
A Case Study on Runtime Monitoring of an
Autonomous Research Vehicle (ARV) System

Aaron Kane1, Omar Chowdhury2, Anupam Datta1, and Philip Koopman1

1 Carnegie Mellon University, Pittsburgh, PA
2 Purdue University, IN

akane@cmu.edu, ochowdhu@purdue.edu, danupam@cmu.edu, koopman@cmu.edu

Abstract. Although runtime monitoring is a promising technique to im-
prove the verification of complex safety-critical systems, the general de-
sign trend towards utilizing black-box commercial-off-the-shelf (COTS)
components means that these systems are not always amenable to in-
strumentation which is commonly used to produce the relevant events
necessary for checking the desired properties. In this paper, we develop
an online, real-time monitoring approach that targets an autonomous re-
search vehicle (ARV) system and recount our experience with it. To avoid
instrumentation we passively monitor the target system by generating
high-level property constructs (i.e., propositions) from the observed net-
work state. We then develop an efficient runtime monitoring algorithm,
EgMon, that eagerly checks for violations of desired properties written in
a future-bounded, propositional metric temporal logic. We show the ef-
ficacy of EgMon by implementing it and empirically evaluating it against
logs obtained from the testing of an ARV system. EgMon was able to
detect violations of several safety requirements.

1 Introduction

Runtime verification (RV) is a promising alternative to its static counterparts
(e.g., model checking [9] and theorem proving [6]) for checking system safety
and correctness properties of safety-critical embedded systems in the face of
increasing design complexity. In RV, a runtime monitor observes the execution of
the system in question and checks for violations of some well-defined properties.
When the monitor detects a violation, it can notify a command module which
then attempts to recover from the violation. In this paper, we develop a runtime
monitor that monitors an autonomous research vehicle (ARV) and describe our
experience with it.

The ARV is an autonomous heavy truck which is being designed for use in
vehicle platoons. It is representative of common modern ground vehicle designs.
These systems are generally built by system integrators who utilize commercial-
off-the-shelf (COTS) components, some of which may be provided as black-box
systems, from multiple vendors. These systems are also often hard real-time sys-
tems which leads to additional constraints on system monitoring [11]. This type
of system architecture is incompatible with many existing runtime monitoring
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techniques, which often require program or system instrumentation [4,7,13,17] to
obtain the relevant events or policy-constructs (e.g., propositions) necessary to
check for violations. Instrumenting systems without access to component source
code is more difficult, and even when the source is available there are risks of
affecting the timing and correctness of the target system when instrumented.

Obtaining relevant policy constructs. Instead of instrumentation, we obtain
the relevant information for monitoring the ARV system through passive ob-
servation of the system’s broadcast buses. Controller area network (CAN) is a
common and standard broadcast bus for ground vehicles which is the primary
system bus in the ARV. We can obtain useful amounts of system state relevant to
monitoring the system safety specification by observing the data within the CAN
messages being broadcast between system components. However, before we can
start monitoring the ARV system, we need a component, which we call the SF
Map, that observes messages transmitted on the bus, decoding them into propo-
sitions relevant to monitoring which are fed into the monitor. This acts similarly
to the low-level specification and filter/event recognizers from MaC [17]. We
want to emphasize that the limits of external observability can cause significant
challenges in designing the SF Map when considering the state available from
the system messages and the necessary atomic policy-constructs [15].

Specification logic. To obtain the relevant safety requirements and invariants
for monitoring the ARV system we consulted the safety requirements of the ARV
system. We observed that many desired properties for these types of systems
are timing related, so using an explicit-time based specification language for
expressing these properties is helpful. System requirements such as “the system
must perform action a within t seconds of event e” are common, for example:
Cruise control shall disengage for 250ms within 500ms of the brake pedal being
depressed. For efficient monitoring, we use a fragment of propositional, discrete
time metric temporal logic (MTL) [18] in which the bound associated with the
future temporal operators must be finite.

