail. To validate our
model, we performed some preliminary fault injection experiments on a simulated
elevator implementation. A discrete event simulator simulates a real time network with
message delay that delivers broadcast periodic messages between system components.
Each software component, sensor, and actuator is a software object that implements its
message input and output interface to provide functionality. Sensor and actuator objects
interact with the passenger objects that represent people using the elevator. Each



0.012 - Simulator Test 1 (14 Passengers)

0.01 ~

0.008

1

0.006

1

0.004

1

Elevator Performance
1/(Average Pass. Travel Time (s))

0.002 ~

0 T T T T 1
0.000 0.200 0.400 0.600 0.800 1.000
Predicted Configuration Utility Values

0.012 - Simulator Test 2 (50 Passengers)
0.01 -

0.008

1

0.006

1

0.004

1

Elevator Performance
1/(Average Pass. Travel Time (s))

0.002

1

O T T T T 1
0.000 0.200 0.400 0.600 0.800 1.000
Predicted Configuration Utility Values

Figure 8. Utility vs. Average Performance for Selected Elevator System Configurations

simulation experiment specifies a passenger profile that indicates how many passengers
attempt to use the system, when they first arrive to use the elevator, what floor they start
at, and their intended destination. We can specify which elevator system configuration
to simulate by setting which components are failed at the start of the simulation.

In general, system utility should be a measure of how well the system fulfills its
requirements, and could incorporate many system properties such as performance,
functionality, and dependability. An elevator system’s primary function is to efficiently
transport people to their destinations, minimizing how long passengers must wait for
and ride in the elevator. Therefore, in our simulation experiments, we use the elevator’s
average performance per passenger as a proxy for measuring system utility. We track
how long it takes for each passenger to reach their destination, from the time they first
arrive to use the elevator to the time they step off the elevator at their intended floor.



We selected a small subset of the possible valid elevator system configurations, and
ran two passenger profiles on each system configuration. The configurations we
selected for evaluation included the configuration in which only the minimum required
components for basic operation were present, as well as the configuration in which all of
the components were working. We also picked several configurations in which
different subsets of Car Call and Hall Call buttons were failed so that the elevator could
not receive all passenger requests. One encouraging result of our experiment is that
every valid configuration we tested eventually delivered all passengers to their
destination regardless of which set of system components were failed.

We measured the average performance of each system configuration and compared it
to its system utility as predicted by our model. If our model accurately predicted system
utility, we should see configurations that have higher utility measures achieve better
average performance. Figure 8 graphs the utility of the tested system configurations
versus the elevator performance per passenger. The system configurations on the
horizontal axis are ordered by utility, so the performance measures should be
monotonically increasing. The graphs show a general trend of increasing performance,
but it is not monotonically increasing.

However, elevator performance can be largely affected by how frequently
passengers arrive and how the dispatcher deals with a loss of button inputs. Our
dispatcher algorithm would periodically send the elevator to visit floors for which it was
not receiving button information in order to ensure that all passengers eventually get
delivered to their destination. Thus, sometimes elevator performance would suffer to
ensure that no passengers were stranded. The fact that none of the system
configurations tested suffered a complete system failure and delivered all passengers
indicates that the system can gracefully degrade in the presence of multiple component
failures.

This experiment was limited because we were only able to test a small number of
configurations on two passenger profiles. We plan to extend this experimental
validation with a wider range of different passenger profiles, as well as test many more
different system configurations. We also plan to run these experiments with variants of
the elevator architecture that are designed with different degrees of graceful degradation
mechanisms.

7 Related Work

Previous work on formally defining graceful degradation for computer systems was
presented in [6]. That work proposed constructing a lattice of system constraints that
identifies what tasks the system can accomplish based on which constraints it can
satisfy. A system that works perfectly satisfies all constraints, and a system that
encounters failures might satisfy a looser set of constraints and still provide
functionality, but is degraded with respect to some system properties. The difficulty
with this model is that in order to specify the relaxation lattice, it is necessary to specify
not only every system constraint, but also how constraints are relaxed in the presence of
failures. It further requires determining how constraints interact and developing a
recovery scheme for every possible combination of failures in order to move between



points in the lattice. Because all combinations of component failures must be
considered, specifying and achieving graceful degradation is exponentially complex
with the number of system components. Our model for specifying graceful degradation
overcomes this difficulty by encapsulating utility evaluations within individual
subsystem configurations rather than evaluating the system as a whole in a single step.
Other work on graceful degradation has focused on developing formal definitions [7, 8],
but has not addressed how to apply these definitions to real system specifications, nor
how to overcome the problem of exponential complexity for specifying failure modes
and recovery mechanisms.

