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Abstract— We introduce a method to evaluate the robustness
of perception systems to the wide variety of conditions that a
deployed system will encounter. Using person detection as a
sample safety-critical application, we evaluate the robustness
of several state-of-the-art perception systems to a variety of
common image perturbations and degradations. We introduce
two novel image perturbations that use “contextual informa-
tion” (in the form of stereo image data) to perform more
physically-realistic simulation of haze and defocus effects. For
both standard and contextual mutations, we show cases where
performance drops catastrophically in response to barely-
perceptible changes. We also show how robustness to contextual
mutators can be predicted without the associated contextual
information in some cases.

I. INTRODUCTION

With the rapid growth of autonomous systems being devel-
oped in safety-critical applications, we clearly need efficient
ways to effectively test these systems and ensure they will
be robust to the wide range of situations they will encounter.
Ensuring safety through exhaustive real-world testing has
been shown to be infeasible for most practical systems,
requiring on the order of billions of test miles/hours of
autonomous operation for a large-scale autonomous vehicle
fleet [1], [2]. It seems much more promising to make use of
the ever-growing availability of computational resources to
expand on what is feasible with real-world testing alone.

One approach is to operate in simulation, like in the Virtual
KITTI [3] and SYNTHIA [4] datasets and described by
several autonomous driving companies. This allows tremen-
dous control, but also requires crafting the entire world.
Modeling some challenging conditions may require this level
of environment knowledge, but we have found many relevant
conditions that can be simulated from data collected by a
typical robotic sensor package. Starting from real images
reduces the burden of physical realism to the phenomena
being modeled, which drastically reduces the scope and
increases the applicability of the undertaking.

Another concern explored in recent papers is whether
adversarial methods can be applied in the real world to
produce objects that would be dangerous for robots. Kurakin
et al. [5] showed that printing out adversarial perturbations of
images still results in misclassification, providing examples
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of manipulated stop signs that are not recognized correctly.
Athalye et al. [6] then showed that 3D printed objects could
have the same effects from a wide range of views. We aim
to first address the inputs that a robotic system is likely to
encounter without adversarial intervention, so our focus is on
naturally-occurring phenomena. Nonetheless, we show some
examples of situations where nearly imperceptible image
modifications can result in dramatic perception changes.
Even in applications without malicious people trying to trick
your system, the natural world may be adversarial enough.

Some previous work has investigated performance degra-
dation of various algorithms (which we refer to as sys-
tems under test or SUTs) from simple image processing
effects or “image mutations”, such as Gaussian blur, additive
noise, contrast enhancement, or JPEG compression [7], [8].
Karahan et al. [8] also examined the effect of occlusion
by inserting black rectangles. Richard-Webster et al. [9]
analyzed effects of some physical phenomena on rendered
models, such as rotation, scaling, and linear occlusion. There
has not been much focus in prior detection work on making
these noise effects physically realistic though.

In this paper, we apply several simple image mutations to
a large-scale dataset and evaluate the effects on performance
for a safety-critical task, person detection. These include
both procedural perturbations like blurring and randomized
changes like additive noise, and others that remove image
data. We then introduce “contextual mutators” that make use
of environment geometry information to perform depth-based
simulation of haze and defocus effects and compare these to
the simple mutations. By evaluating a variety of different
algorithms’ performance, we show that the best performers
can change under these effects; i.e., a system designer’s
choice of the best algorithm for the task would change if
robustness to these effects is important.

We also show how performance on simple mutators can
sometimes be used to predict performance on contextual mu-
tators, allowing performance estimation even without context
data. This also shows promise for extrapolation: robustness
to a variety of well-understood conditions the system was not
prepared for (known unknowns) provides some insight into
robustness to other conditions that a tester has not thought
of (unknown unknowns).

II. APPROACH

Our general approach to evaluate robustness is to take real
images with associated ground truth for the desired SUT
output, mutate them, and monitor how each SUT output
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SUT Base Library Reference(s)
MS-CNN Caffe [11]

SSD w/ MobileNets TensorFlow [12]–[14]
SSD w/ Inception TensorFlow [12], [13], [15]

R-FCN w/ ResNet-101 TensorFlow [12], [16], [17]
Faster R-CNN w/ ResNet-101 TensorFlow [12], [17], [18]

Faster R-CNN w/
Inception ResNet v2 TensorFlow [12], [18], [19]

Deformable R-FCN MXNet [16], [20]
Deformable Faster R-CNN MXNet [18], [20]

TABLE I: List of SUTs evaluated.

changes with the level of mutation. A robust SUT’s output
should ideally not change under mutation; practically, the
change should be as small as possible. To ground the analysis
in a domain relevant to robotics, we test on the NREC Agri-
cultural Person Detection Dataset [10], a person detection
benchmark for off-road mobile robots. This dataset includes
nearly 105 labeled images for training and evaluation, derived
from continuous video from stereo cameras.

