
1
© Copyright 2011, Philip Koopman

Avoiding the Top 43
Embedded Software Risks

Embedded Systems Conference SV
Updated: May 3, 2011

Philip Koopman
Carnegie Mellon University

http://BetterEmbSW.BlogSpot.com/
© Copyright 2011, Philip Koopman

2
© Copyright 2011, Philip Koopman

Overview
How to mitigate embedded software risks

Data from 90+ design reviews spanning a decade
What teams got right and 43 areas they got wrong

Best practice areas that can mitigate these risks
17 general areas that address the risks

Specific practices that address all 43 areas
Most teams don’t have resources to do them all

But most teams should be doing some
Which you should do depends upon your situation
Pick the low hanging fruit first to get best payoff

Talk Based on
the Contents of
My Book

www.koopman.us
Discount and free
international shipping

Amazon.com
Geos Fulfillment is
the publisher’s direct
sales channel

4
© Copyright 2011, Philip Koopman

My Background

5
© Copyright 2011, Philip Koopman

Types of Systems Surveyed
Transportation

Automotive, train, navigation
Chemical processing

Metering, flow control, analysis, automation
Buildings

Heating/Ventilation/Cooling, building security, elevators
Lighting, electrical switching, domestic hot water

Telecommunications and data centers
Climate control, power regulation, power
switching, power backup, monitoring

Underlying technology
Real time, safety, security, dependability

Mostly excludes:
Consumer electronics, robotics, DSP

6
© Copyright 2011, Philip Koopman

Developer Background
No “typical” embedded developer, except what they are NOT

Almost no formally trained software engineers; few computer scientists
A distinct minority are formally trained computer engineers

Most common development teams and environments:
Engineering domain experts: mechanical, electrical, automotive, HVAC, …
Smallish team sizes: 1 to 25 developers
Embedded languages: C, C++, assembly, a little Java; no custom ICs
Small to medium projects: 1000-1M lines of code
Medium size production runs: 1,000-20,000 units; Cost $20-$20K/unit
Old-school process models: Waterfall, Vee
Senior designers in US; common to have China, India team members
Small systems had no RTOS, bigger systems had one

But, encountered at least one of almost everything
All-China team, all-Italy team, more/fewer units/year, Agile, …
And this advice will generally help all of them

7
© Copyright 2011, Philip Koopman

Design Review Approach
General approach:

Pre-visit review of available documents (if any)
On-site high level review of product

Use a risk screening checklist to hunt for additional risks
Reviewer selected subset of 120+ questions based on pre-
review (full list is proprietary)
Graded as “red” / “yellow” / “green”
(Some reviews didn’t use checklist,
so we did after-the-fact binning)

What we care about: “Red” Issues

8
© Copyright 2011, Philip Koopman

Study Methodology
Retrospective of review reports (10+ years; 90+ reviews)

Tallied risk list bins in reports
In some cases mapped ad hoc description to bins

Results:
A list of 43 distinct red flag bins

“Red Flag” means “don’t ship until you fix this”
Not simply “you should do this because it is best practice”…
… but rather “this will cause a big problem for this project”

9
© Copyright 2011, Philip Koopman

Technical Risks
Most developers were domain experts, not computer
experts

Usually a senior developer who had learned the hard way
Generally capable engineers … self-taught from books/eval kits

I expected to find lots of technical issues
There were some, but … not that many rookie technical mistakes
Mostly problems with complexity or advanced embedded topics

In general, technical problems:
Corresponded with common holes in intro embedded textbooks
Mostly were things that were hard to find in simple testing

In other words, most projects got the basic functionality right
The problem areas tended to be things they didn’t do
(lack of time; lack of knowledge)

10
© Copyright 2011, Philip Koopman

The 43 Risk Areas
1. Informal development process
2. Not enough paper
3. No written requirements
4. Requirements omit extra-functional aspects
5. Requirements with poor measurability
6. No defined software architecture
7. Poor code modularity
8. Too many global variables
9. No message dictionary for embedded network
10. Design skipped or created after code is written
11. Flowcharts are used in place of statecharts
12. Inconsistent coding style
13. Ignoring compiler warnings
14. No peer reviews
15. No real time schedule analysis
16. Use of home-made RTOS
17. Inadequate concurrency management
18. No methodical approach to user interface

design
19. No test plan
20. No stress testing
21. No defect tracking

22. No run-time fault instrumentation nor error logs
23. Defect resolution for 3rd party software
24. Disaster recovery not tested
25. Insufficient consideration of reliability/availability
26. Insufficient consideration of safety
27. Insufficient consideration of security
28. No IP protection plan
29. No or incorrect use of watchdog timers
30. Inadequate system reset approach
31. High requirements churn
32. No version control
33. No backward compatibility plan
34. No software update plan
35. Lessons learned not being recorded
36. Acting as if software is free
37. Use of cheap tools instead of good ones
38. High turnover and developer overload
39. No training for managing outsource relationships
40. Resources too full
41. Too much assembly language
42. Project schedule not taken seriously
43. No Software Quality Assurance (SQA) function

11
© Copyright 2011, Philip Koopman

What Is The Big Picture?
Most problems are with process omissions

But, we still have technical areas to talk about too!

