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Abstract 

Creating safe autonomous vehicles will require not only 
extensive training and testing against realistic operational 
scenarios, but also dealing with uncertainty. The real world can 
present many rare but dangerous events, suggesting that these 
systems will need to be robust when encountering novel, 
unforeseen situations. Generalizing from observed road data to 
hypothesize various classes of unusual situations will help. 
However, a heavy tail distribution of surprises from the real 
world could make it impossible to use a simplistic drive/fail/fix 
development process to achieve acceptable safety. Autonomous 
vehicles will need to be robust in handling novelty, and will 
additionally need a way to detect that they are encountering a 
surprise so that they can remain safe in the face of uncertainty. 

Reasonable Behavior 

Beyond the need to follow accepted safety engineering 
practices, a significant challenge in validating the safety of 
autonomous vehicles is ensuring that they will behave in a 
reasonable way when something unusual happens (i.e., a 
“surprise”). The scope of potential surprises is broad, and 
includes exceptional situations that are unforeseeable for 
practical purposes. Deploying self-driving cars on public roads 
requires addressing a number of topics in this area, including: 

 Defining what “reasonable behavior” actually is. This 
includes not only detailed traffic rules, but also appropriate 
handling of exceptional situations. 

 Creating robust descriptions of operational scenarios, 
obstacles, and environments relevant to expected vehicle 
operations. On-road surprises should be infrequent. 

 Finding a way to ensure that the system’s behavior is robust 
to novelty and surprises. In particular, the system should 
not be brittle when encountering inputs that are only 
slightly different than training data. 

 Ensuring that the system behavior is appropriately humble. 
False confidence in interpreting the environment can lead 
to mishaps. The system should be good at knowing when 
it doesn’t know what’s going on. 

While human drivers are certainly not perfect, any human 
driver has many years of experience in perceiving objects and 
events in the real world, and building predictive mental models 
as to what is likely to happen next. Humans build upon those 

skills that aren’t specific to the driving task when they learn to 
drive. A particularly important safety skill is having enough 
self-awareness for a driver to realize that it’s unclear what’s 
happening and take steps to reduce risk until the uncertainty is 
resolved. In other words, it’s important to recognize when a 
surprise driving situation is occurring. 

Heavy Tail Distribution 

The reason that detecting novel situations is so important is that 
there is an essentially infinite supply of surprises awaiting in the 
real world, even for simple deployment concepts. While human 
drivers are imperfect, they are incredibly adaptable. Machines, 
on the other hand, can be brittle in unexpected ways.  

Consider a system which is pretty good, but not quite as safe as 
it needs to be, and how that might be fixed. As a hypothetical 
example, assume that potentially fatal “surprises” are showing 
up about once every 1 million miles in on-road testing. The 
question is, will finding and fixing these surprises as they 
appear make the system safer? The answer is that it depends 
upon the statistical arrival rates of the surprises. 

Hypothesize that there are 100 total surprises awaiting the 
system, with each surprise arriving on average every 1 million 
miles. That means each individual surprise happens every 100 
million miles. A test program of perhaps one or two billion 
miles could potentially identify, correct, and validate mitigation 
of all the surprises with adequately high probability. 

But, on the other hand, consider the possibility of 100,000 total 
surprises awaiting the system, with each type of surprise 
arriving once every 100 billion miles. The average surprise 
arrival rate is still once every million miles. But you’d need to 
repeat a test/fail/fix cycle many times longer – perhaps a trillion 
miles – to be reasonably sure of mitigating all the surprises. 

While real systems will have varied average arrival rates, the 
important point here is that many things in life have a heavy tail 
distribution, in which a significant fraction of the population 
arrives very infrequently. 

The Heavy Tail Safety Ceiling 

A heavy tail safety ceiling will exist for autonomous vehicles to 
the degree that there is a population of surprises with average 
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arrival rates that are long compared to development and 
validation exposure, but short enough that an operational fleet 
will encounter them on a regular basis. Keeping things simple, 
if a particular type of surprise happens less often on average 
than the total development and validation test exposure, then 
probably it won’t be seen until deployment. That in turn means 
that when a larger scale deployment encounters that surprise, it 
can potentially result in a mishap if not handled robustly. 