We train all SUTs with default parameters from their
respective publications or source code. The only factor that
is evaluated on the validation set is training convergence, at
which point we choose the training iteration with the best
validation performance for evaluation. All results below are
for the test set, as per the benchmark [10].

A. Performance Evaluation

We base our performance evaluation metrics the standard
benchmark metrics, but we modify them to consider the
following situation: A system has been developed and tuned
using the training and validation set to choose a configuration
for deployment. This includes the choice of a sensitivity for
how strong a response needs to be to produce a detection.
This choice was based on the conditions demonstrated in the
training and validation data, but the system will be subjected
to a wider variety of conditions in the following experiments.

We evaluate many different detectors with different con-
fidence measures, so we standardize sensitivity based on
expected false positive (FP) rates. Without confining our
evaluation to a particular choice of sensitivity, we emulate
the process of picking sensitivity thresholds based on the
baseline ROC of the test set. For baseline performance, we
sample locations on the ROC curve that correspond to FP
rates ranging from 10−3 to 10−1. In all ROCs for mutated
data, we use the same sensitivities, rather than fixing them
to the FP rates on mutated data. This reflects the fact that
a system deployed with a chosen sensitivity can have its
behavior change both in terms of true and false detections;
moreover, this change can be much more dramatic than
the ROC suggests. We use the same fixed sensitivies for
computing average detection rate (ADR) on mutated images.

B. Systems Under Test (SUTs)

The full set of SUTs evaluated is shown in Table I.
Many modern convolutional neural networks for object

detection use one of three meta-architectures: Single Shot
Detector (SSD) [13], Faster R-CNN [18], and Region-based

Fully Convolutional Network (R-FCN) [16]. SSD networks
are fast; they directly predict classes and anchor offsets in a
single feed-forward pass, making them more suitable for the
computational constraints of embedded perception. Faster R-
CNN uses a two-staged approach: a region proposal network
generates proposed object regions, and a box classifier refines
each of these proposals. R-FCN strikes a middle-ground in
computation by moving the cropping to the last stage of the
box classifier. This shares most of the box-classifier-specific
feature computation across regions.

These meta-architectures can easily be paired with various
feature extractors. We test two paired with the SSD: The
first is Inception V2, the ILSVRC 2014 classification and
detection winner, which utilizes modules that concatenate
efficient decomposed filters [15]. The second is MobileNet,
which is optimized for computational efficiency with filters
that are further decomposed [14]. With both the Faster R-
CNN and R-FCN meta-architecture, we use the ResNet-
101 feature extractor, which won the ILSVRC 2015 and
COCO 2015 classification and detection and uses residual
connections to train very deep networks [17]. On the Faster
R-CNN meta-architecture, Inception ResNet v2 enhances the
Inception modules with residual connections and à trous
convolution [19]. MS-CNN’s novelty lies in its ability to
generate region proposals with multiple scales [11].

While most CNN architectures are limited by the assump-
tion that geometric transformations are fixed and known,
Deformable Convnets allow free-form deformation of the
sampling grid [20]. Since these deformations are learned
from features in upstream layers, they can adapt to the
training data. The deformability is also present in the ROI
pooling layer, enabling flexible, non-uniform boundaries
when performing region proposals. This enhances localiza-
tion, especially for non-rigid objects.

III. MUTATORS

We call generators of image perturbations “mutators” and
divide them into two classes: “Simple” mutators require only
the original monocular image. “Contextual” mutators incor-
porate additional information. We demonstrate the usefulness
of scene geometry for realistic simulation of two common
physical phenomena: haze and defocus. The presence of both
stereo images and continuous video in our dataset allows us
to use scene flow techniques, which use both to produce
simultaneous estimates of scene geometry and optic flow.

A. Simple Mutators

1) Gaussian Blur: Blur the image using a symmet-
ric Gaussian kernel with standard deviations of σ =
{0.5, 1, 1.5, 2, 2.5} pixels. This can be seen as a simple
approximation of effects like defocus or material on the lens.

