
2016-01-0128 / 16AE-0265

Challenges in Autonomous Vehicle Testing and Validation

Philip Koopman & Michael Wagner
Carnegie Mellon University; Edge Case Research LLC

Abstract

Software testing is all too often simply a bug hunt rather than a well-
considered exercise in ensuring quality. A more methodical approach
than a simple cycle of system-level test-fail-patch-test will be
required to deploy safe autonomous vehicles at scale. The ISO 26262
development V process sets up a framework that ties each type of
testing to a corresponding design or requirement document, but
presents challenges when adapted to deal with the sorts of novel
testing problems that face autonomous vehicles. This paper identifies
five major challenge areas in testing according to the V model for
autonomous vehicles: driver out of the loop, complex requirements,
non-deterministic algorithms, inductive learning algorithms, and fail-
operational systems. General solution approaches that seem
promising across these different challenge areas include: phased
deployment using successively relaxed operational scenarios, use of a
monitor/actuator pair architecture to separate the most complex
autonomy functions from simpler safety functions, and fault injection
as a way to perform more efficient edge case testing. While
significant challenges remain in safety-certifying the type of
algorithms that provide high-level autonomy themselves, it seems
within reach to instead architect the system and its accompanying
design process to be able to employ existing software safety
approaches.

Introduction

While self-driving cars have recently become a hot topic, the
technology behind them has been evolving for decades, tracing back
to the Automated Highway System project [1], and before. Since
those early demonstrations, the technology has matured to the point
that Advanced Driver Assistance Systems (ADAS) such as automatic
lane keeping and smart cruise control are standard on a number of
vehicles. Beyond that, there are numerous different fully autonomous
vehicle projects in various stages of development, including extended
on-road testing of multi-vehicle fleets.

If one believes pundits, full-scale fleets of autonomous vehicles
(often called “self-driving cars”) are just around the corner. However,
as the traditional automotive industry knows well, there is a huge
difference between building a few vehicles to run in reasonably
benign conditions with professional safety drivers, and building a
fleet of millions of vehicles that have to run in an unconstrained
world. Some say that successful demonstrations and a few thousand
km (or even a few hundred thousand km) of driving experience
means that autonomous vehicle technology is essentially ready to be
deployed at full scale. But, it is difficult to see how such testing alone
would be enough to ensure adequate safety. Indeed, at least some
developers seem to be doing more, but the question is how much
more might be required, and how we can know that the resultant
vehicles are sufficiently safe to deploy.

In this paper we explore some of the challenges that await developers
who are attempting to qualify fully autonomous, NHTSA Level 4 [2]
vehicles for large-scale deployment. Thus, we skip past potential
semi-automated approaches to address systems in which the driver is
not responsible at all for safe vehicle operation. We further limit
scope to consider how such vehicles might be designed and validated
within the ISO 26262 V framework. The reason for this constraint is
that this is an acceptable practice for ensuring safety. It is a well-
established safety principle that computer-based systems should be
considered unsafe unless convincingly argued otherwise (i.e., safety
must be shown, not assumed). Therefore, autonomous vehicles
cannot be considered safe unless and until they are shown to conform
or map to ISO 26262 or some other suitable, widely accepted
software safety standard.

Infeasibility of Complete Testing

Vehicle-level testing won’t be enough to ensure safety. It has long
been known that it is infeasible to test systems thoroughly enough to
ensure ultra-dependable system operation.

For example, consider a hypothetical fleet of one million vehicles
operated one hour per day (i.e., 106 operational hours per day). If the
safety target is to have about one catastrophic computing failure in
this fleet every 1,000 days, then the safety goal is a mean time
between catastrophic failures of 109 hours, which is comparable to
aircraft permissible failure rates. [3] Note that this admits to the
likelihood that several such catastrophic failures due to computer
defects or malfunctions will happen during the life of the fleet of
cars. However, such a goal might be justifiable if accompanied by a
much larger reduction in catastrophic mishaps due to driver error
compared to manually driven vehicles. (This is just an example
failure rate. Arguments might be made for this rate to be higher or
lower, but it has been selected as a defensible rate that illustrates
some of the difficulties in achieving safety.)

In order to validate that the catastrophic failure rate of a vehicle fleet
is in fact one per 109 hours, one must conduct at least 109 vehicle
operational hours of testing (a billion hours) [4], and in fact must test
several times longer, potentially repeating such tests multiple times to
achieve statistical significance. Even this assumes that the testing
environment is highly representative of real-world deployment, and
that circumstances causing mishaps arrive in a random, independent
manner. Building a fleet of physical vehicles big enough to run
billions of hours in representative test environments without
endangering the public seems impractical. Thus, alternate methods of
validation are required, potentially including approaches such as
simulation, formal proofs, fault injection, bootstrapping based on a
steadily increasing fleet size, gaining field experience with
component technology in non-critical roles, and human reviews.
(Component level testing also plays a role, but it is still impractical to

Preprint: 2016 SAE World Congress

accumulate 109 hours of pre-deployment testing for a physical
hardware device.) Things get even worse when one considers that
testing is even more difficult for autonomy systems than for everyday
software systems, as will be discussed below.

That having been said, for relatively non-critical computing systems
it may be possible to use testing as a primary basis for validating an
appropriate level of safety. This is because failures involving low
severity and low exposure may be permissible at a higher occurrence
rate than catastrophic failures. For example, if a failure of a particular
type once every 1,000 hours is acceptable (because such failures
result in a minimal-cost incident or slight disruption), then validation
of that failure rate could be credibly achievable by testing for several
thousand hours. This is not to say that all software quality process
can be abandoned for such systems, but rather that a suitable testing
and failure-monitoring strategy might make it possible to validate
that a component with suitable quality has actually attained an
acceptably low failure rate if the mean-time-between-failure
requirement is relatively lenient.

The V Model as a Starting Point

Because system-level testing can’t do the job, more is required. And
that is precisely the point of having a more robust development
framework for creating safety critical software.