Consider the population of latent surprises, which is the set of 
surprises not seen during development and validation. Each 
type of latent surprise has an arrival rate. The total population 
of latent surprises has an aggregate arrival rate faster than the 
arrival rate of any individual surprise (i.e., some surprise can 
happen relatively often, even if individual types of surprises 
each happen only rarely).  

The heavy tail safety ceiling problem occurs when (a) the total 
population of latent surprises is relatively large, and (b) the 
aggregate arrival rate of unacceptably risky latent surprises is 
more frequent than the system safety target. In this situation the 
system is not acceptably safe. Worse, fixing surprises as they 
arrive won’t resolve the problem, because mitigating one type 
of surprise will not substantively change the size of the large 
latent surprise population. 

Mitigating heavy tail surprises likely requires more than just a 
billion miles of data collection and testing. If you can drive a 
billion miles with very few mishaps, then you might be able to 
infer you are good enough to deploy. (There are many caveats 
to that approach.) However, if the billion miles of driving 
reveals too many surprises, it might be impracticable use a 
repeated drive/fail/fix cycle to attain safety. The pool of latent 
surprises can simply be too big to be discovered and mitigated 
via a brute force approach. 

Mitigating Heavy Tail Problems 

Achieving a high level of safety with autonomous vehicles is 
likely to require a three prong approach: explore as deeply into 
the heavy tail as is practicable; encourage robustness in system 
behavior so that fixing one surprise has a chance of also fixing 
other similar surprises; and ensure that the system is good at 
knowing when it doesn’t know what’s going on. 

The first step in dealing with a heavy tail ceiling situation is to 
validate with enough realistic data that you in fact are able to 
realize you’ve hit the heavy tail ceiling. In other words, first get 
all the low hanging fruit. At that point it is possible you’ll be 
safe enough, but let’s say for the sake of argument that the 
arrival rate of surprises is still too high after a brute force 
drive/fail/fix campaign. 

The next step is to try to make your system more robust to 
surprises. For some surprises this can be done by hypothesizing 
a generic version of a surprise to improve system robustness. 
Consider, as an example, a sensor failure caused by a plastic 
bag blowing onto a vision sensor. A narrow fix would involve 

detecting or removing a single-sensor occlusion. A more robust 
fix would encompass the possibility of multiple sensor 
occlusions by either a batch of debris or a much larger single 
piece of debris. (For example consider a tarp blowing off a 
gravel truck that covers your own vehicle entirely. True story.)  

Genericizing surprises to improve robustness should 
encompass novel operational environments, novel obstacles, 
and other aspects of the system’s operation. This sort of 
approach might be able to depopulate the heavy tail surprise 
space more quickly by addressing a group of related surprises 
after only the first surprise of a particular type has been seen. 
But it is unlikely to be enough, because such an approach is 
limited to surprises that have been detected in some way during 
development and validation.  There will always be unexpected 
types of surprises lurking out in the real world that haven’t been 
seen yet. 

Dealing with unknowns that are unknowable until after 
deployment requires dealing with the system’s ability to 
understand its own limits. At some point a system needs to be 
able to know that it doesn’t know what’s going on, and do 
something reasonable to safe the system. This is an aspect of 
system robustness, which deals with the ability of a system to 
gracefully handle exceptional conditions. 

One way to improve robustness is to inject noise into sensor 
values to test the system’s operational brittleness. For example, 
injecting moderate amounts of noise in images or other sensor 
data should not cause catastrophic system failure. Similarly, 
small amounts of noise should not cause wildly varying 
classification results or vehicle behaviors.  Rather, the result of 
noise that is small compared to signals from the environment 
should be a transition from reasonable certainty about object 
and scenario classification to an expression of uncertainty. In 
many cases it will also be appropriate to transition vehicle 
operation to less aggressive operational modes as uncertainty 
increases. 

Injecting noise into a system to validate that it has a robust 
response is a variation on fault injection and robustness testing 
approaches. Application of creative and effective fault injection 
techniques has the potential to improve autonomous vehicle 
robustness and break through the heavy tail safety ceiling. 
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