12
© Copyright 2011, Philip Koopman

17 Good Practice Areas

1. Define your development
process

2. Write good requirements
3. Use a good architecture
4. Create a written design
5. Use good coding style
6. Use peer reviews
7. Use real time analysis
8. Manage concurrency
9. Design a user interface

10. Follow a test plan
11. Manage issues/defects
12. Design for quality attributes
13. Use watchdog timer

correctly
14. Manage change
15. Don’t think software is free
16. Have slack resources
17. Make sure you follow your

process

13
© Copyright 2011, Philip Koopman

A Tour Of Good Practices
Remember, you don’t have to do all of these

But, you should harvest the low hanging fruit

Some of this sounds like “software engineering”
… but really it is just “good engineering”
It’s about why you do things, not just about paperwork

Knowing how to solder doesn’t make you a hardware
engineer
Knowing how to write lines of code doesn’t make you a
software engineer
Knowing how to solder and write lines of code doesn’t
make you an embedded systems engineer

14
© Copyright 2011, Philip Koopman

Define Your Development Process
(Risk #1: Informal development process)(Risk #1: Informal development process)

Development process is a set of steps, e.g.,
Define Requirements
Write Code
Acceptance Test
Ship

If the steps aren’t well defined,
you don’t have a roadmap

(If you don’t really have one,
get some help to define one!)

15
© Copyright 2011, Philip Koopman

Is This A Well Defined Process?
Any missing pieces?

How do we know what the
design is?

How do we know the
product is ready to ship?

If this were a hardware
block diagram, what would
be missing?

16
© Copyright 2011, Philip Koopman

A Good Development Plan Has:
Development steps

Activities inside process boxes
Defined output from each step

Paper, code, etc. – what are the work products?
Artifacts” in software-engineer speak

A risk management approach
Exception handling, actual
“management” of process

A way to measure success
Is the product good enough to sell?

If it isn’t written down, it didn’t happen

PLAN

17
© Copyright 2011, Philip Koopman

A Better Process Example
Activities
Work Products
Risk management

Where is that in this picture?
Is final acceptance test enough?

A way to measure success
“Passes acceptance test”

Process usually has many more steps
Can be Agile, Waterfall, Vee, etc…
But has to be defined including both
processes (boxes) and artifacts (arrows)

18
© Copyright 2011, Philip Koopman

Using The Right Amount of Paper
(#2 Not enough paper)(#2 Not enough paper)

Use the right amount of paperwork (not zero)
Be clever in minimizing paperwork

Product document package should include at least:
Development approach (the development plan)
Requirements
Architecture
Design
Test plan & test results
Implementation
Reviews
Maintenance

19
© Copyright 2011, Philip Koopman

Keeping “Paper” Light
If it isn’t written down it didn’t happen…

… but it doesn’t have to be a 1000 page novel!
Make use of:

Spreadsheets
Fill-in-the-blank templates
Powerpoint
Photos of whiteboards + notes

The most effective paperwork:
Fits on a single “sheet”
Can be found via searching
Provides useful value … so it actually gets made

20
© Copyright 2011, Philip Koopman

Modest Proposals For Paperwork
Every development step should produce “paper”

Every process arc has paper in defined format
Make it the simplest paper you can justify
But, zero paper is not acceptable

If paper gets out of date, throw it
and the associated code away –
right now

If it’s not important enough to do
well, why are you doing it at all?

If you decide to skip paper,
throw the project away when
the developer stops working on it

21
© Copyright 2011, Philip Koopman

Really great software has been created without paper
Works best if all your developers are well above average
And nobody ever changes jobs, taking knowledge with them
But that just doesn’t scale

Five Forebodes Failure
Teams with exactly 5 developers often failed

Usually previous project had 3 or 4
Teams of 6 or more had heavier process

My conclusion: with 5 people you need “paper”
Max 4 people can informally coordinate (neighbors)
Larger projects have more coordination overhead
Much higher risk if you use an ad hoc process for >4 people
Paper for fewer than 5 still helps

“But, We Don’t Need Paper”

22
© Copyright 2011, Philip Koopman

Write Good Requirements
(#3 No written requirements)(#3 No written requirements) ---- User Stories are OKUser Stories are OK
(#4 Requirements omit extra(#4 Requirements omit extra--functional aspects)functional aspects)

You can’t keep things straight without having written requirements
Saying “just like last system except” is a problem too

Rigorously written
Precise: “X shall do Y” or “supports following sequence of operations”
Unambiguous: good technical writing practices
Describes “what” rather than “how” – it’s not a design

Traceable: how do you make sure you met it
E.g., each one has a number that traces to acceptance tests

Covers:
What the system should do
What the system should not do
Extra-functional aspects (security, safety, dependability, performance)
Standards, constraints, certifications

23
© Copyright 2011, Philip Koopman

Making Requirements Measurable
(#5 Requirements with poor measurability)(#5 Requirements with poor measurability)

Requirements should also be measurable
If you can’t measure it, you can’t know you met it
Beware of subjectivity, e.g., “User Friendly”

Don’t require perfection
You can’t get it … and you can’t measure it

If in doubt, write a test metric with
the requirement

“Never crashes”
“Does not crash in 1 week of stress testing”

Collect field data with a flight recorder to confirm outcomes

24
© Copyright 2011, Philip Koopman

Use A Good Architecture
(#6 No defined software architecture)(#6 No defined software architecture)

Would you build a house without a floor plan?
(If you did, how would it turn out?)