Monitoring algorithm. We have developed a runtime monitoring algorithm,
which we call EgMon, that incrementally takes as input a system state (i.e., a
state maps relevant propositions to either true or false) and a MTL formula and
eagerly checks the state trace for violations. Some of the existing monitoring
algorithms that support bounded future formulas wait for the full-time of the
bound before evaluating the formula (e.g., [2]). EgMon uses a dynamic program-
ming based iterative algorithm that tries to reduce the input formula as soon
as possible using history summarizing structures and straightforward formula-
rewriting based simplifications when possible (leaving a partially reduced formula
when future input is required). This eager nature of the algorithm is helpful be-
cause detecting a violation earlier provides the system more time to attempt a
recovery. We have also proved the correctness of our algorithm.

Empirical evaluation. We have implemented EgMon on an inexpensive embed-
ded platform and empirically evaluated it against logs obtained from the testing
of an ARV system using properties derived from its safety requirements. EgMon



has moderate monitoring overhead and detected several safety violations in our
experimental evaluation.

2 Background and Existing Work

In this section we briefly introduce the background concepts and review relevant
existing work that put the current work in perspective.

Monitoring safety-critical embedded systems. Goodloe and Pike present
a thorough survey of monitoring distributed real-time systems in [11]. Notably,
they present a set of monitor architecture constraints and propose three abstract
monitor architectures in the context of monitoring these types of systems. One of
Goodloe and Pike’s proposed distributed real-time system monitor architectures
is the bus-monitor architecture. This architecture contains an external monitor
which receives network messages over an existing system bus, acting as another
system component. The monitor can be configured in a silent or receive only
mode to ensure it does not perturb the system. This is a simple architecture
which requires few (essentially no) changes to the target system architecture.
We utilize this architecture for our monitoring framework.

Monitors. Our monitoring algorithm is similar to existing dynamic pro-
gramming and formula-rewriting based algorithms. Our main area of novelty
is the combination of eager and conservative specification checking used in a
practical setting showing the suitability of our bounded future logic for safety
monitoring.

Dynamic programming monitors. Our monitoring algorithm is inspired by
the algorithms reduce [10] and prècis [8], adjusted for propositional logic and
eager checking. The structure of our algorithm is based on reduce. We utilize an
iterative, formula-rewriting based algorithm targeted at both offline log analysis
as well as runtime monitoring. Both reduce and prècis can handle future incom-
pleteness but reduce also considers incompleteness for missing information which
we do not consider. prècis and EgMon both require the input trace to contain
complete information.

The NASA PathExplorer project has led to both a set of dynamic programming-
based monitoring algorithms as well as some formula-rewriting based algorithms
[13] for past-time LTL. These dynamic programming algorithms require checking
the trace in reverse (from the end to the beginning) which makes them somewhat
unsuitable for online monitoring [12]. The formula rewriting algorithms utilize
the Maude term rewriting engine to efficiently monitor specifications through
formula rewriting [21]. Thati and Roşu [23] describe an dynamic programming
algorithm for monitoring MTL which is based on resolving the past and deriving
the future. They perform formula rewriting which resolves past-time formulas
into equivalent formulas without unguarded past-time operators and derive new
future-time formulas which separate the current state from future state. While
they have a tight encoding of their canonical formulas, they still require more
state to be stored than some other algorithms (because formulas grow in size as
they are rewritten), including this work.



Embedded Monitors. Heffernan et. al. present a monitor for automotive sys-
tems using ISO 26262 as a guide to identify the monitored properties in [14]. They
monitor past-time linear temporal logic (LTL) formulas and obtain system state
from target system buses (CAN in their example). Our semi-formal interface is
similar to their “filters” used to translate system state to the atomic proposi-
tions that are monitored. Their motivation and goals are similar to ours, but
they use on-chip system-on-a-chip based monitors which utilize instrumentation
to obtain system state, which is not suitable for monitoring black-box systems.
Reinbacher et. al. present an embedded past-time MTL monitor in [20] which
generates FPGA-based non-invasive monitors. The actual implementation they
describe does however presume system memory access to obtain system state
(rather than using state from the target network).