Current industry practice for dealing with faults and failures in embedded systems
focuses on the traditional approaches of fault tolerance and fault containment [9].
Software subsystems are physically separated into different hardware modules.
Additionally, system resources, such as sensors and actuators, that may be commonly
used are replicated for each subsystem. That approach provides assurance that faults
will not propagate between subsystems since they are physically partitioned, and fault
tolerance is achieved by replicating resources and subsystems. Typically, failures are
dealt with by having separate backup subsystems available rather than shedding
functionality when resources are lost. This approach is a restricted form of graceful
degradation, in that it tolerates the loss of a finite set of components before suffering a
complete system failure. However, this methodology is costly because of its high level
of redundancy.

A promising approach to achieving system dependability is NASA’s Mission Data
System (MDS) architecture [10, 11]. This system architecture is being designed for
unmanned autonomous space flight systems that must complete missions with limited
human oversight. Their architecture focuses on designing software systems that have
specific goals based on well defined state variables. The software is decomposed based
on the subgoals it must complete to satisfy its primary goal. The software is not
constrained to a particular sequence of behavior, but rather must determine the best
course of action based on its goals. The potential difficulties with this approach include
the effort required to decompose goals into subgoals, and conflict resolution among
subgoals at run time. Our framework differs from MDS in that we specifically focus on
behavior-based subsystems and the coordination among them through system
communication interfaces.

Survivability and performability are related to our concept of graceful degradation.
Survivability is a property of dependability that has been proposed to define explicitly
how systems degrade functionality in the presence of failures [12]. Performability is a
unified measure of both performance and reliability that tracks how system performance
degrades in the presence of faults [13]. Our work differs from survivability in that we
are interested in building implicit graceful degradation into systems without specifying
all failure scenarios and recovery modes a priori. Also, we focus on distributed
embedded systems rather than on large-scale critical infrastructure information systems.
Performability relates system performance and reliability, but our concept of graceful
degradation addresses how system functionality can change to cope with component
failures. Military systems have long used similar notions to provide graceful
degradation (for example, in shipboard combat systems), but had scalability limits and
were typically limited to a dozen or so specifically engineered configurations.



8 Conclusions

Our system model provides a scalable approach to determining how well a system
gracefully degrades. Since individual component failures simply transform the system
from one configuration to another, we can evaluate how well the system gracefully
degrades by observing the utility differences among valid system configurations. By
exploiting the fact that systems are decomposed into subsystems of components, we can
reduce the complexity of determining the utility function for all possible system
configurations from O(2") to O(2"), where N is the total number of software
components, sensors, and actuators in the system, and k is the maximum number of
components in any one subsystem. Data dependency relationships among components
enable efficient elimination of invalid configurations from our analysis. In the elevator
system, we used our system model to generate a complete system utility function for all
427 * 107 valid system configurations by only examining 420 subsystem
configurations.

Our model consists of a software data flow graph for determining dependency
relationships among software components, sensors, and actuators, and a utility model
that provides a framework for comparing the relative utility of system configurations.
Since feature subset definitions are based on component input and output interfaces,
they can be automatically generated from the software architecture specification. We
allow multiple feature subsets that require the same input system variable from another
component to share that component. Feature subsets are in general not disjoint, and a
component or feature subset encapsulated in one high-level feature subset may belong
to several other feature subsets. This allows us to decouple subsystem utility analyses
within our model, even if the system itself does not completely encapsulate its
subsystems into a strict hierarchy.

For graceful degradation in the elevator system we designed the software
components to have a default behavior based on their required inputs, and to treat
optional inputs as “advice” to improve functionality when those inputs are available.
For example, the Door Control and Drive Control components can listen to each other’s
command output variables in addition to the Drive Speed and Door Closed sensors to
synchronize their behavior (open the doors more quickly after the car stops), but only
the sensor values are necessary for correct behavior. Likewise, the Drive Control
component has a default behavior that stops the elevator at every floor, but if the Desired
Floor system variable is available from the output of the Dispatcher component, then it
can use that value to skip floors that do not have any pending requests. Also, the Door
Control component normally opens the door for a specified dwell time, but can respond
to button presses to reopen the doors if a passenger arrives.