The “V” software development model has been applicable to vehicles
for a long time. It was one of the development reference models
incorporated into the MISRA Guidelines more than 20 years ago [5,
6]. More recently, it has been promoted to be the reference model that
forms the basis of ISO 26262 [7].

Figure 1. A generic V model.

In general, the V model (Figure 1) represents a methodical process of
creation followed by verification and validation. The left side of the
V works its way from requirements through design to
implementation. At each step it is typical for the system to be broken
into subsystems that are treated in parallel (e.g., there is one set of
system requirements, but separate designs for each subsystem). The
right side of the V iteratively verifies and validates larger and larger
chunks of the system as it climbs back up from small components to
a system-level assessment. While ISO 26262 has a detailed
elaboration of this model, and much more, we keep things generic so
as to discuss the high level ideas.

Although ISO 26262 and its V framework generally reflect accepted
practices for ensuring automotive safety, fully autonomous vehicles
present unique challenges in mapping the technical aspects of the
vehicle to the V approach.

Driver Out of the Loop

Perhaps the most obvious challenge in a fully autonomous vehicle is
that the whole point is for the driver to no longer be actually driving
the vehicle. That means that, by definition, the driver can no longer
be counted on to provide control inputs to the vehicle during
operation. [2]

Controllability Challenges

Typical automotive safety arguments for low-integrity devices can
hinge upon the ability of a human driver to exert control. For
example, with an Advanced Driver Assistance System (ADAS), if a
software fault causes a potentially dangerous situation, the driver
might be expected to over-ride that software function and recover to a
safe state. Drivers are also expected to recover from significant
vehicle mechanical failures such as tire blow-outs. In other words, in
human-driven vehicles the driver is responsible for taking the right
corrective action. Situations in which the driver does not have an
ability to take corrective action are said to lack controllability, and
thus must be designed to a higher Automotive Safety Integrity Level,
or ASIL. [8]

With a fully autonomous vehicle, the driver can’t be counted on to
handle exceptional situations. Rather, the computer system must
assume that role as the primary exception handler for faults,
malfunctions, and beyond-specified operating conditions. Putting the
computer in charge of exception handling seems likely to
dramatically increase automation complexity compared to ADAS
systems. Combinations of ADAS systems such as lane-keeping and
smart cruise control seem tantalizingly close to fully autonomous
operation. However, a fully autonomous vehicle must have
significant additional complexity to deal with all the ways things
might go wrong because there is no driver to grab the wheel and hit
the brakes when something goes awry.

Autonomy Architecture Approaches

In the context of ISO 26262, putting the computer in charge suggests
one of two strategies for assessing risk. One strategy is that the
controllability portion of risk evaluation [8] should be set to “C3
Difficult to control or uncontrollable.” This might be a viable option
if the severity and exposure are very low, and thus a low ASIL can be
assigned. However, in cases that have moderate or high severity and
exposure, the system must be designed to a high Automotive Safety
Integrity Level (ASIL). (Some might argue that there should be an
even higher controllability classification C4 because of the potential
of an automation system to take proactively dangerous positive
actions rather than simply failing to deliver a safety function. But we
assume here that the existing C3 suffices.)

Another way to handle a potentially high-ASIL autonomy function is
to use ASIL decomposition [9] via a combination of a
monitor/actuator architecture and redundancy. A monitor/actuator
architecture is one in which the primary functions are performed by
one module (the actuator), and a paired module (the monitor)
performs an acceptance test [5, 10] or other behavioral validation. If
the actuator misbehaves, the monitor shuts the entire function down
(both modules), resulting in a fail-silent system (i.e., any failure

REQUIREMENTS
SPECIFICATION

SYSTEM
SPECIFICATION

SUBSYSTEM/
COMPONENT

SPECIFICATION

PROGRAM
SPECIFICATION

MODULE
SPECIFICATION

SOURCE
CODE

UNIT TEST

PROGRAM
TEST

SUBSYSTEM/
COMPONENT

TEST

SYSTEM
INTEGRATION

& TEST

ACCEPTANCE
TEST

VERIFICATION &
TRACEABILITY

VALIDATION & TRACEABILITY

VERIFICATION &
TRACEABILITY

VERIFICATION &
TRACEABILITY

VERIFICATION &
TRACEABILITY

Review

Review

Review

Review

Review

Review

Review

Review

Review

Review

Review

results in a silent component, sometimes also known as fail-stop, or
fail-safe).

Figure 2. Monitor/actuator pair conceptual diagram.

If the monitor/actuator pair (Figure 2) is designed properly, the
actuator can be designed to a low ASIL so long as the monitor has a
sufficiently high ASIL and detects all possible faults in the monitor.
(There is also a requirement to detect latent faults in the monitor to
avoid a broken monitor failing to detect an actuator fault.) This
architectural pattern can be especially advantageous if the monitor
can be made substantially simpler than the actuator, reducing the size
of the high-ASIL monitor, and permitting the majority of the
functional complexity to be placed into a lower-ASIL actuator.

Both the strength and weakness of a monitor/actuator pair is that it
creates a fail-silent building block (i.e., one that shuts down if there is
a fault). The use of heterogeneous redundancy (two modules: the
monitor and the actuator) is intended to prevent a malfunctioning
actuator from issuing dangerous commands. However, it also causes
loss of the actuator function if something goes wrong, which is a
problem for a function that must fail operational, such as steering in a
moving vehicle.

At the very least, providing fail operational behavior requires even
more redundancy (more than one monitor/actuator pair), and very
likely design diversity so that common-mode software design failures
do not cause a systemic failure. This is important to avoid situations
such as the loss of Arianne 5 Flight 501, which was caused by both a
primary and a backup system that failed the same way due to
experiencing the same un-handled exceptional (unanticipated by the
component design) operating condition. [11]

It should be noted that achieving diversity is not necessarily simple,
due to issues such as vulnerability to defects in the same set of high-
level requirements used to implement the diverse components (e.g.,
[12]). However this is a situation that is also true for non-autonomous
software. It should also be noted that a monitor/actuator pair’s fail-
silent requirement is based on an assumption of failure independence,
but again this is also true of non-autonomous systems.

