

Talk Based on the Contents of My Book

- www.koopman.us
 - Discount and free international shipping
- Amazon.com
 - Geos Fulfillment is the publisher's direct sales channel

The 43 Risk Areas Informal development process 22. No run-time fault instrumentation nor error logs 1. Not enough paper 23. Defect resolution for 3rd party software 2. 3. No written requirements 24. Disaster recovery not tested Requirements omit extra-functional aspects 25. Insufficient consideration of reliability/availability 4. Requirements with poor measurability 26. Insufficient consideration of safety 5. 6. No defined software architecture 27. Insufficient consideration of security 7. Poor code modularity 28. No IP protection plan 8. Too many global variables 29. No or incorrect use of watchdog timers No message dictionary for embedded network 30. Inadequate system reset approach 9. Design skipped or created after code is written 31. High requirements churn 10. Flowcharts are used in place of statecharts 11. 32. No version control 12. Inconsistent coding style 33. No backward compatibility plan 13. Ignoring compiler warnings 34. No software update plan No peer reviews 35. Lessons learned not being recorded 14. 15. No real time schedule analysis 36. Acting as if software is free Use of home-made RTOS 37. Use of cheap tools instead of good ones 16. Inadequate concurrency management 38. High turnover and developer overload 17 18. No methodical approach to user interface 39. No training for managing outsource relationships design 40. Resources too full No test plan 19. 41. Too much assembly language 20. No stress testing 42. Project schedule not taken seriously 21. No defect tracking 43. No Software Quality Assurance (SQA) function Learn today. Design tomorrow 56 10 Silicon Valley • May 2 - 5, 2011 © Copyright 2011, Philip Koopman

40A00
281400
C1E00
02800
43200
583C00
BC4600
58

Sv	vitch-Based Statechart Code	
	{OFF, SLOW, MEDIUM, FAST}; // define states	
	<pre>#define SpdOff 0 // define speed constant values #define SpdSlow 10 #define SpdMed 15 #define SpdFast 25</pre>	
	CurrState = OFF; // initialize state machine to OFF	
	<pre>while (1) // do forever {</pre>	
	<pre>switch (CurrState) { case OFF: // State S1 speed(SpdOff); // Take action in state</pre>	
	<pre>// Test arc guards and take transitions if (SpdButton() == TRUE OnOffButton() == TRUE) {CurrState = SLOW;} break; // go to end of switch statement</pre>	
Learn today. Design t		
Silicon Valley • May 2 McEnery Convention Center		34

Date:	Peer Review Template for Project X 4/17/2011	
Artifact:	Xyzzy.cpp Functions: Foo(), Bar(), Baz()	
Reviewers:	Stella K., Joe B., Sam Q., Trish R.	
Size:	357	SLOC
Time Spent:	112	Minutes
# Issues:	3	
Outcome:	Re-Review of Bug Fixes Required	
Issue#	Issue Description	Status
1	Issue 1	Fixed
2	Issue 2	Bugzilla
3	Issue 3	Bugzilla
4	Issue 4	Not a Bug
5		
6		
7		
8		
Status Key:	Fixed (trivial fix by author; no need to enter in defect list)	
	Bugzilla (entered into project defect system)	
	Not a Bug (false alarm)	

Exa	ampl	e Ra	ate Mo	ono	otonic So	chedule	9		
	Task #	Period (P _i)	Compute (C _i)		Task #	Priority	Utilization		
	T1	5	1		T1	1	μ 1/5 = 0.200		
	T2	<u>16</u>	2		Т3	2	2/ <u>6</u> = 0.333		
	Т3	<u>6</u>	2		T2	3	2/ <u>16</u> = 0.125		
	T4	60	3		T5	4	4/30 = 0.133		
	T5	30	4		T4	5	3/60 = .05		
	C					TOTAL:	<u>0.841</u>		
$\mu = \sum_{i=1}^{n} \frac{c_i}{p_i} \le N(\sqrt[N]{2} - 1) ; N = 5$ $\mu = 0.841 (not \le) 0.743$ Not Schedulable!									
Learn today. Design to Silicon Valley = May 2 - McEnery Convention Center	5, 2011		© Co	pyright 2	011, Philip Koopman		48		

Example Mutex ("Mutual Exclusion") // Foo is shared by multiple tasks Mystruct Foo; volatile uint8 FooMutex = 0; // 0 is nobody using // 1 is in use (locked) .. somewhere in a task ... uint8 InitialValue; // Use "Test-and-Set" approach do { // Mask Interrupts SEI(); InitialValue = FooMutex; // Save old value // Attempt to lock FooMutex = 1;// Unmask Interrupts CLI(); } while (InitialValue != 0); // Try until 0 Foo.a = <newval>; // We own Foo; make changes Foo.zz = <newval>; FooMutex = 0;// Done with Foo; unlock it Learn today. Design tomorrow <u>ה</u>וכ 52 ilicon Valley . May 2 - 5, 2011 © Copyright 2011, Philip Koopman

[-	 Not 	ct P ize defi i just ho sk matr	ects ba w spec	ased or tacular	n impo the res	rtance		pany	
		Probability							
		BUG PRIO		Very High	High	Medium	Low	Very Low	
			Very High	Very High	Very High	Very High	High	High	
		Conse- quence	High	Very High	High	High	Medium	Medium	
			Medium	High	High	Medium	Medium	Low	
			Low	High	Medium	Medium	Low	Very Low	
			Very Low	Medium	Low	Low	Very Low	Very Low	
Learn today.	Design tomorrow.								
	• May 2 - 5, 2011 ntion Center • San Jose		C	Copyright 20)11, Philip Ko	opman			

[IE	C 61508-3] Technique/Measure*	Ref	SIL1	SIL2	SIL3	SIL4		
1	Fault detection and diagnosis	C.3.1		R	HR	HR		
2	Error detecting and correcting codes	C.3.2	R	R	R	HR		
3a	Failure assertion programming	C.3.3	R	R	R	HR		
Зb	Safety bag techniques	C.3.4		R	R	R		
3c	Diverse programming	C.3.5	R	R	R	HR		
3d	Recovery block	C.3.6	R	R	R	R		
3e	Backward recovery	C.3.7	R	R	R	R		
3f	Forward recovery	C.3.8	R	R	R	R		
3g	Re-try fault recovery mechanisms	C.3.9	R	R	R	HR		
3h	Memorising executed cases	C.3.10		R	R	HR		
4	Graceful degradation	C.3.11	R	R	HR	HR		
5	Artificial intelligence - fault correction	C.3.12		NR	NR	NK		
6	Dynamic reconfiguration	C.3.13		NR	NR	NR		
7a	Structured methods including for example, JSD, MASCOT, SADT and Yourdon.	C.2.1	HR	HR	HR	HR		
7b	Semi-formal methods	Table B.7	R	R	HR	HR		
7c	Formal methods including for example, CCS, CSP, HOL, LOTOS, OBJ, temporal logic, VDM and Z	C.2.4		R	R	HR		
8	Computer-aided specification tools	B.2.4	R	R	HR	HR		
m today. D	besign tomorrow.	-	•			-		
	n Valley + May 2 - 5, 2011 © Copyright 2011, Philip Koopman							