We did not explicitly design failure recovery scenarios for every possible
combination of component failures in the system, but rather built the individual
software components to be robust to a loss of system inputs. The individual components
were designed to ignore optional input variables when they were not available and
follow a default behavior. This is a fundamentally different approach to system-wide
graceful degradation than specifying all possible failure combinations to be handled
ahead of time. Properties of the software architecture such as the component interfaces
and the identification and partitioning of critical system functionality from the rest of the
system seem to be key to achieving system-wide graceful degradation. The model we



developed illustrates how well a system can gracefully degrade by using the software
architecture’s component connections to decompose the system.

In preliminary experiments on a simulated implementation of the elevator control
system architecture we designed, we found that the system was resistant to multiple
combinations of component failures, as predicted by the model. We validated the utility
estimates we generated with our model by measuring the elevator performance of a set
of system configurations that had various combinations of component failures. Since
general system utility encompasses both functionality and dependability requirements,
the performance of these configurations did not exactly match what our model
predicted. However, every system configuration tested delivered all passengers to their
destinations in both simulation tests, satisfying the minimum elevator system
requirements despite a loss of system functionality. Future work will include running a
more comprehensive set of simulation tests for this elevator system, as well as
comparing the graceful degradation ability of different elevator architectural designs,
and identifying how we can specify the parameters of our system model to more
accurately measure system utility attributes and thus more closely represent the actual
functionality and performance of system configurations.

9 Acknowledgments

This work was supported in part by the General Motors Collaborative Research
Laboratory at Carnegie Mellon University, the High Dependability Computing Program
from NASA Ames cooperative agreement NCC-2-1298, and Lucent Technologies.

References

1. Laprie, J.-C., "Dependability of Computer Systems: Concepts, Limits, Improvements",
Proceedings of the Sixth International Symposium on Software Reliability Engineering,
Toulouse, France, Oct. 1995, pp. 2-11.

2. Shelton, C., Koopman, P., “Using Architectural Properties to Model and Measure
System-Wide Graceful Degradation,” Workshop on Architecting Dependable Systems
sponsored by the International Conference on Software Engineering (ICSE2002), May 2002,
Orlando, FL.

3. Nace, W., Koopman, P., “A Product Family Approach to Graceful Degradation,” Distributed
and Parallel Embedded Systems (DIPES), October 2000.

4. Nace, W., "Graceful Degradation via System-wide Customization for Distributed Embedded
Systems," Ph.D. dissertation, Dept. of Electrical And Computer Engineering, Carnegie
Mellon University, May 2002.

5. Keeney, R.L., Raiffa, H., Decisions with Multiple Objectives: Preference and Value
Tradeoffs, John Wiley & Sons, New York, 1976.

6. Herlihy, M. P., Wing, J. M., “Specifying Graceful Degradation,” /EEE Transactions on
Parallel and Distributed Systems, vol.2, no.1, pp. 93-104, 1991.

7. Jayanti, P., Chandra, T.D., Toueg, S., "The Cost of Graceful Degradation for Omission
Failures," Information Processing Letters, vol. 71, no. 3-4, pp.167-172, 1999.



10.

11.

12.

13.

Weber, D.G., "Formal Specification of Fault-Tolerance and its Relation to Computer
Security," Proceedings of Fifth International Workshop on Software Specification and
Design, Pittsburgh, PA, USA, May 19-20, 1989.

Rushby, J., "Partitioning in Avionics Architectures: Requirements, Mechanisms, and
Assurance," NASA Contractor Report CR-1999-209347, June 1999.

Dvorak, D., Rasmussen, R, Reeves, G., Sacks, A., “Software Architecture Themes in JPL’s
Mission Data System,” 2000 IEEE Aerospace Conference, March 2000, Big Sky, MT.
Rasmussen, R., “Goal-Based Fault Tolerance for Space Systems using the Mission Data
System,” 2001 IEEE Aerospace Conference, March 2001, Big Sky, MT.

Knight, J.C., Sullivan, K.J., "On the Definition of Survivability," University of Virginia,
Department of Computer Science, Technical Report CS-TR-33-00, 2000.

Meyer, J.F., "On Evaluating the Performability of Degradable Computing Systems," The
Eighth Annual International Conference on Fault-Tolerant Computing (FTCS-8), Toulouse,
France, June 21-23 1978.