A key high level point is that regardless of the approach, it seems
likely that there will need to be a way to detect when autonomy
functions are not working properly (whether due to hardware faults,
software faults, or requirements defects), and to somehow bring the
system to a safe state when such faults are detected via a fail-
operational degraded mode autonomy capability.

Complex Requirements

An essential characteristic of the V model of development is that the
right side of the V provides a traceable way to check how the left side
turned out (verification and validation). However, this notion of
checking is predicated on an assumption that the requirements are
actually known, are correct, complete, and unambiguously specified.
That assumption presents challenges for autonomous vehicles.

Requirements Challenges

As mentioned earlier, removing the driver from the control system
means that software has to handle exceptions, including weather,
environmental hazards, and equipment failures. There are likely to be
very many different types of these, from bad weather (flooding, fog,
snow, smoke, tornados), to traffic rule violations (wrong-direction
cars on a divided highway, other drivers running red lights, stolen
traffic signs), to local driving conventions (parking chairs, the
“Pittsburgh Left” [13]), to animal hazards (deer, armadillos, and the
occasional plague of locusts).

Anyone who has driven for a long time is likely to have stories to tell
of freak events they’ve seen on the road. A large fleet of vehicles
will, in aggregate, be likely to experience all such types of events,
and perhaps more. Worse still is that combinations of adverse events
and driving conditions can occur that are simply too numerous to
enumerate in a classical written requirements specification. Perhaps
not all such extremely rare combinations need to be covered if results
are likely to be innocuous, but the requirements should be clear about
what is within the scope of system design, as well as what is not.
Thus, it seems unlikely that a classical V process that starts with a
document that enumerates all system requirements will be scalable to
autonomous vehicle exception handling in a rigorous way, at least in
the immediate future.

Operational Concept Approaches

One way to manage the complexity of requirements is to constrain
operational concepts and engage in a phased expansion of
requirements. This is already being done by developers who might
concentrate on-road testing in particular geographic regions (for
example only performing daytime driving on divided highways in
Silicon Valley, which has limited precipitation and little freezing
weather). However, the idea of employing an operational concept can
be scaled in many directions.

Examples of axes that can be exploited for limiting operational
concepts include:

 Road access: limited access highways, HOV lanes, rural
roads, suburbs, closed campuses, urban streets, etc.

 Visibility: day, night, fog, haze, smoke, rain, snow, etc.
 Vehicular environment: self-parking in a closed garage

with no other cars moving, autonomous-only lanes, marker
transponders on non-autonomous vehicles, etc.

 External environment: infrastructure support, pre-mapped
roads, convoying with human-driven cars

 Speed: lower speeds potentially lead to lower consequences
of a failure and larger recovery margins

While there are still a great many combinations of the above degrees
of freedom (and more that can no doubt be imagined), the purpose of
selecting from possible operational concepts is not to increase
complexity, but rather to reduce it. Mitigation of requirement
complexity can be achieved via only enabling autonomy in a certain
limited set of situations for which requirements are fully understood
(and ensuring that the recognition of those valid operational
conditions is correct).

Limiting operational concepts therefore becomes a bootstrapping
strategy for deploying successively more sophisticated technical
capabilities in a progressively more complex operational context.
(e.g., [14, 15]) Once confidence is gained that requirements for a
particular operational concept are well understood, additional similar

operational concepts can be added over time to expand the envelope
of allowable automation scenarios. This will not entirely eliminate
the issue of complex requirements, but it can help mitigate the
combinatorial explosion of requirements and exceptions that would
otherwise occur.

Safety Requirements and Invariants

Even with the use of restricted operational concepts, it seems likely
that it will be impractical to use a traditional safety-related
requirements approach. Such an approach more or less proceeds as
follows. First the functional requirements are created. Then the
requirements that are safety-relevant are annotated after some risk
assessment process has been performed. Then, these safety-relevant
requirements are allocated to safety critical subsystems. Then, safety
critical subsystems are designed to satisfy allocated requirements.
Finally, unanticipated emergent subsystem interactions are identified
and mitigated via repeating the cycle.

Annotation of safety-critical requirements can be impractical for
autonomy applications for at least two reasons. One reason is that
many requirements might be only partially safety related, and are
inextricably entwined with functional performance. For example, the
many conditions for operating a parking brake when the car is
moving could be a starting set of requirements. However, only some
aspects of those requirements are actually safety critical, and those
aspects are largely emergent effects of the interaction of the other
functions. In the case of the parking brake, a deceleration profile
when the parking brake is applied at speed is one of the desired
functions, and is likely to be described by numerous functional
requirements. But, simplifying, the only safety critical aspect in the
deceleration mode might be that the emergent interaction of the other
requirements must avoid locking up the wheels during the
deceleration process.

The second reason that annotation of requirements to identify safety-
relevant requirements may fail is that this may not even be possible
when machine learning techniques are used. That is because the
requirements, such as they are, take the form of a set of training data
that enumerates a set of input values and correct system outputs.
These tend not to be in the form of traditional requirements, and
therefore require a different approach to requirements management
and validation. (See the section on machine learning later in this
paper).

Rather than attempting to allocate functional requirements among
safety and non-safety subsystems, it can be helpful to create a
separate, parallel set of requirements that are strictly safety related.
[16] These requirements tend to be in the form of invariants that
specify system states that are required for safety (both things that
must be true to be safe, and things that must be false to be safe). This
approach can disentangle issues of performance and optimization
(“What is the shortest traveling path?” or “What is the speed for
optimal fuel consumption?”) from those of safety (“Are we going to
hit anything?”).

Using this approach would divide the set of requirements into two
parts for the V model. The first set of requirements would be a set of
non-safety-related functional requirements, which might be in
traditional format or an untraditional format such as a machine
learning training set. However, by definition those potentially non-
traditional requirements are not safety-related, so it might be
acceptable if traceability and validation have ample but imperfect
coverage.