Would you build a computer without a block diagram
(If you did, how would it turn out?)

So why do we think it is OK to just write code without an
architecture?

The IT guys always have a SW architecture diagram
Are we so smart we don’t need one?
Or are our systems so trivial it isn’t worth the bother?

25
© Copyright 2011, Philip Koopman

The Basics of Software Architecture
Create a “boxes-and-arrows” diagram

Boxes are objects or activities
Arrows are flows (data, control, …)

Need to be able to say:
“Here is a picture of my high level software organization.”

Helpful guidelines (similar to HW block diagrams)
Every box and arrow has a defined meaning
Fits legibly one on letter size sheet of paper
Can be hierarchically nested to multiple sheets
Can have more than one type for the system

Call graph, data flow diagram, class diagram, etc.

26
© Copyright 2011, Philip Koopman

METHODS

DATA

OBJECT "BUS"

METHODS

DATA

METHODS

DATA

Send/receive
Method Calls

Send/receive
Method Calls

Send/receive
Method Calls

PHASE 1

TABLE 1

PHASE 2

TABLE 2

INIT FINISH

Customization
Data Read

Customization
Data Read

Pass Control
To Next

Pass Control
To Next

Pass Control
To Next

27
© Copyright 2011, Philip Koopman

Black line = “is comprised of” Black box = SW function
Blue line = “analog connection” Blue box = I/O hardware
Numbers are replication counts

28
© Copyright 2011, Philip Koopman

Global Variables Are Evil
(#7 Poor code modularity)(#7 Poor code modularity)
(#8 Too many global variables)(#8 Too many global variables)

Good architectures are modular
Low coupling
(different parts are unrelated)
High cohesion
(each part is homogeneous)
Meaningful levels of decomposition and abstraction

Global variables are shared across modules
Minimize using them (use local variables when possible)

If you are using them because you have insufficient RAM, see
discussion on “software isn’t free” later

If you must use them:
Ensure only one place each is written
Limit visibility to a single module (“static” keyword)
Try to keep them together so they are easy to find

29
© Copyright 2011, Philip Koopman

Embedded Network Architecture
(#9 No message dictionary(#9 No message dictionary

for embedded network)for embedded network)
Always have a message
dictionary

All message types
Header and other info
Data meaning and format
Sender/receivers, period,
deadline, etc.
Globally visible network variables, if applicable

If you must use a custom protocol, document it
What happens if the one guy who knows the protocol wins the
lottery and retires?

30
© Copyright 2011, Philip Koopman

Example CAN Message Dictionary

31
© Copyright 2011, Philip Koopman

Create A Written Design
(#10 Design skipped or is created after code is written)(#10 Design skipped or is created after code is written)

Would you design an engine with no drawings?
Would you lay out a circuit board with no schematic?
Would you write lines of code with no design?

A design lets you think at a high level
Concentrate on overall flow –
not coding details
Get reviews more efficiently

Self-documenting code isn’t
Designs extracted from the code are a waste of time
JavaDoc documents code, but is not a design

1

32
© Copyright 2011, Philip Koopman

Always Use Some Statecharts
(#11 Flowcharts used in place of statecharts)(#11 Flowcharts used in place of statecharts)

Flowcharts can help with design, but…
Most embedded systems are state based

States represent operating modes
(idle, run, ramp-up, ramp-down)
States represent display modes (think digital watch)
States create model of external environment

Flowcharts are OK for memory-less control flow
If you have duplicated “if” conditions, statechart might be better
Psuedocode is too loose – not good in practice most times

Model based design can help, but is not a magic wand

STATE
1

STATE
4

STATE
2

STATE
3

33
© Copyright 2011, Philip Koopman

Statechart Example
“Guard” is condition that must
be true for branch to be taken

Stays in same state if no
guard is true

SPDBUTTON or O
NOFF

SP
DBU

TT
ON

SPD
BU

TT
ON

SPDBUTTON

ONOFF

ONOFF

ONOFF

S2. SLOW
Speed Slow

S3. MEDIUM
Speed Med

S4. FAST
Speed Fast

S1. OFF
Speed Stop

Sys
tem

Res
et

34
© Copyright 2011, Philip Koopman

Switch-Based Statechart Code

35
© Copyright 2011, Philip Koopman

What’s Wrong With This Statechart?