Pellizzoni et. al. describe a monitor for COTS peripherals in [19]. They gen-
erate FPGA monitors that passively observe PCI-E buses to verify system prop-
erties. This is a similar architecture to ours, but they only check past-time LTL
and regular expressions so they cannot perform eager checking.

Basin et. al. compare algorithms for monitoring real-time MTL properties
in [3]. Our monitoring algorithm works similarly to their point-based monitoring
algorithm, iteratively calculating truth values over the formula structure using
history lists. Though they discuss the use of delay queues to monitor future-
time properties (and thus do not eagerly check future-time formulas), we could
integrate their algorithm into our eager monitoring framework.

3 Monitoring Architecture

Many modern safety-critical embedded systems are designed as distributed sys-
tems to provide the ability to meet the necessary reliability, fault-tolerance, and
redundancy. The individual system components are typically connected via a
network bus, of which there are many different common types [22].

Controller Area Network. Controller Area Network is a widely used automo-
tive network developed by Bosch in the 1980s [5]. In this work we focus primarily
on monitoring CAN because it is a common automotive bus which typically con-
veys enough of the state we wish to observe without instrumentation. CAN is an
event-based broadcast network with data rates up to 1Mb/s (although usually
used at 125-500kbps). Messages on CAN are broadcast with an identifier which
is used to denote both the message and the intended recipients. The message
identifiers are also used as the message priorities for access control.

Although CAN is an event-based bus it is often used with periodic scheduling
schemes so the network usage can be statically analyzed. Because of this our
monitoring scheme is based on a time-triggered, network sampling model which
allows it to monitor time-triggered networks as well.

As mentioned previously, existing runtime monitoring techniques which rely
on code instrumentation are not directly applicable to systems with black-box
components. Instead of instrumentation, we propose a passive external bus-
monitor which only checks system properties that are observable by passively



observing system state from an existing broadcast bus. We focus on ground ve-
hicles and CAN buses specifically in this work, but other similar systems and
broadcast networks can also be monitored using this approach. For example,
safety-critical buses in star configurations which don’t have a single bus line
that can observe all traffic can be monitored by placing the monitor in the net-
work’s hub or by connecting multiple buses lines directly to the monitor.

Fig. 1. External monitor architecture outline

An outline of our monitor architecture is shown in Figure 1. The monitor is
connected to the target system as an additional passive node on its broadcast
bus. Different systems have varying specification needs which can not always be
easily met within a formal specification language. In order to provide flexibility
to map system state onto the formal specification language (in our case, in
propositions) we provide a SF Map interface which defines the mapping between
the observed system state and the monitored specification. This type of interface
is common in monitors for real systems, including MaC’s filters [17] and the AP
evaluation filter from [14]. The monitor’s SF Map generates the system trace
by building the necessary propositions based on the observed bus traffic. This
generated trace is provided to the monitoring algorithm which checks it against
the given system specification, outputting whether the trace violated or satisfied
the specification at each trace step (subject to delays waiting on future state).

This architecture separates the lower-level system dependent configuration
from the high-level system specification in a way similar to the architecture used
in MaC [17]. This allows us to utilize a core formal monitoring algorithm and
framework with any system where an SF Map can be used to create a system
trace. Separating the system dependent and system-independent aspects of the
monitor allows the high level system requirements be somewhat abstracted away
from the implementation. This helps keep the monitoring specification matched
closer to the system requirements documentation which usually does not include
low-level implementation details. This architecture also makes the monitor more
robust to changes in the target system. If the system changes in a way that
affects the monitoring-relevant messages, only the SF Map configuration needs
to be updated, rather than the monitor itself.



