
CHALLENGES IN AUTONOMOUS
VEHICLE TESTING AND VALIDATION

Philip Koopman, Carnegie Mellon University
Michael Wagner, Edge Case Research LLC

Paper at: https://users.ece.cmu.edu/~koopman/pubs.html

koopman
Stamp

SAE INTERNATIONAL

But what about fleet deployment?

• Need V&V beyond just road tests
– High ASIL assurance requires a whole lot of testing & some optimism
– Machine-learning based autonomy is brittle and lacks “legibility”

• What breaks when mapping full autonomy to safety V model?
– Autonomy requirements/high level design are implicit in training data
– What “controllability” do you assign for full autonomy?
– Nondeterministic algorithms yield non-repeatable tests

• Potential strategies for safer autonomous vehicle designs
– Safing missions to minimize fail-operational cost
– Run-time safety monitors using traditional high-ASIL software
– Accelerated stress testing via fault injection

Overview:
Fully Autonomous Vehicles Are Cool!

Koopman & Wagner; 16 AE-0265 2

https://en.wikipedia.org/wiki/Autonomous_car

SAE INTERNATIONAL

Need to test for at least ~3x crash rate to validate safety

• Hypothetical fleet deployment: New York Medallion Taxi Fleet
– 13,437 vehicles, average 70,000 miles/yr = 941M miles/year

• 7 critical crashes in 2015
 134M miles/critical crash (death or serious injury)

• Assume testing representative; faults are random independent
– R(t) = e-lamba*t is the probability of not seeing a crash during testing

• Illustrative: How much testing to ensure
critical crash rate is at least as good as
human drivers?  (At least 3x crash rate)
– These are optimistic test lengths…

• Assumes random independent arrivals
• Is simulated driving accurate enough?

Validating High-ASIL Systems via Testing Is Challenging

3Koopman & Wagner; 16 AE-0265

[2014 NYC Taxi Fact Book]

Testing
Miles

Confidence if NO
critical crash seen

122.8M 60%
308.5M 90%
401.4M 95%
617.1M 99%

[Fatal and Critical Injury data / Local Law 31 of 2014]

Using chi-square test from: http://reliabilityanalyticstoolkit.appspot.com/mtbf_test_calculator

SAE INTERNATIONAL

Legibility: can humans understand how ML works?

• Machine Learning “learns” from training data
– Result is a weighted combination of “features”

• Commonly the weighting is inscrutable, or at least not intuitive
– There is an unknown (significant?) chance results are brittle

• E.g., accidental correlations in training data, sensitivity to noise

Machine Learning Might Be Brittle & Inscrutable

4Koopman & Wagner; 16 AE-0265

QuocNet:

Car Not a
Car

Magnified
Difference

Bus
Not a
Bus

Magnified
Difference

AlexNet:

Szegedy, Christian, et al. "Intriguing properties of neural
networks." arXiv preprint arXiv:1312.6199 (2013).

SAE INTERNATIONAL

Machine Learning requirements
are the training data

• V model traces reqts to V&V

• Where are the requirements in a
machine learning based system?
– ML system is just a framework
– The training data forms de facto requirements

• How do you know the training data is “complete”?
– Training data is safety critical
– What if a moderately rare case isn’t trained?

• It might not behave as you expect
• People’s perception of “almost the same”

does not necessarily predict ML responses!

Where Are the Requirements for Machine Learning?

5Koopman & Wagner; 16 AE-0265

REQUIREMENTS
SPECIFICATION

SYSTEM
SPECIFICATION

SUBSYSTEM/
COMPONENT

SPECIFICATION

PROGRAM
SPECIFICATION

MODULE
SPECIFICATION

SOURCE
CODE

UNIT TEST

PROGRAM
TEST

SUBSYSTEM/
COMPONENT

TEST

SYSTEM
INTEGRATION

& TEST

ACCEPTANCE
TEST

VERIFICATION &
TRACEABILITY

VALIDATION & TRACEABILITY

VERIFICATION &
TRACEABILITY

VERIFICATION &
TRACEABILITY

VERIFICATION &
TRACEABILITY

Review

Review

Review

Review

Review

Review

Review

Review

Review

Review

Review

Cluster Analysis

?

?

SAE INTERNATIONAL

ISO 26262 bases ASIL in part on Controllability

• If vehicle is fully autonomous, perhaps
this means zero controllability
– Are full emergency controls available?
– Will passenger be awake to use them?
– How much credit can you take for the

proverbial “big red button”?

• Can you take credit for controllability
of an independent emergency
shutdown system?
– Or, do we need “C4” for autonomy?

How Do We Assess Controllability?

6Koopman & Wagner; 16 AE-0265

SAE INTERNATIONAL

How Do You Test a
Randomized Algorithm?

