
The Internet Meets
Embedded Systems

http://www.ices.cmu.edu/roses

William Nace
Prof. Philip Koopman
Carnegie Mellon University

Institute
for Complex
Engineered
Systems

&Electrical Computer
ENGINEERING

2

Overview
� Classical embedded systems

• If you learn from them you can stand on their shoulders

� Some myths
• Big CPUs matter

• Small means trivial

• Embedded != distributed

• Security can be solved with airgaps

� Example: RoSES research project
• Automatic graceful degradation on distributed embedded systems

• Jini on CAN (embedded network)?

• Embedded education

Embedded System =
Computers Inside a Product

4

Typical Embedded System Constraints
� Small Size, Low Weight

• Hand-held electronics
• Transportation applications -- weight costs money

� Low Power
• Battery power for 8+ hours (laptops often last only 2 hours)
• Limited cooling may limit power even if AC power available

� Harsh environment
• Power fluctuations, RF interference, lightning
• Heat, vibration, shock
• Water, corrosion, physical abuse

� Safety-critical operation
• Must function correctly
• Must not function incorrectly

� Extreme cost sensitivity
• $.05 adds up over 1,000,000 units

5

Why Are Embedded Systems Different?
� Classical Embedded

• 5-50 year life cycle

• Small, multidisciplinary
design team

• Real-time control of the
physical world

• Safety/mission critical

• Synchronized, bursty, short
network messages

• School of hard knocks

� Classical Internet
• 3 month – 3 year life cycle

• Mostly software with a little
hardware

• Data processing

• Usually not perceived as
critical

• Ethernet; TCP/IP

• University

6

There Are Many Application Areas

Industrial Control
15%

Computers/Peripherals
Office Automation

13%

Government/Military
Electronics

11%
Other
10%Electronic Instruments/

ATE/ Design &
Test Equipment

7%

Aerospace/
Space Electronics

6%

Medical Electronic
Equipment

6%

Consumer Electronics/
Entertainment/Multimedia

6%

Automotive/Transportation
Systems & Equipment

5%

Communications/
Telecommunications/

Networking
21%

Primary End Product of

Subscribers (Dec. 1998)
Embedded Systems Programming

7

Myth: 32-bit+ CPUs Are What Matter
� Reality: 32-bit+ CPUs are a small fraction of the market

• Nearly 100% by hype and academic research measures

• About 25% by dollar amount

• 2% to 3% by volume

• 150 Million PCs vs. 7.5 Billion embedded CPUs + in 2000

Approximated from EE Times,
March 20, 1995

Source: The Information Architects

1994 Worldwide
Microcontroller Revenue

($Million U.S.)

8-Bit
$4,520M 16-Bit

$2,910M

64-Bit
$220M

$13,490M Total
1994 Worldwide

Microcontroller Units
(Million Devices)

8-Bit
1,200M

16-Bit
276M

64-Bit
2M

2,683M Total

8

Myth: Embedded Systems Are Trivial
� Reality: Winning the game requires shoving 20 pounds

into an 3 ounce sack
• Here’s the design package for a household setback thermostat

9

Myth: Embedded Networking Is Novel

ADEM II
Master

ADEM II
Slave 2

ADEM II
Slave 1

ET Service Tool

VIMS II
(ABL2M)

RAC/CLIM
(68K Module)

Chassis Control
(ABL2C)

Braking/Cooling
(ABL2C)

Tire
Monitor

797 System

VIMS - PC

Xmsn/TC
(ABL2C)

CAT Datalink

CAN SAE J1939 Datalink

797sys.vsd
6-18-98
dab/jwf
Warning: All paper copies of this document are uncontrolled

+ 195 sensors and actuators
+ wireless data link

10

Myth: Discipline Will Solve Security Worries
� Hacker’s can’t hurt your car if the infotainment system

doesn’t “talk” to the braking system
• Solution: don’t put a connection between radio and brakes

� Product idea: radio volume to achieve constant SNR
• Road noise based on wheel speed, tire pressure, road surface

• Which sensor has the best information about this?

• Anti-lock brake system
– “Well, we’ll just put in a fire-wall… surely that will be OK”

• Reality: the connectivity will happen; denial is counterproductive

• Prototype vehicle of a Big-3 manufacturer suffered failure when
the radio speaker caused an engine controller malfunction

11

Other Security Concerns
� Denial of Service Attacks?

• Will a SYN flood against your house’s door lock keep you out?

� “Regular” Hacker attacks?
• Will you get divorced because a script kiddie stored the Playboy

channel on your TIVO?

• Will malicious data mangling make your refrigerator order 500
gallons of milk?

� Who is the sysadmin for your car?
• Will CERT point you to firmware patches for airbag?

12

Would You Drive A Car In Which:

“THE SOFTWARE is provided ‘AS IS’
and with all faults. THE ENTIRE RISK
AS TO SATISFACTORY QUALITY,
PERFORMANCE, ACCURACY, AND
EFFORT (INCLUDING LACK OF
NEGLIGENCE) IS WITH YOU.”

(You will.)

13

Embedded Internet Challenges
� Embedded systems actually have to work!

• When was the last time you rebooted your car?

• They must degrade gracefully when components fail

• They must be self-stabilizing in exceptional operating situations

� Real-time control systems have to work in real time
• Closing control loops over Internet?

� Configuration management has to be a non-issue
• Do you want to have to resolve device driver conflicts for your

house?