2) Brightness Shift: Apply a multiplicative scaling to each
image channel, with saturation, using scale factors of b =
{0.5, 0.75, 0.875, 1.143, 1.333, 2}. This could approximate
effects from fast changes in lighting or poor auto-exposure.



3) Alpha Blend: Alpha blend the image with a uniform
color, using blending coefficients of α = {0.5, 0.75, 0.875}.
We use a gray color similar to fog, h = [205, 208, 211], to
provide a simple approximation of haze effects.

4) JPEG Compression: Perform standard JPEG com-
pression as implemented by the Python Imaging Library.
Compression is sometimes applied at image acquisition or
during transmission between system components. We used
compression quality values of q = {60, 40, 20, 10}.

5) Salt and Pepper Noise: Some image pixels are selected
at random and set to either full black or white, follow-
ing a commonly-used model of errors in bit transmission
or analog-to-digital conversion. The percentage of affected
pixels was set to s = {1%, 2%, 5%, 10%}.

6) Channel Drop-Out: Simulate channel drop-out by set-
ting the pixel values of various channels to 0. We applied
this to the ch = R,G,B channels in RGB space and the
ch = Cb,Cr channels in YCbCr space.

7) Additive Signal-Dependent Gaussian Noise: Gaussian
noise is added per pixel with dependence on the input,
simulate camera noises, such as thermal noise, film-grain
noise and multiplicative speckle noise [21]:
P + Pψ ·N(0, ζ2u) +N(0, ζ2w).

B. Contextual Mutators

To estimate depth throughout the image, we apply
PRSM [22], the leading method with a public implementa-
tion on the KITTI Scene Flow Benchmark [23], to every test
set image to provide context for these mutators. We seed the
estimation with some prior knowledge of the vehicle hood
location (which will not move) and rectification artifacts
(considered planes at infinity).1 We then refine the estimated
depths using a bilateral solver [24] to maintain good align-
ment between depth and image edges. This provides high-
fidelity estimates of depth at every pixel, D(x), for each
image. Performing this on a large dataset is time-consuming,
but only needs to be done once.

1) Haze: We use a uniform haze model that has been
widely applied and shown to be effective in haze re-
moval [25], which models haze as an alpha-blend effect,
whose alpha term increases with distance from the camera:

H(x) = I(x)T(x) + h (1− T(x)) (1)

T(x) = e−βD(x) (2)

H(x) is an image under the effects of haze. I(x) represents
the scene radiance, in our case the original image. Scene
radiance is attenuated exponentially by transmission, T(x),
as depth increases, shifting it toward the color of the haze,
h. Before applying Equation 2, D(x) is smoothed with a
Gaussian filter (σ = 2) to soften discontinuity effects. β
captures the density of the haze, which can be converted
to a visibility distance, uV , by applying the Koschmieder
formula: uV = 3.912

β In our experiments, we used a single
gray haze color matching that from Section III-A.3 and
density/visibility values shown in Table II. 100m is the

1PRSM updates available at https://github.com/vogechri/PRSM/pull/2

Mutator Variable Values
Haze β 0.04 0.012 0.004

uV 97.8m 326m 978m
Defocus κ 2.0 2.8 3.6

uf 1m 2m 5m

TABLE II: Parameters used for haze and defocus mutators.
Haze scattering coefficients, β, are shown with resulting
visibility distances, uV . For the defocus mutator, a test was
run for every combination of focus distance, uf , and camera
constant, κ, values.

Parameter Symbol Extreme Value
Aperture f-Number N 1.4

Pixel Width γ 1.24× 10−6 meters
Lens Focal Length f 2.5× 10−3 meters

TABLE III: Physical camera parameters used to compute
most extreme camera constant used in this work.

lowest visibility distance reported by NOAA before rounding
to “zero” [26], so that is the most extreme condition we
simulate. Sample images of the result are shown in Figure 2.

2) Defocus: We use a common model of defocus as
scattering light by a point-spread-function and distributing
it to many pixels in the image. This spread depends on
the depth of the scene point that pixel normally images. To
mutate an image to exhibit defocus, we first compute this
spread for all incoming pixels, then compute the proportion
of their color information that is delivered to every other
pixel, g(x, y,D(y)). Then we sum over the effects of each
input pixel and normalize.