• Example: Randomized
path planner
– Randomly generate solutions
– Pick best solution based

on fitness or goodness score

• Implications for testing:
– If you can carefully control random number generator, maybe you

can reproduce behavior in unit test
– At system level, generally sensitive to initial conditions

• Can be essentially impossible to get test reproducibility in real systems
• In practice, significant effort to force or “trick” robot into displaying behavior

Testing Non-Deterministic Algorithms

7Koopman & Wagner; 16 AE-0265

[Geraerts & Overmars, 2002]

SAE INTERNATIONAL APD is the first unmanned vehicle to use the Safety Monitor.
(Unclassified: Distribution A. Approved for Public Release.
TACOM Case # 19281 Date: 20 OCT 2009)

Run-Time Safety Monitors

Koopman & Wagner; 16 AE-0265 8

Approach: Enforce Safety with Monitor/Actuator Pair
• “Actuator” is the ML-based software

– Usually works
– But, might sometimes be unsafe
– Actuator failures are drivability problems

• All safety requirements are allocated to Monitor
– Monitor performs safety shutdown if unsafe outputs/state detected
– Monitor is non-ML software that enforces a safety “envelope”

• In practice, we’ve had significant success with this approach
– E.g., over-speed shutdown on APD
– Important point: need to be clever in

defining what “safe” means to create
monitors

– Helps define testing pass/fail criteria too

SAE INTERNATIONAL

What Happens When Primary Autonomy Has a Fault?

• Can’t trust a sick system to act properly
– With safety monitor approach, the

monitor/actuator pair shuts down
– But, you need to get car to safe state

• Bad news: need automated recovery
– If driver drops out of loop, can’t just say

“it’s your problem!”

• Good news: short duration recovery mission makes things easier
– Cars only need a few seconds to get to side of road or stop in lane
– Think of this as a “safing mission” like diverting an aircraft

• Easier reliability because only a few seconds for something else to fail
• Easier requirements because it is a simple “stop vehicle” mission
• In general, can get much simpler, inexpensive safing autonomy

Safing Missions To Reduce Redundancy Requirements

9Koopman & Wagner; 16 AE-0265

SAE INTERNATIONAL

Use Robustness Testing (SW Fault Injection) to Stress Test

• Apply combinations of valid & invalid parameters to interfaces
• Subroutine calls (e.g., null pointer passed to subroutine)
• Data flows (e.g., NaN passed as floating point input)
• Subsystem interfaces (e.g., CAN messages corrupted on the fly)
• System-level digital inputs (e.g., corrupted Lidar data sets)

• In our experience, robustness testing finds interesting bugs
– You can think of it as a targeted, specialized form of fuzzing

• Results:
– Finds functional defects in autonomous systems

• Basic design faults, not just exception handling
• Commonly finds defects missed in extensive field testing

– Is capable of finding architectural defects
• e.g., finds missing but necessary redundancy

What About Unusual Situations and
Unknown Unknowns?

10Koopman & Wagner; 16 AE-0265

SAE INTERNATIONAL

• Use testing dictionary
based on data types
• Random combinations of

pre-selected dictionary values
• Both valid and exceptional values

Basic Idea of Scalable Robustness Testing

Koopman & Wagner 16AE-0265 11

• Caused task crashes and kernel
panics on commercial desktop OS
• But what about on robots?
• Use Robustness testing for stress +

run-time monitoring for pass/fail detector

SAE INTERNATIONAL

ASTAA Project at NREC found system failures due to:
Improper handling of floating-point numbers:
• Inf, NaN, limited precision
Array indexing and allocation:
• Images, point clouds, etc…
• Segmentation faults due to arrays that are too small
• Many forms of buffer overflow, especially dealing with complex data types
• Large arrays and memory exhaustion
Time:
• Time flowing backwards, jumps
• Not rejecting stale data
Problems handling dynamic state:
• For example, lists of perceived objects or command trajectories
• Race conditions permit improper insertion or removal of items
• Vulnerabilities in garbage collection allow memory to be

exhausted or execution to be slowed down

Example Autonomous Vehicle Defects Found via
Robustness Testing

Koopman & Wagner 16AE-0265 12DISTRIBUTION A – NREC case number STAA-2013-10-02

SAE INTERNATIONAL

Suggested Philosophy for Testing Autonomous Vehicles:
• Some testing should look for proper functionality

– But, some testing should attempt to falsify a correctness hypothesis
• Much of vehicle autonomy is based on Machine Learning

– ML is inductive learning… which is vulnerable to black swan failures
– We’ve found robustness testing to be useful in this role

The Black Swan Meets Autonomous Vehicles

Koopman & Wagner 16AE-0265 13

Thousands of miles of “white swans”…
Make sure to fault inject

some “black swans”

SAE INTERNATIONAL

Fully Autonomous vehicles have fundamental differences

• Doing enough testing is challenging. Even worse…
– Machine learning systems are inherently brittle and lack “legibility”

• Challenges trying to map to traditional V model for safety
– Training data is the de facto requirement+design information
– What are “controllability” implications for assigning an ASIL?
– Non-determinism makes it difficult to do testing

• Potential solution elements:
– Safing missions to minimize fail-operational costs
– Run-time safety monitors worry about safety, not “correctness”
– Accelerated stress testing via fault injection finds defects that were

otherwise missed in vehicle-level testing
– Testing philosophy should include black swan events

Conclusions

14Koopman & Wagner; 16 AE-0265