� Diverse devices have to talk to each other
• Need for common data representations & communication

14

RoSES Project As An Example
� Robust Self-Configuring Embedded Systems

� Product families + automatic reconfiguration =
• Operation with failed components

• Automatic integration of inexact spares

• Automatic integration of upgrades

• Fine-grain product family capability

� Potential Impact:
• Logical component interfaces + configuration mgr.

• Fine-grain software component run-time support

• Architectures that are naturally resilient

15

RoSES = Product Families + Reconfiguration
� Product Families:

• Different variations of components define products in a family

• Each particular product has HW components with SW to provide features

• With many possible HW components, there are many HW/SW combinations

� Reconfiguration:
• RoSES is “Plug and play” for embedded systems – in factory and in the field

� RoSES doesn’t care why it is doing reconfiguration!
• Component fails –

triggers reconfiguration for degraded operation

• Component replaced –
reconfiguration to integrate repair part

• New HW or SW component added (mid-life upgrade) –
reconfiguration to upgrade system

• New system built in factory –
perform “re”-configuration for first time

16

Why Does RoSES Matter?
� Current approaches require specific engineering effort

• Every failure mode must be considered by design engineers

• More components means exponentially more combinations

• Soon there will be too many combinations to consider by hand

� Enables shift to software-driven architectures
• Sensors, actuators, and computers are hardware components

• Software can be treated as components too (not tied to HW)

• Optimization problem is then to automatically, in the field:
– Select which SW components make best use of limited resources

– Map those SW components to available HW components

– Ensure correct real-time operation

� RoSES Goal:
Self-organizing software systems that make best
possible use of available hardware resources

� Maybe someday this will generalize to the Internet

Laptop:
gateway

W
ireless TC

P/IP

Steering Angle

Engine Speed

C
A

N

Actual nodes:

Physical car

End-to-end Testbed Data FlowEnd-to-end Testbed Data Flow

C
A

N
da

ta
bu

s

B
ac

k-
si

de
da

ta
fe

ed Display

Demo App

Virtual nodes:

Lab

Gateway

Steering Angle

Degraded Steering

Engine Speed

Lookup Service

Virtual nodes let us simulate
a future vehicle architecture
but use real vehicle data

Demo:
• Jini Running on CAN
• Dynamic node discovery
• New node integration
• Graceful degradation

when node fails

• Now we know the real
problems we need to solve!

17

18

Generic RoSES System Architecture

State Variables on Real-Time Embedded Network

SMART SENSORS

Adapter Repository Co-Scheduling & Assigment Tool

SMART ACTUATORS

CUSTOMIZATION MANAGER

Baseline
Sensor SW
Functionality

Dynamic Interface
to Object Bus

Basic S/A
Device

Local
CPU &

Memory

SW
Adapter for
High Level

Logical
Interface

SW
Compute/

Control
Functions

Baseline
Sensor SW
Functionality

Dynamic Interface
to Object Bus

Basic S/A
Device

Local
CPU &

Memory

SW
Adapter for
High Level

Logical
Interface

SW
Compute/

Control
Functions

19

Jini Meets Embedded Networks (CAN)
� Jini designed to be portable to “any” system

• Original implementation on TCP/IP

� CAN (Control Area Network) is de facto automotive
standard
• Global priority; short messages; periodic synchronized

transmissions

• It’s about as far away from Ethernet as you can get

� What did we learn?
• Jini is portable to “anything” as long as it runs TCP/IP and RMI

• Reconfiguration time took many minutes without tricks

• Plus all the problems with attempting “real time” Java

• Conclusion: Many engineers used to desktop computing have not
been exposed to the way the embedded world works

20

RoSES Research Questions
� What is the best way to do embedded plug & play?

• We think RoSES will provide a reasonable alternative

� What software architectures work best with RoSES?
• Is there such a thing as an architectural style that is naturally

robust? (“we think so”)

� Can we quantify robustness?
• Can we understand how to partially automate things like failure

analysis? (“we think so”)

� What design methodologies work for these systems?
• Can we represent all the special needs of distributed embedded

real-time systems in UML? (“perhaps in UML+++”)

• Can we teach people methodical design? (“yes”)

21

Embedded System Educational Issues
� Embedded system engineers are generalists in an age of

specialization
• Multi-disciplinary tradeoffs, often with design team size of one\

� Need education way beyond traditional A/D, D/A, and
assembly:
• Real time operating systems & scheduling

• System design methodologies (requirements / design / test / etc.)
– Many engineers need software/system engineering literacy

• Distributed systems & distributed networks
– Entirely different set of tradeoffs for embedded than for “regular” networks

• Architectural approaches to distributed systems

• Critical system design (dependability, safety)

• Human/computer interfaces

• Specialty skills: low power, design for particular constraints

22

Challenge Areas
� Increase integration levels (including Analog)

• Hardware + Software + I/O + Storage + Human + Mechanical
+ logistics co-design

– Ultra-fast CPUs or programmable logic are part of the equation

– So is verification/certification of self-configuring systems

• Optimizing for System (big picture) life cycle is ultimately what
counts

� How do you get ultra-dependability for only a buck?
• Dependability = Reliability + Security + . . .

• Multi-vendor Integration without a single big OS vendor?

• Would you trust your life to software on a $1 micro? (You will.)

� Biggest opportunity
• Nobody cares if their car engine controller is “Intel Inside” (yet)

23

In The End, Being Useful Is What Matters

[Parade Magazine]