36
© Copyright 2011, Philip Koopman

Use Good Coding Style
(#12 Inconsistent coding style)(#12 Inconsistent coding style)

Everyone has their favorite coding style
It doesn’t matter (much) which style you use
But have everyone use the same defined style

Include things such as:
Title block contents
Commenting guidelines
Assertions
Language usage rules
Naming conventions

37
© Copyright 2011, Philip Koopman

Static Analysis & Warnings
(#13 Ignoring compiler warnings)(#13 Ignoring compiler warnings)

Use static checking to keep your code clean
It’s like getting a free automated (partial) design review
Compiler warnings tell you something is fishy

Language definition ambiguities
Risky language use
Common mistakes

Code should compile with no warnings
Some embedded compilers give poor warnings

Try a higher-end compiler
Try using splint (a “lint” tool that does static checking)

38
© Copyright 2011, Philip Koopman

Example Warnings
if (a=b) { …. Do something… }

// feet & meters are int typedefs
feet a; meters b;
b = a;

Uninitialized variable
Unreachable code

Failure to conform to a language subset
E.g., Misra C language subset for safety critical SW

QUESTIONABLE
CODE

39
© Copyright 2011, Philip Koopman

Use Peer Reviews
(#14 No peer reviews)(#14 No peer reviews)

Peer reviews are the most cost effective way to find bugs
Good embedded coding rate is 1-2 lines of code/person-hr

(Across entire project, including reqts, test, etc.)

How much does peer review cost?
4 people * 100-200 lines of code reviewed per hour
Say 300 lines; 4 people; 2 hrs review + 1 hr prep

= 25 lines of code reviewed / person-hr
Reviews are only about 5%-10% of your project cost

Good peer reviews find about half the bugs!
And they find them early, so cost to fix is lower

$
$$$$

$$$$$

40
© Copyright 2011, Philip Koopman

What Should You Review?
Review everything that is in writing

(From earlier, every project activity
should produce a written artifact)
Early reviews have higher bang-for-buck

Review requirements and designs
Don’t wait until you are at code to start reviews
Most reviews happen before testing, so possible to
reduce total cost of bugs dramatically with reviews

Things you can review:
Requirements, architecture, design,
implementation, test plan, user guide, schedule,
development plan, real time schedule, …

41
© Copyright 2011, Philip Koopman

Defect Removal by Phase - Typical Project from 5+ years ago

0

50

100

150

200

250

300

System
Rqmts

Software
Rqmts

Arch
Design

Det Design Code Unit Test Integ Test System
Test

N
um

be
r

Minor
Major

Defect Removal by Phase With Peer Reviews

0

50

100

150

200

250

300

System
Rqmts

Software
Rqmts

Arch
Design

Det Design Code Unit Test Integ Test System
Test

N
um

be
r

Minor
Major

[Source: Roger G., Aug. 2005]

42
© Copyright 2011, Philip Koopman

How Formal Should Reviews Be?
The more formal the review,
the higher the payoff

Formal reviews take more effort;
but are far more productive

We mean use these: “Fagan style inspections”
Formal reviews of absolutely everything should still be
less than perhaps 10% of total project cost

In return, you find half of your bugs much earlier
Informal reviews are better than nothing

Pair programming, shoulder surfing, e-mail pass-
arounds are better than nothing
Payback for on-line review tools is a question mark

Reduces social interaction, training of junior developers

43
© Copyright 2011, Philip Koopman

Rules For Good Reviews
1. Inspect the item, not the author
2. Don’t get defensive
3. Find problems – but don’t fix them in the meeting
4. Limit meetings to two hours
5. Keep a reasonable pace

150-200 lines per hour
6. Avoid “religious” debates on style

Inspect, early, often, and as formally as you can
Use inspections (formal reviews) as much as possible

44
© Copyright 2011, Philip Koopman

Peer Review Metrics
Want to balance peer review with other efforts

How do you know peer reviews are working?
Track that 40%-60% of defects are found by reviews
BUT, what if entering into Bugzilla is too expensive?

Lightweight alternative:
Use a simple spreadsheet to record review results
Tally # of defects found and just aggregate numbers
Only enter in Bugzilla if defect is uncorrected after
completing develop/peer review/bug fix cycle

If reviews find < 40% of defects,
reviews are probably broken

45
© Copyright 2011, Philip Koopman

46
© Copyright 2011, Philip Koopman

Use Real Time Analysis
(#15 No real time schedule analysis)(#15 No real time schedule analysis)

If you need to meet real time deadlines,
you need to do a formal real time analysis

List tasks, deadlines, periods, compute times
Use a well understood scheduling theory

Understand assumptions and limitations
If you do something ad hoc, eventually you’ll be burned

Use the simplest scheduling technique you can
Cyclic executive works great

Interrupts are tasks and need to be accounted for
If you use preemptive non-ISR tasks, use Rate Monotonic
Scheduling

Don’t use earliest deadline first

47
© Copyright 2011, Philip Koopman

Rate Monotonic Scheduling 101
Assume:

