Progress in Robust Embedded System Architectures

http://www.ece.cmu.edu/roses

Prof. Philip Koopman & Prof. Priya Narasimhan
Bill Nace – Charles Shelton – Chris Martin –
Beth Latronico – Tridib Chakravarty – Yang Wang

Institute for Complex Engineered Systems

Outline

RoSES Strategic Vision

- Feasibility assessment
- Key technical research areas
- Technology transition to GM
- Demo Chris Martin
 - Including "workarounds" as a form of dependability

Generic RoSES System Architecture

RoSES Strategic Vision:

• Goal:

Develop theory, techniques, & key tools for robust distributed embedded systems

Grand Hypothesis:

Graceful degradation will provide cost-effective dependability

Approach:

- Understand problem & demonstrate feasibility
 - Prototypes for key points to explore issues
- Resolve key research issues
 - Structure approach to spin off capabilities over time
- Transition knowledge to industry
 - Work with GM Software Architecture team for mutual benefit

Overview: Problem Understanding

Run-time infrastructure

• Why can't we just buy this stuff?

Configuration management

• Is this really just a known software partitioning problem?

Architectural definition & patterns

• Getting past having to ignore the man behind the curtain

Run Time Infrastructure

Why can't we just buy one?

- Many are just paper look at real tools
- Corba is too "fat"
- Jini looked attractive ... and sort of worked ... but had significant shortcomings

(Meredith Beveridge)

• Getting something that will really work (Yang Wang)

- Key requirements based on Jini and other experiences
- What can we learn from other research middleware?
- How compatible can we be with desktop middleware?
 - Differ where it is important to do so
 - Remain compatible wherever possible
- Support key needs for graceful degradation

(work starting Spring 2002)

Configuration Management

How do we track fine-grain distributed components? (Bill Nace)

- Which software component goes where in the system?
- Given a fixed set of hardware, optimize system functionality
 - In general, not all possible software will fit on hardware
 - Various feature classes contain overlapping functionality
- Progress
 - Good heuristics for quick solution
 - Representation & method successful on pilot problem
 - Working on a larger problem

Architectural Definition & Patterns

• Robust architectural patterns (Charles Shelton)

- Are there generic approaches to attain robustness?
- Can we evaluate "robustness"?
- Progress:
 - Using realistic elevator example to demonstrate methodology
 - First results for quantifying robustness
- Plan: work with GM architecture team

POSTER SESSION

Overview: Resolve Key Research Issues

Project focus areas:

- Can we use UML or do we have to invent something?
- Embedded to people interface
- Embedded to enterprise interface

Long-term items:

- Formal representation & quantification
- Appropriate robustness approaches
- NP-hard issues in specification & evaluation

Fundamental Suitability of UML

- Can UML handle real embedded systems?
 - Spring 2001: class to build realistic systems
 - Uncovered several problems; several solutions invented
 - Compiler theory helps with stitching scenarios
 - Statechart clustering helps with global modes
 - SW architecture different than for desktops

(Beth Latronico)

POSTER SESSION

Embedded To People Interface

People can help with robustness(!) (Chris Martin)

- Concept of "workaround" is important, but neglected
- Minor user flexibility can improve system-level robustness
- Most real systems have several ways to accomplish goals
- They can be represented as paths through UML scenarios
- Min-cut graph algorithm can expose or robustness bottlenecks
- Elevator system results demonstrate feasibility

POSTER SESSION

Embedded To Enterprise Interface

What happens when Embedded meets Enterprise?

(Priya Narasimhan & Phil Koopman)

- From Jini experience we know to expect incompatibilities
 - Event-driven vs. periodic
 - Transactional vs. continuous control
 - Rollback/retry vs. maintaining control stability

Embedded To Enterprise Interface

What happens when Embedded meets Enterprise?

(Priya Narasimhan & Phil Koopman)

- From Jini experience we know to expect incompatibilities
 - Event-driven vs. periodic
 - Transactional vs. continuous control
 - Rollback/retry vs. maintaining control stability

Class in Spring 2002 to build one and see what happens

Formal Representation & Quantification

What is system architecture?

(Shelton)

- Multiple viewpoints onto a single system
 - Hardware + software + communications + control
 - Human interface + upgrades + safety/security + validation + run-time infrastructure + fault management + ...
- Patterns for different architectural styles
 - General tradeoffs inherent to each style

• Can there really be a "safety architecture"? (Latronico)

• What is graceful degradation? (everyone)

- For that matter, in a partially disabled system, what does "working" mean?
- Perhaps it is related to vulnerability to mission failure (Martin)

Appropriate Robustness Approaches

• Can we characterize the robustness tradeoff space?

- Brute force replication
 - Expensive many more components in system
 - Not entirely effective for software
- Failover modes
 - Design intensive, but known to work
 - Can we create more systematic ways to do this?
- Reconfiguration (current emphasis)
 - Can work together with product family configuration management (Nace)
 - Whether it is even feasible is a research topic (yes, so far)
- Heterogeneous redundancy
 - If two sensors/actuators are almost the same, can they be interchanged?
 - Few existing techniques, although analytic redundancy fits here
 - People can use systems differently (people are "system components" too)

(Martin)

NP-Hard Issues In Specification & Evaluation

- Many hard problems encountered as we go
 - Allocating software to components
 - System specification
 - Product family architecture specification
 - Specification of utility for different features & feature sets
 - Evaluation
 - When is a system really "working" when it is partially disabled? (Martin)
 - Safety/certification of component-based systems (Latronico)
 - Implementation
 - Software runtime infrastructure
 - Real time scheduling for distributed networked system
 - Security of embedded+enterprise combined system
 - What baseline set of components gives most reconfiguration flexibility?

(Nace)

(Shelton)

(Wang)

• • • •

Overview: Transition Knowledge To Industry

Work with GM architecture team

- Trips both ways
- Students create representative vehicle subsets for research
- GM benefits from experience gained in RoSES implementation

Teaching

- Stream of CMU grads. trained in robust embedded system design
 Soon to include robust enterprise systems as well
- Opportunity for GM-based course projects
 - 6-12 months advanced planning required
 - Topic area must be carefully selected

Related Work – Embedded Protocols

CRC error detection effectiveness (Chakravarty)

- Train Communication Protocol design review
- Found that error codes could be much more effective
 - Error codes optimized for long messages
 - But embedded networks have short messages different design tradeoff point

FlexRay & TTP protocols (Koopman)

- Were already being evaluated for another customer
- Expertise available when GM joined FlexRay consortium

RoSES Publications In 2001

◆ 2001 Workshop on Reliability in Embedded Systems

- Nace Component allocation framework
- Shelton Architectural principles
- Martin & Latronico User workarounds

◆ 2001 UML Conference

• Latronico – sequence diagrams as a formal language

♦ IBM Ubiquitous Computing Workshop

• Nace – Internet meets embedded systems (invited)

• Theses:

- Beveridge Jini meets CAN (also invited paper at *WORDS 2002*)
- Martin User workarounds + graph analysis
- Chakravarty Optimal embedded network

error detection

Conclusions

• Results coming in on understanding the problem area

- Run-time infrastructure
- Configuration management (PhD thesis next year)
- Architectural definition & patterns (PhD thesis in about 2 years)

Progress on key technology areas

- UML isn't dead (yet) but will require augmentation
- Embedded to people interface is an emergent opportunity
- Embedded to enterprise interface (Spring 2002 course)

Pieces of long-term issues being solved as we go

- Formal representation & quantification
- Appropriate robustness approaches
- NP-hard issues in specification & evaluation

Participation with GM SW architecture team

