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Overview
� Classical embedded systems

• If you learn from them you can stand on their shoulders

� Some myths
• Big CPUs matter

• Small means trivial

• Embedded != distributed

• Security can be solved with airgaps

� Example: RoSES research project
• Automatic graceful degradation on distributed embedded systems

• Jini on CAN (embedded network)?

• Embedded education



Embedded System =
Computers Inside a Product
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Typical Embedded System Constraints
� Small Size, Low Weight

• Hand-held electronics
• Transportation applications -- weight costs money

� Low Power
• Battery power for 8+ hours (laptops often last only 2 hours)
• Limited cooling may limit power even if AC power available

� Harsh environment
• Power fluctuations, RF interference, lightning
• Heat, vibration, shock
• Water, corrosion, physical abuse

� Safety-critical operation
• Must function correctly
• Must not function incorrectly

� Extreme cost sensitivity
• $.05 adds up over 1,000,000 units
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Why Are Embedded Systems Different?
� Classical Embedded

• 5-50 year life cycle

• Small, multidisciplinary
design team

• Real-time control of the
physical world

• Safety/mission critical

• Synchronized, bursty, short
network messages

• School of hard knocks

� Classical Internet
• 3 month – 3 year life cycle

• Mostly software with a little
hardware

• Data processing

• Usually not perceived as
critical

• Ethernet; TCP/IP

• University
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There Are Many Application Areas
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Myth: 32-bit+ CPUs Are What Matter
� Reality: 32-bit+ CPUs are a small fraction of the market

• Nearly 100% by hype and academic research measures

• About 25% by dollar amount

• 2% to 3% by volume

• 150 Million PCs vs. 7.5 Billion embedded CPUs + in 2000

Approximated from EE Times,
March 20, 1995

Source: The Information Architects

1994 Worldwide
Microcontroller Revenue

($Million U.S.)

8-Bit
$4,520M 16-Bit

$2,910M

64-Bit
$220M

$13,490M Total
1994 Worldwide

Microcontroller Units
(Million Devices)

8-Bit
1,200M

16-Bit
276M

64-Bit
2M

2,683M Total



8

Myth: Embedded Systems Are Trivial
� Reality: Winning the game requires shoving 20 pounds

into an 3 ounce sack
• Here’s the design package for a household setback thermostat
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Myth: Embedded Networking Is Novel

ADEM II
Master

ADEM II
Slave 2

ADEM II
Slave 1

ET Service Tool

VIMS II
(ABL2M)

RAC/CLIM
(68K Module)

Chassis Control
(ABL2C)

Braking/Cooling
(ABL2C)

Tire
Monitor

797 System

VIMS - PC

Xmsn/TC
(ABL2C)

CAT Datalink

CAN SAE J1939 Datalink

797sys.vsd
6-18-98
dab/jwf
Warning: All paper copies of this document are uncontrolled

+ 195 sensors and actuators
+ wireless data link
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Myth: Discipline Will Solve Security Worries
� Hacker’s can’t hurt your car if the infotainment system

doesn’t “talk” to the braking system
• Solution: don’t put a connection between radio and brakes

� Product idea: radio volume to achieve constant SNR
• Road noise based on wheel speed, tire pressure, road surface

• Which sensor has the best information about this?

• Anti-lock brake system
– “Well, we’ll just put in a fire-wall… surely that will be OK”

• Reality: the connectivity will happen; denial is counterproductive

• Prototype vehicle of a Big-3 manufacturer suffered failure when
the radio speaker caused an engine controller malfunction
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Other Security Concerns
� Denial of Service Attacks?

• Will a SYN flood against your house’s door lock keep you out?

� “Regular” Hacker attacks?
• Will you get divorced because a script kiddie stored the Playboy

channel on your TIVO?

• Will malicious data mangling make your refrigerator order 500
gallons of milk?

� Who is the sysadmin for your car?
• Will CERT point you to firmware patches for airbag?
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Would You Drive A Car In Which:

“THE SOFTWARE is provided ‘AS IS’
and with all faults. THE ENTIRE RISK
AS TO SATISFACTORY QUALITY,
PERFORMANCE, ACCURACY, AND
EFFORT (INCLUDING LACK OF
NEGLIGENCE) IS WITH YOU.”

(You will.)
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Embedded Internet Challenges
� Embedded systems actually have to work!

• When was the last time you rebooted your car?

• They must degrade gracefully when components fail

• They must be self-stabilizing in exceptional operating situations

� Real-time control systems have to work in real time
• Closing control loops over Internet?

� Configuration management has to be a non-issue
• Do you want to have to resolve device driver conflicts for your

house?