All tasks are periodic; Period = Deadline
Worst case compute time known for each task
All tasks are independent (no mutexes)
Task switching has zero latency and cost
Task periods are harmonic multiples (permits 100% CPU use)

To schedule:
Assign priorities based on period (fastest = highest priority
If CPU utilization is less than 100%, it will work

The 100% limit is due to harmonic multiple periods

If you need to violate assumptions, read up on this topic
It is easy to get things “almost” right wrong

48
© Copyright 2011, Philip Koopman

Example Rate Monotonic Schedule

430T5

360T4

26T3

216T2

15T1

Compute
(Ci)

Period
(Pi)

Task #

0.841TOTAL:

3/60 = .055T4

4/30 = 0.1334T5

2/16 = 0.1253T2

2/6 = 0.3332T3

1/5 = 0.2001T1

Utilization
μ

PriorityTask #

743.0)(841.0

5 N ;)12(

≤=

=−≤= ∑
not

N
p
c N

i

i

μ

μ
Not Schedulable!

49
© Copyright 2011, Philip Koopman

Example Harmonic Rate Monotonic Schedule

1916.0

60} 30, 15, {5, Parmonic ; 1 i

≤=

≤= ∑

μ

μ H
p
c

i

i

Schedulable, even though
usage is higher!

430T5

360T4

25T3

215T2

15T1

Compute
(Ci)

Period
(Pi)

Task #

0.916TOTAL:

3/60 = .055T4

4/30 = 0.1334T5

2/15 = 0.1333T2

2/5 = 0.4002T3

1/5 = 0.2001T1

Utilization
μ

PriorityTask #

50
© Copyright 2011, Philip Koopman

Don’t Use A Home Grown RTOS
(#16 Use of home-made RTOS)

If you need a preemptive RTOS, use 3rd party one
Getting an RTOS right is really, really hard
Even if you can get it right, it is a lot of work
Even if you do get it right, what happens
in 10 years when you aren’t maintaining it?

Ask yourself: is RTOS writing a core competency?
Shouldn’t you be spending that time on your products?

(See “software is free” later in this talk)
It’s not hard to find a mostly free RTOS these days

But it might be more cost effective to pay for one!

RTOS

51
© Copyright 2011, Philip Koopman

Manage Concurrency
(#17 Inadequate concurrency management)(#17 Inadequate concurrency management)

Race conditions and data sharing problems
Tough to reproduce; tough to pin down
Very difficult to find and fix
You probably won’t find them in normal testing

Look up “Therac 25”

Consider concurrency for every shared variable
Use a mutex if you have to (see next slide)
Use something easier if you can (e.g., Fifo; mask interrupts)
Use standard approaches

You aren’t good enough to invent a new approach
(and neither am I)

Realize that this breaks scheduling independence assumption
Look up “Mars Priority Inversion”

52
© Copyright 2011, Philip Koopman

Example Mutex (“Mutual Exclusion”)
Mystruct Foo; // Foo is shared by multiple tasks
volatile uint8 FooMutex = 0; // 0 is nobody using

// 1 is in use (locked)

… somewhere in a task …
uint8 InitialValue; // Use “Test-and-Set” approach
do { SEI(); // Mask Interrupts

InitialValue = FooMutex; // Save old value
FooMutex = 1; // Attempt to lock
CLI(); // Unmask Interrupts

} while (InitialValue != 0); // Try until 0

Foo.a = <newval>; // We own Foo; make changes
Foo.zz = <newval>;
FooMutex = 0; // Done with Foo; unlock it

53
© Copyright 2011, Philip Koopman

Design A User Interface
(#18 No methodical approach to user interface design)(#18 No methodical approach to user interface design)

Most engineers are terrible at user interface design…
… because most engineers aren’t “normal”

And most engineering depts. aren’t that diverse

Do “user testing” where real users try things out
There are people who do user interaction for a living!
User interface principles: consistent, simple, user-centered

Take into account use demographics & diverse use cases
Color-blind, arthritis, left-handed, hearing impaired, age
Polarized sun glasses, gloves, ear plugs
Internationalization, time zones, daylight savings time
A user interface checklist with the above can help

54
© Copyright 2011, Philip Koopman

Follow A Test Plan
(#19 No test plan)(#19 No test plan)
(#20 No stress testing)(#20 No stress testing)

Key to testing is coverage
Each type of test has different coverage

Unit test – might use code coverage
Did every line of code get exercised?

Integration test – test component interfaces
Did every method and option flag get exercised?

Acceptance test – traces to requirements
Did every requirement of system get checked?

