CHALLENGES IN AUTONOMOUS
VEHICLE TESTING AND VALIDATION

Philip Koopman, Carnegie Mellon University
Michael Wagner, Edge Case Research LLC

Paper at: https://users.ece.cmu.edu/~koopman/pubs.html

Carnegie
Mellon
University

koopman
Stamp

Overview:

Fully Autonomous Vehicles Are Cool!

But what about fleet deployment?

https://en.wikipedia.org/wiki/Autonomous_car

* Need V&V beyond just road tests
— High ASIL assurance requires a whole lot of testing & some optimism
— Machine-learning based autonomy is brittle and lacks “legibility”

* What breaks when mapping full autonomy to safety V model?
— Autonomy requirements/high level design are implicit in training data
— What “controllability” do you assign for full autonomy?
— Nondeterministic algorithms yield non-repeatable tests

» Potential strategies for safer autonomous vehicle designs
— Safing missions to minimize fail-operational cost
— Run-time safety monitors using traditional high-ASIL software
— Accelerated stress testing via fault injection

SAE INTERNATIONAL Koopman & Wagner; 16 AE-0265 2

Validating High-ASIL Systems via Testing Is Challenging

Need to test for at least ~3x crash rate to validate safety

* Hypothetical fleet deployment: New York Medallion Taxi Fleet

— 13,437 vehicles, average 70,000 miles/yr = 941M miles/year

.-) [2014 NYC Taxi Fact Book]
* 7 critical crashes in 2015 [Fatal and Critical Injury data / Local Law 31 of 2014]

=>» 134M miles/critical crash (death or serious injury)

e Assume testing representative; faults are random independent
— R(t) = elamba*t 5 the probability of not seeing a crash during testing

* lllustrative: How much testing to ensure ErSH NG Sl e
critical crash rate is at least as good as [VIES R eE Fa SRS =y

human drivers? =» (Atleast 3x crash rate) 122.8M 60%
— These are optimistic test lengths... 308.5M 90%
» Assumes random independent arrivals 401.4M 95%

. _ . -
Is simulated driving accurate enough” 617.1M 99%

Using chi-square test from: http://reliabilityanalyticstoolkit.appspot.com/mtbf test calculator

SAE INTERNATIONAL Koopman & Wagner; 16 AE-0265 3

Machine Learning Might Be Brittle & Inscrutable

Legibility: can humans understand how ML works?

e Machine Learning “learns” from training data
— Result is a weighted combination of “features”
« Commonly the weighting is inscrutable, or at least not intuitive

— There is an unknown (significant?) chance results are brittle
* E.g., accidental correlations in training data, sensitivity to noise

QuocNet:

AlexNet:
Magnified Not a
Difference Bus

Car Not a Magnified
Car Difference

Szegedy, Christian, et al. "Intriguing properties of neural
networks." arXiv preprint arXiv:1312.6199 (2013).

SAE INTERNATIONAL Koopman & Wagner; 16 AE-0265 4

Where Are the Requirements for Machine Learning?

Machine Learning requirements N e e
are the training data %

VERIFICATION &

* V. model traces reqgts to V&V

UBSYSTEM/
COMPONENT

SUBSYSTEM
COMPONENT
TEST /: evi eV\L\

TRACEABILITY

VERIFICATION &
TRACEABILITY

e Where are the requirements in a
machine learning based system? e

VERIFICATION &
TRACEABILITY

MODULE

— ML system is just a framework

ini . e e
— The training data forms de facto requwementsiJ

L Review

UNIT TEST

 How do you know the training data is “complete™? .

— Training data is safety critical E'Dug%‘@\ " ..l:i
— What if a moderately rare case isn’t trained? E'Eﬁ;ﬂv - ,i\\!'
« It might not behave as you expect o ,". . \'\
» People’s perception of “almost the same” - @:.l.: =

does not necessarily predict ML responses! _
Cluster Analysis

SAE INTERNATIONAL Koopman & Wagner; 16 AE-0265 5

How Do We Assess Controllability?