F(x) =
∑
y I(y)g(x, y,D(y))∑
y g(x, y,D(y))

(3)

We assume that incoming light is scattered by a 2-
dimensional Gaussian point spread function, g(x, y,D(y)).
The mean is the incoming image location, y and the function
is evaluated at the output image location, x. The standard de-
viation is the blur radius [27], ρ(y), computed by comparing
the focus distance uf to the depth, D(y), of the scene at that
image point y and scaling by a camera constant, κ:

ρ(x) = κ
|D(x)− uf |

D(x)uf
(4)

We evaluated the effects of three different values of κ for
each focal distance, shown in Table II, to consider a range
of possible cameras. Example resulting images are shown in
Figure 3. The camera constant is the combination of three
physical parameters: κ = γf2

N We chose extreme values that
could be used in robotics for each parameter to compute our
most extreme camera constant. These parameters and their
extreme values can be found in Table III.

IV. RESULTS

To establish a baseline, we begin by computing the per-
formance of all SUTs on the unmodified test set. Then we
apply each mutator to evaluate robustness to its effects. In
all cases, ADR is computed as in Section II-A. This baseline



(a) Original Image, I (b) Gaussian Blur, σ = 2 (c) Brightness Shift, b = 0.5 (d) Alpha Blend, α = 0.5

(e) JPEG Compression, q = 40% (f) Salt and Pepper, s = 10% (g) Channel Drop-Out,
Y (Cb)Cr

(h) Additive Gaussian Noise,
σw = 15.0, σu = 0.5, γ = 0.5

Fig. 1: Simple mutators applied to a sample image from the Agricultural Person Detection Dataset

uV = 3260m uV = 978m uV = 326m uV = 97.8m

Fig. 2: Example images of different magnitudes of artificial haze applied to the same image as in Figure 1. Choice of
visibility distances is described in Section III-B.1.

uf = 1m, κ = 2 uf = 2m, κ = 2 uf = 2m, κ = 3.6 uf = 5m, κ = 3.6

Fig. 3: Example images of artificial defocus on the same image as Fig. 1. These cover some samples from our two controllable
parameters for defocus simulation. uf is the distance at which the camera is focused. κ is the camera constant.

performance is shown in Figure 4. Ranking the SUTs by
ADR puts Deformable Faster R-CNN in the lead overall,
and of the two fast methods, SSD Mobilenet does best.2

On each curve, we have marked the choice of sensitivity
that would result in an average FP rate of one every 10
images (triangle), every 100 images (star) and every 1000
images (circle). In the ROCs that follow under mutation,
these symbols correspond to the same sensitivities, based on
baseline conditions, as described in Section II-A.

2Although SSD performance is markedly lower than other meta-
architectures’, it may be sufficient for some applications. Fast methods are
most readily adaptable to deployment on embedded systems, and shorter
latencies can sometimes lower accuracy requirements.
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MS-CNN
SSD Mobilenet v1 (TF)
Faster-RCNN with ResNet101 (TF)
RFCN with ResNet101 (TF)
SSD Inception v2 (TF)
Faster-RCNN Inception ResNet v2 (TF)
Deformable-ConvNet RFCN (v2)
Deformable-ConvNet Faster-RCNN (v2)

Fig. 4: Baseline test set performance for all SUTs

A. Performance Under Mutations

Behavior of all SUTs under each mutation is shown in
Table IV in terms of both absolute detection rates and
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(b) uf = 2.0m

Fig. 5: Performance under the effects of defocus for κ = 3.6.
See the legend in Figure 4

normalized with respect to baseline performance. No single
SUT performs best under all conditions.

Deformable Faster R-CNN shows good robustness to mu-
tations in addition to strong baseline performance. It main-
tains its lead under all conditions except channel dropout.
If Deformable Faster R-CNN is removed, the second best
performer is less clear and would depend more on which of
these conditions is most relevant to the domain of applica-
tion. Although Faster R-CNN with Inception ResNet v2 has
the second highest baseline score, it is overtaken by Faster
R-CNN with ResNet-101 in several conditions.

In addition to their lower baseline scores, SSD detectors
degrade more substantially than other detectors under most
mutations, particularly for more extreme mutations. This is
most noticeable in channel dropout, which devastates their
performance, and at higher levels of alpha blending.