Test early to find bugs while they are cheap to fix
Usually: unit test, subsystem test, integration test, stress test,
acceptance test, beta test

TEST
PLAN

55
© Copyright 2011, Philip Koopman

Written Test Plan
Best approach is a written test plan

Usually this is a spreadsheet for embedded systems
For each test:

Traceability of test (e.g., which requirement)
Initial conditions
Test procedure
Expected result
Actual result and pass/fail

Plan specifies desired coverage
Often can be a spreadsheet – one row per test
For each type of testing, how thorough should it be?
Bug prioritization
How you know you are done testing

TEST
RESULTS

56
© Copyright 2011, Philip Koopman

Typical Coverage Strategies
Unit Test (developers)

Fraction of lines of code executed (e.g., 92%)

Peer Review (developers)
Fraction of lines new/modified code reviewed

Subsystem test (testers+developers)
Fraction of modules exercised

Integration test (testers)
Fraction of interfaces exercised

Acceptance test (testers)
Fraction of system requirements exercised

57
© Copyright 2011, Philip Koopman

How Much Test Is Enough
Get a reasonably good level of coverage

But, how much does test and other QA cost?

For embedded systems,
probably 50%-65% of total system cost(!)

Tester : Developer Web Apps: 1 : 5
Ratios OK IT Code: 1 : 1

Safety Critical Code: 5 : 1
If it really has to work, you need perhaps 2 : 1
Embedded projects with marginal quality often at 1 : 1

The good news: all verification/validation counts
Unit test, peer reviews --- all count as “test”!
So does other testing (and probably SQA)

58
© Copyright 2011, Philip Koopman

Manage Issues and Defects
(#21 No defect tracking)(#21 No defect tracking)

If defects are written on sticky notes, you will lose track
Use Bugzilla (or even just a spreadsheet!)
Record any problem that isn’t fixed right away
Track to resolution to make sure it is fixed

Or marked as “we’re not going to fix this one”

Ideally, identify root causes to fix them
Many times root cause reveals a process problem (e.g., skipped
design review, or ineffective testing)

Start counting defects at a defined place in process
Do some data analysis to find common problems

If a particular module is a Bug Farm, throw it away and start over
instead of forever fixing yet another bug

59
© Copyright 2011, Philip Koopman

Defect Prioritization
Prioritize defects based on importance to company

Not just how spectacular the results are
A risk matrix may be helpful:

60
© Copyright 2011, Philip Koopman

Run-Time Instrumentation
(#22 No run(#22 No run--time fault instrumentation nor error logs)time fault instrumentation nor error logs)

If you get a returned unit that works OK…
Was it a software defect you can’t reproduce?
Was it an intermittent hardware defect?
Was it a distributor reducing inventory size?

Run-time instrumentation gives you a clue
Log reboots and up-times
Log assertion violations “assert(X==Y);”
Log fault codes or other anomalies

61
© Copyright 2011, Philip Koopman

Related Defect/Issue Topics
(#23 Defect resolution for 3rd party software)(#23 Defect resolution for 3rd party software)

If a 3rd party package has a bug, what happens?

What happens to your fixes for new
versions?

What if it is a new “feature” and
not really a bug?

(#24 Disaster recovery not tested)(#24 Disaster recovery not tested)
If you need to rebuild an old system, can you?

Are you sure the files are still there?
When was the last time you tested recovery?

62
© Copyright 2011, Philip Koopman

Design For Quality Attributes
Build quality in; don’t add it on

Performance (better algorithms)
and other attributes

(#25 Insufficient consideration of reliability/availability)(#25 Insufficient consideration of reliability/availability)
How often is your software allowed to crash?

“Never” is unrealistic
Is quick reboot good enough to keep running?

Use basic techniques to improve reliability
Periodic reboot (especially if you allow “malloc”)
Watchdog timer
Improve software quality with good testing & reviews

63
© Copyright 2011, Philip Koopman

Safety
(#26 Insufficient consideration of safety)(#26 Insufficient consideration of safety)

A mishap usually involves uncontrolled release of energy
Most embedded systems have actuators…
… so in principle could result in a mishap

Thought experiment:
Suppose you intentionally tried to cause an accident by writing
malicious software
Could you bypass hardware safeties with software?
If you could, you need to address safety

Lots of details to get safety right. Short version:
Establish a Safety Integrity Level (SIL) based on risks
Follow procedures to design to that SIL
Examples: IEC 61508 (process), ISO 26262 (automotive)

64
© Copyright 2011, Philip Koopman

[IEC 61508-3]

65
© Copyright 2011, Philip Koopman

Security
(#27 Insufficient consideration of security)(#27 Insufficient consideration of security)
(#28 No IP protection plan)(#28 No IP protection plan)

Most embedded systems have security concerns
If there is money to be made or
reputation to be gained, attacks
will eventually happen
If someone wants to reverse engineer
your product they will

(At surprisingly low cost)

66
© Copyright 2011, Philip Koopman

67
© Copyright 2011, Philip Koopman

Security Plan
Written plan for security approach

Goals
What does being secure mean for you?