The second set of requirements would be a set of purely safety
requirements that completely and unambiguously define what “safe”
means for the system, relatively independent of the details of optimal
system behavior. Such requirements can take the form of safe
operating envelopes for different operational modes, with the system
free to optimize its performance within the operating envelope. [17]
It is clear that such envelopes can be used in at least some situations
(e.g., enforcing a speed limit or a setting a minimum following
distance). This concept promises to be rather general, but proving that
remains future work.

A compelling reason to adopt a set of safety requirements that is
orthogonal to functional requirements is that such an approach
cleanly maps onto monitor/actuator architectures. Functional
requirements can be allocated to a low-ASIL actuator functional
block, while safety requirements can be allocated to a high-ASIL
monitor. This idea has been used informally for many years as part of
the monitor/actuator design pattern. We are proposing that this
approach be elevated to a primary strategy for architecting
autonomous vehicle designs, requirements, and safety cases rather
than being relegated to a detailed implementation redundancy
strategy.

Non-Deterministic and Statistical Algorithms

Some of the technologies used in autonomous vehicles are inherently
statistical in nature. In general, they tend to be non-deterministic
(non-repeatable), and may give answers that are only correct to some
probability – if a probability can be assigned at all. Validating such
systems presents challenges not typically found in more
deterministic, conventional automotive control systems.

Challenges of Stochastic Systems

Non-deterministic computations include algorithms such as planners
that might work by ranking the results of numerous randomly
selected candidates (e.g., probabilistic roadmap planners [18]).
Because the core operation of the algorithm is based on random
generation of candidates, it is difficult to reproduce. While techniques
such as using a reproducible pseudo-random number stream in unit
test can be helpful, it may be impractical to create completely
deterministic behavior in an integrated system, especially if small
changes in initial conditions lead to diverging system behaviors. This
means that every vehicle-level test could potentially result in a
different outcome despite attempts to exercise nominally identical
test cases.

Successful perception algorithms also tend to be probabilistic. For
example, the evidence grid framework [19] accumulates diffuse
evidence from individual, uncertain sensor readings into increasingly
confident and detailed maps of a robot's surroundings. This approach
yields a probability that an object is present, but never complete
confidence. Furthermore, these algorithms are based on prior models
of sensor physics (e.g., multipath returns) and noise (e.g., Gaussian
noise on LIDAR-reported ranges) which are themselves probabilistic
and sensitive to small changes in environmental conditions.

Beyond modeling the geometry of surroundings, other algorithms
extract labels from perceived data. Prominent examples of these
include pedestrian detection. [20] Such systems can exhibit
potentially unpredicted failure modes even with largely noise-free
data. For example, vision systems might have trouble disambiguating
color variations due to shadows, and experience difficulties
determining object positions in the presences of large reflective
surfaces. (In all fairness, these present challenges for humans as

well.) Moreover, any classification process exhibits a tradeoff
between false negatives and false positives, with fewer of one
necessarily incurring more of the other. The testing implications of
this are that such algorithms won’t “work” 100% of the time, and that
depending on construction they might report a particular situation as
being “true” when it is only a moderately high probability of that
situation actually being true.

Non-Determinism in Testing

Handling non-determinism in testing is difficult for at least two
reasons. The first is that it can be difficult to exercise a particular
specific edge-case situation. This is because the system might behave
in a way that activates that edge case only if it receives a very
specific sequence of inputs from the world. Due to factors discussed
earlier, such as the potentially dramatic differences in planner
response to small changes of inputs, it can be difficult to contrive a
situation in which the world will reliably offer up just the right
conditions to run a particular desired test case.

As a simple example, a vehicle might prefer to drive a more
circuitous route on a wide roadway rather than a shortcut through a
narrow alley. To evaluate the performance navigating the narrow
alley, testers would need to contrive a situation that makes the wide
roadway unappealing to the planner. But, doing this requires
additional attention to test planning, and perhaps (manually) moving
the vehicle into a situation it would not normally enter to force the
desired response. Testing the vehicle’s ability to consistently choose
the better of two almost equally unattractive paths without vacillating
might be even more difficult.

A second difficulty with non-determinism in testing is that it can be
difficult to evaluate whether test results are correct or not, because
there is no unique correct system behavior for a given test case. Thus,
correctness criteria are likely to have to take a form similar to the
safety envelopes previously discussed, in which a test passes if the
end system state is within an acceptable “test pass” envelope. In
general, multiple tests might be required to build confidence that the
system will always end up in the test pass envelope.

Probabilistic system behaviors present a similar challenge to
validation, because passing a test once does not mean that the test
will be passed every time. In fact, with a probabilistic behavior it
might be expected that at least some types of tests will fail some
fraction of the time. Therefore, testing might not be oriented toward
determining if behaviors are correct, but rather to validating that the
statistical characteristics of the behavior are accurately specified
(e.g., that the false-negative detection rate is no greater than the rate
assumed in an accompanying safety argument). This is likely to take
a great many more tests than simple functional validation, especially
if the behavior in question is safety critical and expected to have an
extremely low failure rate.

Achieving extremely high performance from a probabilistic system is
likely to require multiple subsystems that in composite are assumed
to provide a low aggregate failure rate due to having completely
independent failures. For example, a composite radar and vision
system might be combined to assure no missed obstacles to within
some extremely low probability. This approach applies not only to
sensing modalities, but also to other diverse algorithmic schemes in
planning and execution. If such an approach is successful, it might
well be that the resulting probability of failure is so low that testing to
verify the composite performance is infeasible. For example, if
obstacles must be missed by both systems once in a billion
detections, then billions of representative tests must be run to validate
this performance.

Validating very low failure rates for composite diverse algorithms
might be attempted by separately validating the more frequent
permissible failure rates of each algorithm in isolation. But that is
insufficient. One must also validate the assumption of independence
between failures, which might well have to be based on analysis in
addition to testing.