ISO 26262 bases ASIL in part on Controllability

Table 3 — Classes of controllability

Class N

& - - NL
* C3
Description led

Difficult to control or uncontrollable

e [

o If vehicle is fully autonomous, perhaps Table 4 — ASIL determination
this means zero controllability Severity | rosasiey| =S .
— Are full emergency controls available? —

— Will passenger be awake to use them? . E2 .1 aur [y

— How much credit can you take for the ES '“ |

proverbial “big red button”? i L | -1

E1 1 am | |

» Can you take credit for controllability s2 |— : - :
. E3 1 B

of an independent emergency ” - |1

shutdown system? e TR A "
— Or, do we need “C4” for autonomy? s3 £2 '“ ®
E3 C

SAE INTERNATIONAL Koopman & Wagner; 16 AE-0265 E4 D ;

>4

Testing Non-Deterministic Algorithms

How Do You Test a
Randomized Algorithm?

« Example: Randomized
path planner

— Randomly generate solutions

— Pick best solution based
on f|tneSS or gOOdneSS score Fig.1l. The roadmap graph we get for the difficult hole test scene used in this

paper. The left image shows the graph using halton sampling and the right image
uses gaussian sampling.

° Implications f()r testing: [Geraerts & Overmars, 2002]

— If you can carefully control random number generator, maybe you
can reproduce behavior in unit test

— At system level, generally sensitive to initial conditions
» Can be essentially impossible to get test reproducibility in real systems
* In practice, significant effort to force or “trick” robot into displaying behavior

SAE INTERNATIONAL Koopman & Wagner; 16 AE-0265 7

Run-Time Safety Monitors

Approach: Enforce Safety with Monitor/Actuator Pair
« “Actuator” is the ML-based software

— Usually works ACTUATOR (== OUTPUTS
i) A . A ,";CROSS-
— But, might sometimes be unsafe INPUTS | DOWN y p° CHECKS

— Actuator failures are drivability problems MONITOR

« All safety requirements are allocated to Monitor
— Monitor performs safety shutdown if unsafe outputs/state detected
— Monitor is non-ML software that enforces a safety “envelope”

* In practice, we’'ve had significant success with this approach
— E.g., over-speed shutdown on APD

— Important point: need to be clever in
defining what “safe” means to create
monitors

— Helps define testing pass/fall criteria too

SAE INTERNATIONAL

APD is the first unmanned vehicle to use the Safety Monitor.
Koopman & Wagner; 16 AE-0265 (Unclassified: Distribution A. Approved for Public Release. 8
TACOM Case # 19281 Date: 20 OCT 2009)

Safing Missions To Reduce Redundancy Requirements

What Happens When Primary Autonomy Has a Fault?

e Can't trust a sick system to act properly ~ Primary Autonomy:

. . ACTUATOR w3 OUTPUTS
— With safety monitor approach, the s oA cross.
monitor/actuator pair shuts down

i DOWN W ‘;' CHECKS
— But, you need to get car to safe state

MONITOR

Safing Autonomy:
» Bad news: need automated recovery ACTUATOR [<—3>OUTPUTS
. . Agyyr. A cross
— If driver drops out of loop, can'’t just say 'NPUTS<: LSO s OHECKS

MONITOR

“Iit’s your problem!”

e Good news: short duration recovery mission makes things easier
— Cars only need a few seconds to get to side of road or stop in lane
— Think of this as a “safing mission” like diverting an aircraft
» Easier reliability because only a few seconds for something else to fall

» Easier requirements because it is a simple “stop vehicle” mission
 In general, can get much simpler, inexpensive safing autonomy

SAE INTERNATIONAL Koopman & Wagner; 16 AE-0265 9

What About Unusual Situations and

Unknown Unknowns?

Use Robustness Testing (SW Fault Injection) to Stress Test

* Apply combinations of valid & invalid parameters to interfaces
» Subroutine calls (e.g., null pointer passed to subroutine)
« Data flows (e.g., NaN passed as floating point input)
» Subsystem interfaces (e.g., CAN messages corrupted on the fly)
» System-level digital inputs (e.g., corrupted Lidar data sets)
 In our experience, robustness testing finds interesting bugs

— You can think of it as a targeted, specialized form of fuzzing

* Results:

— Finds functional defects in autonomous systems
» Basic design faults, not just exception handling
« Commonly finds defects missed in extensive field testing
— Is capable of finding architectural defects
* e.g., finds missing but necessary redundancy

SAE INTERNATIONAL Koopman & Wagner; 16 AE-0265 10

Basic ldea of Scalable Robustness Testing

API

TESTING
OBJECTS

TEST
VALUES

TEST CASE

write(int filedes, const void *buffer, size_t nbytes)