Performance under defocus conditions shows similar
trends to that under Gaussian blur; SUTs that are robust to
one tend also to be robust to the other. The trend is similar
for haze and alpha blend, but with some outliers. These
relationships are explored further in Section IV-B. Full ROCs
are shown for defocus in Figure 5, which can be compared
to Figure 4 to see changes. Note that mutations affect both
miss rate and FP rate and that for some SUTs the overall
shape of the curve changes. For these SUTs, the full ROC
provides more insight than the aggregate ADR.

JPEG compression has no appreciable effect on perfor-
mance until JPEG qualities below 40%, but does not show
major degradation in performance until a level of 10%,
when artifacts are clearly visible to humans. Brightness
changes have very little effect on most SUTs, but brightening
images significantly hurts the SSD SUTs. However, the same
brightening actually increases MS-CNN performance above
baseline. Most SUTs are robust to both salt and pepper and
additive noise until they reach the highest magnitudes. The
SSD-based SUTs see degradations at earlier levels though.
Channel dropout results in the biggest drops in performance
from the largest share of SUTs. Only the TensorFlow Faster
R-CNN-based SUTs maintain reasonable performance under
that mutation, and the SSD detectors drop to producing
almost no correct detections.

Even in the case of mutations that show relatively small
changes in ADR, the effects on individual images can be
striking. Figure 6 illustrates how imperceptible changes can
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Fig. 6: Examples of images that show the largest change
in detection performance for MS-CNN under moderate blur
and haze. For all of them, the rate of FPs per image required
to detect the person increases by three to five orders of
magnitude. In each image, the green box shows the labeled
location of the person. The blue and red boxes are the
detection produced by the SUT before and after mutation
respectively, and the white-on-blue text is the strength of
that detection (ranged 0 to 1). Finally, the value in white-
on-yellow text shows the average FP rate per image that a
sensitivity threshold set at that value would yield. i.e., that
is the required FP rate to still detect the person.

sometimes result in dramatically different behavior. Note that
these perturbations are not adversarial in nature, but over
prolonged operation they can still happen by chance.

B. Predicting Contextual Performance

The contextual mutators evaluated in this work, defocus
and haze, incorporate context in the form of scene depths,
but otherwise apply the same transformations as simpler
mutators (blur and alpha blend respectively), with magnitude
dependent on scene depth. A natural question is whether this
context is important to the evaluation. One crucial use is to
relate magnitudes of blurring or blending to real, physical
phenomena, for imposing deployment requirements on a
system. Additionally, there may be important interactions
from the effects of multiple depths. To evaluate this, we
attempted to predict the effects of contextual mutators from
the performances on the corresponding simple mutators.

We perform prediction of ADRs (normalized to focus on
robustness, rather than gross performance) for each contex-
tual mutator configuration independently, and for each SUT
by using a leave-one-SUT-out scheme. Data for all simple
mutators for all but one SUT are used to fit a non-negative
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Baseline 0.60 0.29 0.22 0.64 0.64 0.71 0.71 0.73
Defocus (uf 10.0; κ 2.0) 0.59 0.29 0.22 0.64 0.63 0.71 0.63 0.73

Defocus (uf 5.0; κ 2.0) 0.59 0.29 0.22 0.64 0.64 0.71 0.63 0.73
Defocus (uf 2.0; κ 2.0) 0.52 0.29 0.24 0.63 0.63 0.68 0.62 0.74
Defocus (uf 1.0; κ 2.0) 0.38 0.20 0.21 0.54 0.53 0.57 0.50 0.69
Defocus (uf 10; κ 2.8) 0.59 0.29 0.22 0.64 0.63 0.71 0.63 0.73

Defocus (uf 5; κ 2.8) 0.59 0.29 0.23 0.64 0.64 0.71 0.63 0.73
Defocus (uf 2; κ 2.8) 0.47 0.26 0.23 0.59 0.59 0.65 0.58 0.73

Defocus (uf 1.0; κ 2.8) 0.27 0.14 0.17 0.47 0.44 0.44 0.40 0.58
Defocus (uf 10.0; κ 3.6) 0.59 0.29 0.22 0.64 0.63 0.71 0.63 0.73
Defocus (uf 5.0; κ 3.6) 0.57 0.29 0.23 0.64 0.63 0.70 0.62 0.73
Defocus (uf 2.0; κ 3.6) 0.43 0.24 0.22 0.55 0.56 0.60 0.53 0.70
Defocus (uf 1.0; κ 3.6) 0.19 0.11 0.13 0.42 0.38 0.36 0.34 0.51