Machine Learning Systems

Proper behavior for autonomous vehicles is only possible if a
complex series of perception and control decisions are made
correctly. Achieving this usually requires proper tuning of
parameters, including everything from a calibrated model of each
camera lens to the well-tuned weighting of the risks of swerving
versus stopping to avoid obstacles on a highway. The challenge here
is to find the calibration model or the ratio of weights such that some
error function is minimized. In recent years, most robotics
applications have turned to machine learning to do this [21, 22],
because the complexities of the multi-dimensional optimization are
such that manual effort is unlikely to yield desired levels of
performance.

The details of approaches to machine learning are many, e.g., the use
of learning from demonstration, active learning, and supervised vs.
unsupervised approaches. However, all such approaches involve
inductive learning, in which training examples are used to derive a
model.

For example, consider the case of detecting pedestrians in monocular
images. Using a large training set of images, a classifier can learn a
decision rule that minimizes the probability that pedestrians are
detected in a separate validation set of images. For our purposes, an
essential element is that the training set is effectively the set of
requirements for the system, and the rules are the resultant system
design. (The machine learning algorithm itself and the classifier
algorithm are both more amendable to traditional validation
techniques. However, these are general-purpose software “engines”
and the ultimate system behaviors are determined by what training
data is used for learning.)

One could attempt to skirt the issue of training set data forming de
facto requirements by instead creating a set of requirements for
collecting the training data. But this ends up simply pushing the same
challenge up one level of abstraction. The requirements are not in the
typical V format of a set of functional requirements for the system
itself, but rather in the form of a set of training data or a plan for
collecting the set of training data. How to validate training data is an
open question that might be addressed by some combination of
characterizing the data as well as the data generation or data
collection processes.

Challenges of Validating Inductive Learning

The performance of inductive learning methods can be tested by
holding back some samples from the overall data set that has been
collected and using those samples for validation. The presumption is
that if the training set is used as the system requirements (the left-
hand side of the V) an independent set of validation data can be used
to ensure that the requirements have been met (forming the
corresponding right-hand side of the V). Training data must not have
accidental correlations unrelated to the desired behavior, or else the
system will become “over-fitted.” Similarly, the validation data must
be independent and diverse from the training data in every way
except the desired features, or else overfitting will not be detected

during validation. It is unclear how to argue that a machine learning
system has not been over-fitted as part of a safety argument.

A significant limitation of machine learning in practice is that if
labelled data is used, each data point can be expensive. (Creating
labels has to be done by someone or something. Unsupervised
learning techniques are also possible, but require a clever mapping to
solving a particular problem.) Moreover, if a problem with the
training set (i.e., a requirements defect) or the learned rules (i.e., a
design defect) is found and corrected, then more validation data has
to be collected and used to validate the updated system. This is
necessary because even a small change to the training data could
produce a dramatically different learned rule set. Thus, complete
revalidation would normally be required for any training set “bug
fix,” no matter how small.

Because of the complexity of requirements for an autonomous
system, it seems likely that rare, edge cases will be where learning
problems would be expected to occur. However, because of their
rarity, collecting data depicting such unusual circumstances can be
expensive and difficult to scale. (Simulation and synthetic data can
help with this, but come with the risk of bias in simulated data, as
well as overfitting to simulation artifacts.)

Another issue with validating machine learning is that, in general,
humans cannot intuitively understand the results of the process. For
example, the internal structure of a convolutional neural network [23]
may not tell a human observer much intuitive about the decision rules
that have been learned. While there might be some special cases, in
general the problem of “legibility” [24, 25] of machine learning in
terms of being able to explain in human terms how the system
behaves is unsolved. This makes it difficult to predict how techniques
other than expensive brute force testing can be applied for validation
of machine learning systems. (Perhaps some organizations do have
the resources to do extensive brute force testing. But even in this case
the accuracy, validity, and representativeness of the training data
must be demonstrated as part of any safety argument based on the
correctness of a machine learning system.)

Because legibility for machine learning systems is generally poor,
and because the danger of overfitting is real, there are failure modes
in such a system that can significantly affect safety. Of particular
concern are accidental correlations that are present in training set data
but not noticed by human reviewers. For example, consider the
method of detecting pedestrians in imagery using trained deformable-
part models, which has been shown to be quite effective in real-world
data sets. [26] If no (or few) images of pedestrians in wheelchairs
were present in the training data set, it is likely that such a system
would incorrectly correlate the label of “pedestrian” with “people
who walk on two legs.”

Solutions to Inductive learning

Validating inductive learning is notoriously difficult due to the “black
swan” problem [27], which is in general the susceptibility of a person
(or system) to believe that common observations are true, and draw
potentially incorrect conclusions due to an abundance of confirming
data points. The story goes as follows. Before the late 1700s, all
observed swans in Europe were white, and thus an observer using
inductive logic would have concluded that all swans are white.
However, this observer would experience a brittle failure of this
belief when visiting Australia, where there are plenty of black swans.
In other words, if there is a special case the system has not seen, it
cannot learn that case. This is an essential limitation to inductive
learning approaches that is not readily cured. [28] Moreover, with
machine learning this problem is compounded by the lack of

legibility, so it can be difficult or impossible for human reviewers to
imagine what form a black swan-like bias in such a system might
take.

Validating an inductive learning system seems to be an extremely
challenging problem. Extensive testing might be used, but would
require validating an assumption of random independent arrival rates
of “black swan” data and testing on data sets sized accordingly. This
might be feasible given enough resources, but there will always be
new black swans, so a probabilistic assessment of huge numbers of
operational scenarios and input values would have to be made to
ensure an acceptably low level of system failures. (If resources were
available to do this in a defensible way, this might suffice to form the
right-hand-side of a V process.)

An alternative to validating inductive learning systems to high ASIL
levels would be to pair a low-ASIL inductively-based algorithm that
sends commands to an actuator with a high-ASIL deductively-based
monitor. This would sidestep the majority of the validation problem
for the actuation algorithm, since failures of the inductive algorithm
controlling the actuator would be caught by a non-inductive monitor
based on a concept such as a deductively-generated safety envelope.
Thus, actuator algorithm failures would be an availability problem
(the system safety shuts down, assuming an adequate failover
capability) rather than a safety problem.