� Diverse devices have to talk to each other
• Need for common data representations & communication
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RoSES Project As An Example
� Robust Self-Configuring Embedded Systems

� Product families + automatic reconfiguration =
• Operation with failed components

• Automatic integration of inexact spares

• Automatic integration of upgrades

• Fine-grain product family capability

� Potential Impact:
• Logical component interfaces + configuration mgr.

• Fine-grain software component run-time support

• Architectures that are naturally resilient
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RoSES = Product Families + Reconfiguration
� Product Families:

• Different variations of components define products in a family

• Each particular product has HW components with SW to provide features

• With many possible HW components, there are many HW/SW combinations

� Reconfiguration:
• RoSES is “Plug and play” for embedded systems – in factory and in the field

� RoSES doesn’t care why it is doing reconfiguration!
• Component fails –

triggers reconfiguration for degraded operation

• Component replaced –
reconfiguration to integrate repair part

• New HW or SW component added (mid-life upgrade) –
reconfiguration to upgrade system

• New system built in factory –
perform “re”-configuration for first time
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Why Does RoSES Matter?
� Current approaches require specific engineering effort

• Every failure mode must be considered by design engineers

• More components means exponentially more combinations

• Soon there will be too many combinations to consider by hand

� Enables shift to software-driven architectures
• Sensors, actuators, and computers are hardware components

• Software can be treated as components too (not tied to HW)

• Optimization problem is then to automatically, in the field:
– Select which SW components make best use of limited resources

– Map those SW components to available HW components

– Ensure correct real-time operation

� RoSES Goal:
Self-organizing software systems that make best
possible use of available hardware resources

� Maybe someday this will generalize to the Internet



Laptop:
gateway

W
ireless TC

P/IP

Steering Angle

Engine Speed

C
A

N

Actual nodes:

Physical car

End-to-end Testbed Data FlowEnd-to-end Testbed Data Flow

C
A

N
da

ta
bu

s

B
ac

k-
si

de
da

ta
fe

ed Display

Demo App

Virtual nodes:

Lab

Gateway

Steering Angle

Degraded Steering

Engine Speed

Lookup Service

Virtual nodes let us simulate
a future vehicle architecture
but use real vehicle data

Demo:
• Jini Running on CAN
• Dynamic node discovery
• New node integration
• Graceful degradation

when node fails

• Now we know the real
problems we need to solve!

17



18

Generic RoSES System Architecture
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Jini Meets Embedded Networks (CAN)
� Jini designed to be portable to “any” system

• Original implementation on TCP/IP

� CAN (Control Area Network) is de facto automotive
standard
• Global priority; short messages; periodic synchronized

transmissions

• It’s about as far away from Ethernet as you can get

� What did we learn?
• Jini is portable to “anything” as long as it runs TCP/IP and RMI

• Reconfiguration time took many minutes without tricks

• Plus all the problems with attempting “real time” Java

• Conclusion: Many engineers used to desktop computing have not
been exposed to the way the embedded world works
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RoSES Research Questions
� What is the best way to do embedded plug & play?

• We think RoSES will provide a reasonable alternative

� What software architectures work best with RoSES?
• Is there such a thing as an architectural style that is naturally

robust? (“we think so”)

� Can we quantify robustness?
• Can we understand how to partially automate things like failure

analysis? (“we think so”)

� What design methodologies work for these systems?
• Can we represent all the special needs of distributed embedded

real-time systems in UML? (“perhaps in UML+++”)

• Can we teach people methodical design? (“yes”)
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Embedded System Educational Issues
� Embedded system engineers are generalists in an age of

specialization
• Multi-disciplinary tradeoffs, often with design team size of one\

� Need education way beyond traditional A/D, D/A, and
assembly:
• Real time operating systems & scheduling

• System design methodologies (requirements / design / test / etc.)
– Many engineers need software/system engineering literacy

• Distributed systems & distributed networks
– Entirely different set of tradeoffs for embedded than for “regular” networks

• Architectural approaches to distributed systems

• Critical system design (dependability, safety)

• Human/computer interfaces

• Specialty skills: low power, design for particular constraints
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Challenge Areas
� Increase integration levels (including Analog)

• Hardware + Software + I/O + Storage + Human + Mechanical
+ logistics co-design

– Ultra-fast CPUs or programmable logic are part of the equation

– So is verification/certification of self-configuring systems

• Optimizing for System (big picture) life cycle is ultimately what
counts

� How do you get ultra-dependability for only a buck?
• Dependability = Reliability + Security + . . .

• Multi-vendor Integration without a single big OS vendor?

• Would you trust your life to software on a $1 micro? (You will.)

� Biggest opportunity
• Nobody cares if their car engine controller is “Intel Inside” (yet)



23

In The End, Being Useful Is What Matters

[Parade Magazine]