Plausible attacks & consequences
Countermeasures and monitoring
Update/patch strategy

Do-it-yourself security is a bad idea
Bake-your-own crypto is an especially bad idea
Security via obscurity doesn’t work

Avoid: modems with unlisted numbers, home-made crypto, home-
made secret key generators, secret master keys, secret network unlock
incantations, head-in-the-sand

68
© Copyright 2011, Philip Koopman

Use Watchdog Timer Correctly
(#29 No or incorrect use of watchdog timers)(#29 No or incorrect use of watchdog timers)

Common mistakes:
Watchdog turned off
Watchdog hooked up to HW counter/timer
Watchdog kicked by low priority ISR
(what about main loop?)
Watchdog kicked inside loop of a
single task

Key best practices
Kick watchdog in only one place in the code
If any task hangs, don’t kick watchdog

Microcontroller
CPU

KICKRESET

WATCHDOG
TIMER

69
© Copyright 2011, Philip Koopman

Incorrect Watchdog Timer Use
Consider a preemptive tasking system

Assume there is a watchdog timer (a COP timer)
kick() restarts the watchdog time at initial value

void Task0(void) {..Do stuff..; Kick(); …more… ;}
void Task1(void) {..Do stuff..; Kick(); …more… ;}
void Task2(void) {..Do stuff..; Kick(); …more… ;}
void Task3(void) {..Do stuff..; Kick(); …more… ;}

Some tasks might be ISRs, others might be RTOS tasks

What’s wrong with the above approach?

INCORRECT
CODE

70
© Copyright 2011, Philip Koopman

Better Multi-Tasking Watchdog Approach
void Task0(void) { .. Do stuff..; Alive(0x1); …more… ;}
void Task1(void) { .. Do stuff..; Alive(0x2); …more… ;}
void Task2(void) { .. Do stuff..; Alive(0x4); …more… ;}
void Task3(void) { .. Do stuff..; Alive(0x8); …more… ;}

Main idea – each task sets a bit indicating it has run
Separate watchdog monitor task kicks watchdog only when every task reports in
Needs to be modified to account for task periods, but this is the basic idea

uint16 WatchFlag = 0;
void Alive(uint16 x)
{ SEI(); // Disable Interrupts
WatchFlag |= x;
CLI(); // Enable Interrupts

} // set task’s “I’m Alive” bit

void TaskW(void) // run periodically
{ if (WatchFlag == 0x0F) // if all tasks alive
{ Kick(); // kick watchdog
WatchFlag = 0; // erase flags

}
}

71
© Copyright 2011, Philip Koopman

System Reset Gotchas
(#30 Inadequate system reset approach)(#30 Inadequate system reset approach)

Is there a way to reset your system manually?
If there is a carry-through capacitor, how long does it last?

Do all the outputs reset to a safe value?
What if the system freezes during
initialization?
Do you sample all sensors to get new values?
Do you re-init all integrators to warm up
control loops after a reset?

What if reset reboots repeatedly
(yo-yo mode)?

Track reboot frequency (log time while up)
After repeated reboots, need a Plan B

http://en.wikipedia.org/wiki/Image:1791-Yo-Yo-Bandalore.jpg

72
© Copyright 2011, Philip Koopman

Manage Change
(#31 High requirements churn)(#31 High requirements churn)

If requirements change every day,
you’ll never finish

But, requirements change is a fact of life

Pick a model compatible with your change rate
E.g., incremental development for high change rates

Ensure that cost of change is accounted for
Almost no change is truly “free”
Extend schedule, increase cost, or delete other features

Impose a freeze date
At some point changes go into next version

Identify a “Change Control Board” – yes/no decision owner
Make sure they are incentivized in a sensible manner
Director of Marketing makes a poor CCB

73
© Copyright 2011, Philip Koopman

Version Management
(#32 No version control)(#32 No version control)

Make sure you can recreate any version
Unroll changes
Create old version for bug recreation & fixes
That includes tools used to build old version

(#33 No backward compatibility plan)(#33 No backward compatibility plan)
If you have many products, do they inter-operate?

Combinatorial explosion of many old versions
Have a policy, e.g., support last 2-3 versions

74
© Copyright 2011, Philip Koopman

Software Updates
(#34 No software update plan)(#34 No software update plan)

Your software will have bugs!
How do users know they need patches?

How are patches deployed?
Do patches require a service call?
How much will it cost to US Mail SD cards with
patches to all your customers?
Can the user brick the system by botching a patch?
Are you worried about malicious fake patches?
Do patch connections open security vulnerabilities?

75
© Copyright 2011, Philip Koopman

Processes Change Too
(#35 Lessons learned not being recorded)(#35 Lessons learned not being recorded)

You only get smarter if you pay attention
Hold an end-of-cycle retrospective

Tribal wisdom isn’t inherited
It must be taught
Do you set aside time to teach all of it?

Wisdom only sticks if you write it down
If you found something broken, fix the process
If you have a new idea, update the process
Jettison stuff that isn’t working; augment stuff that is

For example, design review checklists, coding style, test plans

76
© Copyright 2011, Philip Koopman

Don’t Think Software Is Free
(#36 Acting as if software is free)(#36 Acting as if software is free)

Good software is expensive
Bad software is even more expensive … eventually

Embedded software is ballpark $20-$40 /SLOC
Productivity is usually 1-2 Source Line of Code/hr

Examples of pretending software is free
Add a new function; keep end date the same
Lose a team member; keep end date the same
Optimize for a smaller CPU; keep identical budget
Manage by head count and not project size
Set aside zero budget for old-version maintenance
Ignoring effort to port code & interact with “free” software community
to obtain maintenance

77
© Copyright 2011, Philip Koopman

“Free” Tools Aren’t Free
“I’ll spend a month porting a free compiler”

Is that really worth ~$10K of cost savings?
Even if the “free” compiler is really good?