Mission Critical Operational Requirements

As a final technical area, we return to the previously discussed point
that the computer is ultimately in control of the vehicle rather than
the person being in control. That means that at least some portion of
the vehicle has to be fail-operational rather than fail-stop.

Challenges of Fail-Operational System Design

Fail operational system design has been done successfully in
aerospace and other contexts for decades, but is still difficult for
several reasons. The first reason is the obvious one that redundancy
has to be provided so that when one component fails another one can
take over. Achieving this requires at least two independent, redundant
subsystems for fail-stop behavior.

Achieving a fail-operation system in turn requires at least three
redundant fail-arbitrary components so that it can be determined
which of the three failed in the event that it issues incorrect outputs
rather than failing silent at the component level. [29] For systems that
have to tolerate arbitrarily bad faults, a Byzantine fault tolerant
system with four redundant components might be required [30],
depending on the relevant fault model.

The structure of the redundancy varies depending on the design
approach, and might include configurations such as a triplex
redundant system with a voter (in which case the voter must be
ensured not to be a single point of failure), or a dual two-of-two
system that uses four computers in fail-silent pairs. [29] Beyond the
obvious expense such approaches introduce, there is also an issue of
testing to make sure that failure detection and recovery works,
assuring independence of failure, and ensuring that all redundant
components are fault-free at the start of a driving mission. It seems
unlikely that redundancy can be avoided, but it may be possible to
reduce the complexity and expense of providing sufficient
redundancy to ensure safety.

Failover Missions

In typical fail-operational system such as aircraft, all the redundant
components are essentially identical and capable of performing an
extended mission. For example, commercial aircraft are commonly
configured with two jet engines, and each jet engine has at least a
dual-redundant computer control. If the pair of computers on one
engine shuts down due to a fault detected via continual cross-
checking, there is a second independent engine to keep the aircraft
flying. Even so, the requirements on engine dependability are very
stringent, because aircraft might potentially have to fly several hours
after a first engine failure to reach the nearest airport without having
the second engine fail. This puts significant reliability requirements
on each engine, and therefore increased component costs.

While cars are notoriously cost-sensitive, they do have an advantage
in that failover missions can be short (e.g., pull over to the side of the
road, or if necessary come to a stop in a travel lane), with failover
mission durations measured in seconds rather than hours.
Additionally, a failover mission to stop the vehicle might be able to
operate with significantly less functionality than fully autonomous
operation. This can simplify requirements complexity, computational
redundancy, sensor requirements, and validation requirements. (As a
simple example, a failover mission control system might not support
lane changes, greatly simplifying sensor requirements and control
algorithms. More sophisticated approaches that are still simpler than
full autonomy might be possible.) Therefore, designing an
autonomous vehicle with a fail-stop primary controller and a simpler
fail-operational failover controller might be attractive both in terms
of hardware cost and in terms of design/validation cost.

It might also be that a safety argument can be created not based on
the full autonomy system being perfect, but rather on the full
autonomy system having a detector that realizes when it is
malfunctioning or has encountered a gap in its requirements. This
would make the fault detector itself high-ASIL, but might permit
normal autonomy functions to be low-ASIL. Such an approach would
map well onto a monitor/actuator architecture for the primary
autonomy system. The failover autonomy would also have to be
designed in a safe manner, with an appropriate architectural approach
depending on its complexity and calculated reliability requirements.
It might even be possible to use a single-channel failover system if
the probably of failure during a short failover mission lasting only
seconds is sufficiently low.

Non-Technical Factors

Some challenges in deploying autonomy are non-technical, such as
the frequently mentioned liability problem (who pays when there is a
mishap?) and how laws generally treat the ownership, operation,
maintenance, and other aspects such vehicles.

A deep dive into this topic is beyond the scope of this paper.
However, resolutions to non-technical challenges will very likely
have an impact on technical solutions. For example, there may be
forensic requirements imposed on autonomy systems for accident
reconstruction data. Careful analysis of the provenance of such data
will need to be performed to ensure that the data is used properly. As
a simple example, if a radar has a hypothetical detection probability
of 95%, its output might still be recorded in the system in terms of
whether an obstacle was or was not detected, superficially implying
detection certainty. It is important to ensure that forensic analysis
takes into account that just because the radar didn’t detect a
pedestrian does not mean the pedestrian was not there (e.g., a 95%

detection probably implies that 1 out of 20 pedestrians will not
actually be detected).

It seems likely that with the inherent complexity of an autonomous
vehicle and the clear inability to demonstrate anything close to
perfection via testing, it will be important for developers to create a
safety assurance argument in the form of an assurance case (e.g.,
according to [31]). Such an assurance argument will be necessary to
defend and explain the integrity of their system and be able to
credibly explain the system’s responses to events surrounding the
inevitable mishaps that will occur. A particular point that should be
addressed is ensuring the integrity of evidence to establish whether a
mishap was reasonably unavoidable due to its circumstances. Other
important points will be whether or not a mishap was arguably
caused by a defect in system requirements (e.g., a gap in training
data), a reasonably foreseeable and avoidable design defect, an
implementation defect, or other cause attributable to the vehicle
manufacturer.