FILE
DESCRIPTOR
TEST OBJECT

MEMORY
BUFFER
TEST OBJECT

SIZE
TEST ()
OBJECT

FD_CLOSED

FD_OPEN_READ
FD_OPEN_WRITE
FD_DELETED
FD_NOEXIST

FD_EMPTY_FILE
FD_PAST_END
FD_BEFORE_BEG
FD_PIPE_IN
FD_PIPE_OUT
FD_PIPE_IN_BLOCK
FD_PIPE_OUT_BLOCK
FD_TERM
FD_SHM_READ
FD_SHM_RW
FD_MAXINT
FD_NEG_ONE

BUF_SMALL_1
BUF_MED_PAGESIZE
BUF_LARGE_512MB
BUF_XLARGE_1GB
BUF_HUGE_2GB
BUF_MAXULONG_SIZE
BUF_64K
BUF_END_MED
BUF_FAR PAST
BUF_ODD_ADDR
BUF_FREED
BUF_CODE

BUF_16

BUF_NULL
BUF_NEG_ONE

SIZE_PAGE
SIZE_PAGEx16
SIZE_PAGEx16plus1
SIZE_MAXINT
SIZE_MININT
SIZE_ZERO
SIZE_NEG

BALLISTA

write (FD OPEN RD, BUFF NULL, SIZE 16)

e Caused task crashes and kernel

panics on commercial desktop OS

Use testing dictionary
based on data types
 Random combinations of

pre-selected dictionary values
* Both valid and exceptional values

Balista Robustness Tests for 233 Posix Function Calls

x5 5 - |

Irix 6.2 _1 Caiashopmc
tnvr 2015 -] |
Lynx0S 2.4.0 _ 1 Catasflropmc
NetsD 1.3 Y |

os 1.4 -

- 1020 - o) c

I Abort Failures
[Restart Failure

057 12 - | : -9
B ———— -

5]

5

* Butwhat about on robots? ey ———
- Use Robustness testing for stress + e ———
run-time monitoring for pass/fail detector L U T
SAE INTERNATIONAL Koopman & Wagner 16AE-0265 11

Example Autonomous Vehicle Defects Found via

Robustness Testing

ASTAA Project at NREC found system failures due to: ?

Improper handling of floating-point numbers:

* Inf, NaN, limited precision

Array indexing and allocation:

* Images, point clouds, etc...

 Segmentation faults due to arrays that are too small
 Many forms of buffer overflow, especially dealing with complex data types
 Large arrays and memory exhaustion
Time:

» Time flowing backwards, jumps

* Not rejecting stale data

Problems handling dynamic state:
 For example, lists of perceived objects or command trajectories
« Race conditions permit improper insertion or removal of items

* Vulnerabilities in garbage collection allow memory to be
exhausted or execution to be slowed down

RO

SAE INTERNATIONAL Koopman & Wagner 16AE-0265 DISTRIBUTION A — NREC case number STAA-2013-10-02 12

The Black Swan Meets Autonomous Vehicles

Suggested Philosophy for Testing Autonomous Vehicles:
e Some testing should look for proper functionality
— But, some testing should attempt to falsify a correctness hypothesis

« Much of vehicle autonomy is based on Machine Learning
— ML is inductive learning... which is vulnerable to black swan failures
— We've found robustness testing to be useful in this role

Make sure to fault inject
Thousands of miles of “white swans”... some “black swans”

SAE INTERNATIONAL Koopman & Wagner 16AE-0265 13

Conclusions

Fully Autonomous vehicles have fundamental differences

» Doing enough testing is challenging. Even worse...
— Machine learning systems are inherently brittle and lack “legibility”

» Challenges trying to map to traditional V model for safety
— Training data is the de facto requirement+design information
— What are “controllability” implications for assigning an ASIL?
— Non-determinism makes it difficult to do testing

 Potential solution elements:
— Safing missions to minimize fail-operational costs
— Run-time safety monitors worry about safety, not “correctness”

— Accelerated stress testing via fault injection finds defects that were
otherwise missed in vehicle-level testing

— Testing philosophy should include black swan events

SAE INTERNATIONAL Koopman & Wagner; 16 AE-0265 14