“I’ll write my own RTOS and save money”
5000 SLOC @ $40/line = $200,000
You’re dreaming if you think RTOS code is only $40/SLOC if you
really want it to work
And, most of us aren’t good enough to get it right

(#37 Use of cheap tools instead of good ones)(#37 Use of cheap tools instead of good ones)
We can’t afford a good compiler, so we use a cheap one

… with terrible compiler warnings
… with bugs to work around
… that is hard to debug with … etc.

78
© Copyright 2011, Philip Koopman

Developer Burnout
(#38 High turnover and developer overload)(#38 High turnover and developer overload)

If you abuse your developers:
By assuming they can write 2x the code at 1x the cost
By jerking them around with requirement churn
By not giving them the time to improve skills & process
….

Don’t be surprised if they bail out
And you have no idea what is in the code
And you have lost your tribal knowledge
…

79
© Copyright 2011, Philip Koopman

Even Smart People Need Training
(#39 No training for managing outsource relationships)(#39 No training for managing outsource relationships)

If you are off-shoring effort, need training for
Better process to create clean hand-offs
Management of outsource partners who have a different
business model than you do
Cultural differences

Also need training for:
Design reviews and other helpful non-offshore processes
Deeper embedded systems skills, especially for domain
experts who are self-taught at computers

80
© Copyright 2011, Philip Koopman

Have Slack Resources
(#40 Resources too full)(#40 Resources too full)

For typical embedded
hardware/software costs:

If production run is less
than 1 MILLION units

Resources should be no
more than 80% full

If production run is less
than 10K units

Resources should be no
more than 50% full (Source: Barry Boehm, 1975)

81
© Copyright 2011, Philip Koopman

Zero Is The Right Amount of Assembly Code

(#41 Too much assembly language)(#41 Too much assembly language)
It takes 4-5 lines of assembler to match 1 C line

Cost scales proportional to source code size
Cost/line relatively independent of language

Bug rate scales at least proportional to code size
Probably higher for assembly – no variable typing

Portability is severely reduce in assembly
Assembly costs 4x-5x as much as C

Unless software is free, get a bigger CPU
(Don’t forget: #36 Acting as if software is free)

82
© Copyright 2011, Philip Koopman

Make Sure You Follow Your Process
(#42 Project schedule not taken seriously)(#42 Project schedule not taken seriously)

Lip service worse than a waste of time
Because it fools you into thinking
you are making progress

Which of these scenarios is a problem?
Management determined schedule before defining project content
developers determined by head count restrictions rather than size
and schedule estimates
Developers are running behind … steal time from test
Software developers get weekends off to be with their families

83
© Copyright 2011, Philip Koopman

Is Your Process Working?
(#43 No Software Quality Assurance (SQA) function)(#43 No Software Quality Assurance (SQA) function)

QA – Quality Assurance
Usually this refers to software testing
But, it is only a partial predictor of software quality!

Understanding true quality requires understanding process too

SQA – Software Quality Assurance
This is about whether you are following your process
Did you actually do what you said you’d do?

Regardless of how heavy/light that may be

SQA should be perhaps 6% of your effort
Half to define, maintain, train on processes
Half to audit, collect metrics, and monitor

84
© Copyright 2011, Philip Koopman

About The Dark Side Of SQA
Avoid SQA “process police” mentality

Especially if developers don’t see
value in the processes
But, you still need to see what’s really happening

A “Coach” style can be positive:
Help developers define what they actually want to do
Help find ways to improve development outcomes
Help developers find times when they aren’t actually doing what
they said they wanted to do
Spot quality problems early, before the train wreck

Requires taking and monitoring lightweight metrics
Give developers cover during time crunches

SQA should not sign off if shortcuts were taken on development

85
© Copyright 2011, Philip Koopman

An Initial Agenda For Better Quality
Hire good people. Process doesn’t fix incompetence.
Define your process (steps & artifacts) on one page

You can’t get there without a map
Do peer reviews early, often, and effectively

Biggest bang-for-buck there is
Do balanced, planned testing

Define & track coverage
Start test planning & testing before the end

Track if your process is healthy
Are you generating all the artifacts in your process?
Is peer review finding about half the bugs?
Are you spending 50%-65% of total project effort on reviews, test,
quality, SQA?
Are defects clustering into bug farms (product or process)?

86
© Copyright 2011, Philip Koopman

Questions?
For after-session questions, mail to:

Koopman@cmu.edu

Please indicate if:
It is OK to quote your question on my blog
It is OK to mention your full name, just your first name, or call
you “anonymous”

Questions of general interest that I can post onto my blog
will receive highest response priority

http://BetterEmbSW.BlogSpot.com/