Gaussian Blur (σ 0.5) 0.56 0.29 0.23 0.64 0.64 0.70 0.63 0.74
Gaussian Blur (σ 1.0) 0.48 0.27 0.24 0.61 0.61 0.67 0.60 0.74
Gaussian Blur (σ 1.5) 0.41 0.22 0.22 0.56 0.56 0.61 0.54 0.71
Gaussian Blur (σ 2.0) 0.33 0.17 0.19 0.51 0.49 0.53 0.47 0.65
Gaussian Blur (σ 2.5) 0.25 0.13 0.16 0.47 0.44 0.45 0.41 0.59
Gaussian Blur (σ 3.0) 0.19 0.10 0.14 0.43 0.40 0.37 0.35 0.53

Haze (uV 978.0 m (β 0.004)) 0.56 0.29 0.22 0.64 0.64 0.69 0.63 0.73
Haze (uV 326.0 m (β 0.012)) 0.50 0.28 0.21 0.64 0.65 0.67 0.63 0.73

Haze (uV 97.8 m (β 0.04)) 0.36 0.19 0.14 0.61 0.60 0.61 0.61 0.71
Alpha Blend (α 0.1) 0.53 0.29 0.21 0.64 0.64 0.69 0.63 0.73

Alpha Blend (α 0.25) 0.38 0.24 0.18 0.64 0.62 0.66 0.63 0.73
Alpha Blend (α 0.5) 0.22 0.05 0.09 0.63 0.55 0.63 0.63 0.72

Alpha Blend (α 0.75) 0.21 0.00 0.00 0.54 0.28 0.55 0.59 0.67
JPEG Compression (q 40) 0.56 0.27 0.21 0.62 0.61 0.68 0.61 0.71
JPEG Compression (q 20) 0.51 0.25 0.19 0.57 0.57 0.64 0.58 0.68
JPEG Compression (q 10) 0.39 0.19 0.15 0.47 0.46 0.51 0.49 0.58

Brightness (b 2.00) 0.61 0.14 0.09 0.51 0.59 0.60 0.59 0.66
Brightness (b 1.33) 0.63 0.25 0.16 0.60 0.64 0.66 0.63 0.72
Brightness (b 1.14) 0.61 0.27 0.19 0.62 0.64 0.69 0.63 0.73
Brightness (b 0.88) 0.57 0.30 0.25 0.65 0.63 0.72 0.62 0.73
Brightness (b 0.75) 0.55 0.30 0.26 0.64 0.62 0.73 0.62 0.72
Brightness (b 0.50) 0.56 0.24 0.23 0.61 0.58 0.73 0.60 0.71

Salt and Pepper (1% of pixels) 0.58 0.27 0.20 0.60 0.61 0.66 0.61 0.70
Salt and Pepper (2% of pixels) 0.55 0.25 0.18 0.57 0.59 0.63 0.60 0.68
Salt and Pepper (5% of pixels) 0.50 0.21 0.14 0.51 0.54 0.58 0.55 0.61

Drop Channel Cb (YCbCr) 0.36 0.01 0.00 0.40 0.09 0.41 0.16 0.11
Drop Channel Cr (YCbCr) 0.30 0.00 0.00 0.33 0.04 0.49 0.13 0.10

Drop Channel R (RGB) 0.64 0.07 0.01 0.51 0.34 0.56 0.34 0.37
Drop Channel G (RGB) 0.49 0.03 0.00 0.45 0.23 0.60 0.28 0.32
Drop Channel B (RGB) 0.40 0.03 0.03 0.39 0.23 0.58 0.29 0.29

Additive (ζw 5.0; ζu 0.5; ψ 0.5) 0.60 0.28 0.21 0.63 0.62 0.69 0.62 0.71
Additive (ζw 5.0; ζu 0.5; ψ 0.7) 0.60 0.27 0.19 0.61 0.60 0.66 0.60 0.68
Additive (ζw 5.0; ζu 1.5; ψ 0.5) 0.60 0.26 0.19 0.61 0.59 0.65 0.59 0.66

Additive (ζw 15.0; ζu 0.5; ψ 0.5) 0.59 0.25 0.18 0.60 0.58 0.65 0.59 0.66
Additive (ζw 5.0; ζu 2.5; ψ 0.5) 0.59 0.21 0.15 0.56 0.54 0.60 0.55 0.60

TABLE IV: ADRs for each SUT under all mutations. Numerical values show ADR, while cell colorization depicts ADR
normalized relative to that SUT’s baseline score, to highlight robustness characteristics. The color bar at right shows the
normalized scale’s color mapping; note that performance can sometimes improve over baseline.

least-squares model to predict that SUT’s performance on a
given contextual mutator parameterization. Intuitively, this
emulates trying to leverage knowledge of the robustness
relationships between simple and contextual mutators to
estimate performance without contextual information.