Fault Injection

As is apparent from the preceding discussion, traditional functional
testing will have trouble exercising a complete system, and especially
will find it difficult to exercise combinations of exceptions occurring
during unusual operational conditions. While testers can define some
off-nominal test cases, scalability of that testing is questionable due
to the combinatorial explosion of exceptions, operational scenarios,
and other factors involved. Additionally, it has been shown that even
very good designers often have blind spots and miss exceptional
situations in comparatively simple software systems. [32]

Fault injection and robustness testing are relatively mature
technologies for assessing the performance of a system under
exceptional conditions [33], and can help avoid designer and tester
blind spots when testing exceptional condition responses. Traditional
fault injection involves inserting bit flips into memory and
communication networks. More recent techniques have increased the
level of abstraction to include data-type-based fault dictionaries [32],
and ensuring fault representativeness [33]. Such techniques have
already been used successfully to find and characterize defects on
autonomous vehicles. [35]

A promising approach to helping validate autonomy features is to
perform fault injection at the level of abstraction of the component, as
part of a strategy of attempting to falsify claims of safety. [36] This
involves not only simulating objects for primary sensor inputs, but
also inserting exceptional conditions to test the robustness of the
system (e.g., inserting invalid data into maps). The point of doing
such fault injection is not to validate functionality, but rather to probe
for weak spots that might be activated via unforeseen circumstances.
Such fault injection can be performed across the range of layers in the
ISO 26262 V process. [37]

Conclusions

The challenges of developing safe autonomous vehicles according to
the V process are significant. However, ensuring that vehicles are
safe nonetheless requires following the ISO 26262 V process, or
demonstrating that a set of process and technology practices equally
rigorous has been applied. Assuming that the V process is applied,
there are three general approaches that seem promising.

Phased Deployment

It appears impractical to develop and deploy an autonomous vehicle
that will handle every possible combination of scenarios in an
unrestricted real-world environment, including exceptional situations,
all at once. Rather, as is common in automotive systems, a phased
deployment approach building on current developer practice seems
likely to be a reasonable approach.

Tying phased deployment to the V process can be done by
identifying well-specified operational concepts to limit the scope of
operations and therefore the necessary scope of requirements. This
would include limitations in environment, system health, and
operational constraints that must be satisfied to enable autonomous
operation. Validating that such operational constraints are enforced
will be an essential part of ensuring safety, and will have to show up
in the V process as a set of operational requirements, validation, and
potentially run-time enforcement mechanisms. For example, run-time
monitoring might be required to monitor not only whether system
state is in a permissible autonomy regime, but also that assumptions
made about the operational scenario in the safety argument are
actually being satisfied, and whether the system is actually in the
operational scenario it thinks it is in.

An aspect of restricted operational concepts that will require
particular attention is ensuring that safety is maintained when an
operational scenario suddenly becomes invalidated, due to for
example an unexpected weather event or an infrastructure failure.
Such exceptional transitions out of an acceptable operational concept
regime will require that system recovery or a failover mission be
executed successfully even when there is a system excursion outside
the assumptions of permissible autonomy operational scenarios.

It is unclear whether a phased deployment approach will provide a
path all the way to complete autonomy. But at least such an approach
provides a way to make progress and gain some benefits of autonomy
while gaining greater understanding of the difficult edge cases and
unanticipated scenarios that will arise as systems see more exposure
to real world conditions.

Monitor/Actuator Architecture

A common approach that might help mitigate many of the challenges
of autonomous vehicle safety is the use of a monitor/actuator
architecture. As discussed, this architectural style can help with
requirements complexity (only the monitor needs to be essentially
perfect), and deployment of inductive algorithms (by limiting use of
induction to the actuator, and using a deductively-based monitor).

Additionally, the use of a failover mission strategy can allow a
primary autonomy system monitor to detect a primary system failure
without having to ensure fail-operational behavior. A simpler, high-
integrity failover autonomy system can bring the vehicle to a safe
state. Such a system might have a failover mission short enough that
minimal redundancy for failover operation is required, so long as it
can be assured that the system is fault-free when it is time to start a
failover mission.

Fault Injection

Testing alone is infeasible to ensure ultra-dependable systems.
Autonomous vehicles only make this problem harder by automating
responses to highly complex environmental situations, and
introducing technology such as machine learning that is difficult and
expensive to test. Moreover, because much of the autonomy

capability must have a high ASIL due to the lack of human driving
oversight, it seems difficult to do enough ordinary system testing to
gain even a reasonable level of assurance.

Fault injection can play a useful role as part of a validation strategy
that also includes traditional testing and non-test-based validation.
This is especially true if fault injection is applied at multiple levels of
abstraction rather than just at the level of stuck-at electrical
connectors.

Future Work

This paper discusses ways to fit autonomous vehicle safety assurance
within an ISO 26262-based V framework. However, it is expected
that using architectural patterns such as the monitor/actuator
approach and the practical limits of validation possible via fault
injection will place constraints on operational performance. In other
words, the functionality of autonomous vehicles might need to be
limited to fit the constraints of feasible validation techniques.
Relaxing those constraints will require advances in areas such as
characterizing the coverage of machine learning training data
compared to the expected operational environment, gaining
confidence in safety requirements with regard to exceptional driving
conditions, and being able to validate the independence of failures in
redundant inductive-based systems.

References

[1] Transportation Research Board, National Automated Highway
System Research Program: a review, TRB Special Report 253,
National Academy Press, Washington DC, 1998.

[2] NHTSA, Preliminary Statement of Policy Concerning Automated
Vehicles, May 2013,
http://www.nhtsa.gov/staticfiles/rulemaking/pdf/Automated_Vehicles
_Policy.pdf, accessed Oct. 2015.

[3] US Department of Transportation, FAA, Advisory Circular,
System design and analysis, AC 25.1309-1A, June 21, 1988.

[4] Butler & Finelli, “The infeasibility of experimental quantification
of life-critical software reliability,” IEEE Trans. SW Engr. 19(1):3-
12, Jan 1993.

[5] Motor Industry Software Reliability Association, Development
Guidelines for Vehicle Based Software, November 1994 .

[6] Motor Industry Software Reliability Association, Report 6:
Verification and Validation, February 1995.

[7] Road vehicles -- Functional Safety -- Part 2: Management of
functional safety, ISO 26262-2:2011, Nov. 15, 2011.

[8] Road vehicles -- Functional Safety -- Part 3: Concept Phase, ISO
26262-3:2011, Nov. 15, 2011.

[9] Road vehicles -- Functional Safety -- Part 9: Automotive Safety
Integrity Level (ASIL)-oriented and safety-oriented analyses, ISO
26262-9:2011, Nov. 15, 2011.

[10] Randell, B., “System structure for software fault tolerance,”
IEEE Trans. SW Engineering, SE-1:2, June 1975, pp. 1-18.

[11] Lions, J., ARIANE 5 Flight 501 Failure, Report by the Inquiry
Board, Paris, July 1996.

[12] Yeh, Y.C.; “Design considerations in Boeing 777 fly-by-wire
computers,” HASE 1998.

[13] Wereschagin, M., “'Pittsburgh Left' seen by many as a local
right,” TribLive News, June 14, 2006,
http://triblive.com/x/pittsburghtrib/sports/s_457936.html

[14] Bayouth, M. & Koopman, P., “Functional Evolution of an
Automated Highway System for Incremental Deployment,”
Transportation Research Record, #1651, Paper #981060, pp. 80-88.

[15] Shladover, S. et al., Development and performance evaluation of
AVCSS deployment sequences to advance from today's driving
environment to full automation, California PATH Research Report
UCB-ITS-PRR_2001-18, August 2001.

[16] Black, J. & Koopman, P., “System safety as an emergent
property in composite systems,” DSN 2009, pp. 369 - 378.

[17] Kane, Chowdhury, Datta & Koopman, “A Case Study on
Runtime Monitoring of an Autonomous Research Vehicle (ARV)
System,” RV 2015.

[18] Geraerts, R., Overmars, M. H., “A comparative study of
probabilistic roadmap planners,” Proc. Workshop on the Algorithmic
Foundations of Robotics (WAFR'02), 2002, pp. 43–57.

[19] Martin C., Moravec H., Robot Evidence Grids, tech. report
CMU-RI-TR-96-06, Robotics Institute, Carnegie Mellon University,
March, 1996.

[20] Dollár, P. et al., “Pedestrian Detection: An Evaluation of the
State of the Art,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, Vol. 34, No. 4, 2012.

[21] Silver, D., Bagnell, J, Stentz, A., “Active Learning from
Demonstration for Robust Autonomous Navigation,” IEEE
Conference on Robotics and Automation, May, 2012.

[22] Dima, C., Active Learning for Outdoor Perception, doctoral
dissertation, tech. report CMU-RI-TR-06-28, Robotics Institute,
Carnegie Mellon University, May, 2006

[23] Krizhevsky, A., Sutskever, I., Hinton, G.E., “ImageNet
classification with deep convolutional neural networks.” In NIPS,
pages 1106–1114, 2012.

[24] Dosovitskiy A., Brox, T., “Inverting convolutional networks
with convolutional networks,” CoRR, vol. abs/1506.02753, 2015.

[25] Zeiler, M. D., Fergus, R., “Visualizing and understanding
convolutional networks.” In ECCV, 2014.

[26] Felzenszwalb, P., Girshick, P., McAllester, D., Ramanan, D. ,
“Object Detection with Discriminatively Trained Part Based
Models,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 32, No. 9, Sep. 2010.

[27] Taleb, N., The Black Swan: the impact of the highly improbable,
Random House, 2007.

[28] Hume, D. (1910) [1748]. An Enquiry concerning Human
Understanding. P.F. Collier & Son. ISBN 0-19-825060-6.

[29] Hammet, “Design by extrapolation: an evaluation of fault-
tolerant avionics,” IEEE Aerospace and Electronic Systems, 17(4),
2002, pp. 17-25.

[30] Lamport, L., Shostak, R., Pease, M., “The Byzantine Generals
Problem,” Trans. Prog. Lang. and Sys. 4(3):382-401, ACM, July
1982.

[31] Systems and Software Engineering -- Systems and Software
Assurance -- Part 2: Assurance Case, ISO/IEC 15026:2011.

[32] Koopman, P., DeVale, K. & DeVale, J., “Interface robustness
testing: experiences and lessons learned from the Ballista Project,”
In: Kanoun, K. & Spainhower, L., Eds., Dependability Benchmarking
for Computer Systems, IEEE Press, 2008, pp. 201-226.

[33] Kanoun, K. & Spainhower, L., Eds.,Dependability
Benchmarking for Computer Systems, IEEE Press, 2008, pp. 201-
226.

[34] Natella, R., Cotroneo, D., Duraes, J., Madeira, H., “On fault
representativeness of software fault injection,” IEEE Trans. SW
Engineering, 39:1, pp. 80-96, Jan. 2013.

[35] Vernaza, P., Guttendorf, D., Wagner M., Koopman, P.,
“Learning Product Set Models of Fault Triggers in High-Dimensional
Software Interfaces,” IROS 2015.

[36] Wagner M., Koopman, P., “A Philosophy for Developing Trust
in Self-Driving Cars,” In: G. Meyer & S. Beiker (eds.) Road Vehicle
Automation 2, Lecture Notes in Mobility, Springer, 2014, pp. 163-
170.

[37] Pintard, L., Fabre, J.-C., Kanoun, K., Roy, M., Leeman, M.
“Fault Injection And Automotive Development Process,” Embedded
Real-Time Software And Systems (ERTS2), Fev. 2014, Toulouse,
France.

Contact Information

Dr. Philip Koopman is an Associate Professor of Electrical and
Computer Engineering at Carnegie Mellon University, where he
specializes in software safety and dependable system design. He also
has affiliations with the National Robotics Engineering Center
(NREC) and the Institute for Software Research. E-mail:
koopman@cmu.edu.

Michael Wagner is the CEO and co-founder of Edge Case Research,
LLC, which specializes in software robustness testing and high
quality software for autonomous vehicles, robots, and embedded
systems. He is also has an affiliation with the National Robotics
Engineering Center. E-mail: mwagner@edge-case-research.com

Definitions/Abbreviations

ADAS Advanced Driver Assistance
System

ASIL Automotive Safety Integrity
Level

HOV High Occupancy Vehicle

LIDAR Light Detection and Ranging

V model A software development
model that includes
requirements and design on
the left side of a “V” with

verification and validation
on the right side of the “V”