Figure 7 shows a comparison of the predicted and ob-
served normalized detection rates for each mutator. The blur
prediction model approximates defocus very well, giving R2

values ≥ 0.98 for all SUTs. Prediction haze performance is
more tenuous though, with poor predictions of several SUTs.
Figure 8 visualizes the models fit for both mutators. In each
plot, blue bars show the contribution of that simple mutator

to predicting the corresponding contextual mutator. Yellow
bars show a histogram of the amount of blurring or blending
applied to the labeled region of the person, throughout the
dataset, for each contextual mutator configuration. These are
well-correlated for defocus, suggesting that defocus effects
could be estimated well from blur for cases where the depths
of the important regions of the image are well-understood.
The fit is fairly well-correlated with this histogram for
haze as well, despite its poor performance at prediction,
suggesting there are important interactions that are not well-
captured by considering depths independently.
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Fig. 7: Regression results for predicting contextual mutator
performances from those of simple mutators
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Fig. 8: Distribution fits for predicting performance on defo-
cus from blur and haze from alpha blend (blue), compared to
the distributions of simple mutator magnitudes (yellow)–blur
for defocus and alpha blend for haze respectively–resulting
within person label bounding boxes when contextual muta-
tors are applied to the dataset.

C. Threats to Validity

1) Generalization outside our chosen mutators: We chose
a set of mutators, which can not cover the full range of
difficult cases that a vision system will be exposed to [28].
For our contextual metrics, we chose common approxima-
tions, but these approximations may not fully capture rele-
vant physical effects. The mutators we have chosen include
several where high frequency information is suppressed in
the image. Our conclusions may not generalize to other
difficult cases, such as dirty lens or glare effects. We do
include some simple mutators that add information, including
salt and pepper and additive Gaussian noise. Testing more
additive mutators will be explored in future work.

2) Generalization outside our chosen SUTs: We have
chosen a number of object detectors to test, but these may not
be representative of other current or future detection systems.
Our focus is more on the process than the individual SUTs
though, and we have tried to choose algorithms that have a
range of inference times and are best in class on a variety
of datasets. These detectors are tied to the method used to
train them, which varies by implementation and base library.
While it’s impractical to try every training configuration, we
strove to make the process consistent, to avoid, for instance,
some SUTs training on the mutations.

3) Generalization outside our dataset: Our chosen bench-
mark problem also imposes some assumptions. We use a
modified evaluation metric [10], which may not capture the
true performance relative to safety objectives. We have used
the largest scale person dataset available with all the required
secondary information. We have so far only evaluated this
work on a single off-road person detection dataset; it may
not extend to urban environments, which we plan to eval-
uate in future work. Finally, these conclusions may not be
applicable to other safety-critical computer vision problems,
such as odometry or scene understanding. We hope that as
autonomous vehicles get closer to application, we and others
will take a critical look at every step in the process.

V. CONCLUSIONS

We present a method for evaluating the robustness of
image-based algorithms to a variety of image modifications,
to allow estimation of how they would respond to unexpected
or uncommon conditions without requiring exhaustive real-
world testing under every condition. We show that the
choice of best-performing algorithm for a robotic system may
change when robustness is considered, and that choice will
depend on the conditions relevant to the application.

We also introduce two mutations that make use of ad-
ditional context, in the form of scene depths, to perform
more physically-realistic simulation of the effects of defocus
and haze. For both the simple and contextual mutators, we
demonstrate cases where performance drops catastrophically
in the presence of barely-perceptible changes.

Each of the contextual mutators consist of a depth-
varying application of one of the simple mutators that does
not require context, and we show the relationship between
robustness to the simple mutators and to the contextual



mutator. In the case of defocus, we show promising results
for predicting performance under the more physically real-
istic contextual mutator, even without needing that image
context. From evaluation on a range of different mutations,
generalized robustness trends begin to emerge that hint at
likely robustness to other unseen effects.
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