4 Monitoring Algorithm

For monitoring our desired ARV system so that it adheres to its specification, we
need an algorithm which incrementally checks explicit time specifications (i.e.,
propositional metric-time temporal logic [18]) over finite system traces. This has
led to our algorithm EgMon which is an iterative monitoring algorithm based on
formula rewriting and summarizing the relevant history of the trace in history-
structures. To detect violations early, EgMon, eagerly checks whether it can reduce
subformulas of the original formula to boolean value using formula simplifications
(e.g., a∧ false ≡ false). Many of the existing algorithms for evaluating formulas
like [l,h]a ∨ b (read, either b is true or sometimes in the future a is true such
that the time difference between the evaluation state and the future state in
which a is true, td, is within the bound [l, h]) wait enough time so that [l,h]a
can be fully evaluated. EgMon however tries to eagerly evaluate both [l,h]a and
b and see whether it can reduce the whole formula to boolean.

4.1 Specifications

Many safety specification rules for ARV-like systems require explicit time bounds
to ensure timely behavior, so a specification language with explicit time bounds is
important. For instance, “cruise control shall disengage for 250ms within 500ms
of the brake pedal being depressed” (brakeDepress→[0,500][0,250]¬CruiseEng).
Our safety specification language for the ARV system, which we call αVSL, is a
future-bounded, discrete time, propositional metric temporal logic (MTL [18]).
The syntax of αVSL is as follows:

ϕ ::= t | p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 S Iϕ2 | ϕ1 U Iϕ2 | Iϕ | Iϕ
Syntax. αVSL has boolean true (i.e., t), atomic propositions p, logical con-
nectives (i.e., ¬,∨), past temporal operators since and previously (S ,), and
future temporal operators until and next (U ,). The temporal bound I of form
[l, h] (l ≤ h and l, h ∈ N) associated with the future temporal operators must be
finite. Specification propositions p come from a finite set of atomic propositions
provided in the system trace by the SF Map. These propositions are derived
from the observable system state and represent specific system properties, for
instance, proposition speedLT40mph could describe whether the vehicle speed is
less than 40mph.

Semantics. αVSL formulas are interpreted over time-stamped traces. A trace
σ is a sequence of states, each of which maps all propositions in SF Map, to either
t or f. We denote the ith position of the trace with σi where i ∈ N. Moreover,
each σi has an associated time stamp denoted by τi where τi ∈ N. We denote
the sequence of time stamps with τ . For all i, j ∈ N such that i < j, we require
τi < τj . For a given trace σ and time stamp sequence τ , we write σ, τ, i |= ϕ to
denote that the formula ϕ is true with respect to the ith position of σ and τ .
The semantics of αVSL are standard for MTL, e.g., [2].

Auxiliary notions. Before we go any further, we introduce the readers with
some auxiliary notions which will be necessary to understand our algorithm
EgMon. We first define “residual formulas” or, just “residues”. Given a formula



ϕ, we call another formula φ as ϕ’s residual, if we obtain φ after evaluating ϕ
with respect to the current information of the trace. Note that, residual of a
formula might not be boolean because of future states not yet being available. A
residue rjϕ is a tagged pair 〈j, φ〉ϕ where j is a position in the trace in which we
intend to evaluate ϕ (the original formula) and φ is the current residual formula.
We use these residues to efficiently hold policy summary for future time formulas
which cannot be evaluated due to incomplete information.

The next notion we introduce is of “wait delay”. It is a function ∆w that
takes as input a formula ϕ and ∆w(ϕ) returns an upper bound on the time one
has to wait before they can evaluate ϕ with certainty. For past- and present-
time formulas φ, ∆w(φ) = 0. Future time formulas have a delay based on the
interval of the future operator (e.g., ∆w([0,3]p) = 3). The length of a formula ϕ,
denoted |ϕ|, returns the total number of subformulas of ϕ. The function tempSub

takes as input a formula ϕ, and returns all the temporal subformulas φ of ϕ and
strict subformulas of φ.

4.2 EgMon Algorithm

Our runtime monitoring algorithm EgMon takes as input an αVSL formula ϕ
and monitors a growing trace, building history structures and reporting the
specification violations as soon as they are detected. We summarize the relevant
algorithm functions below:

EgMon(ϕ) is the top-level function.
reduce(σi, τi,Siϕ, 〈i, ϕ〉ϕ) reduces the given residue based on the current state

(σi, τi) and the history Siϕ.
tempSub(ϕ) identifies the subformulas which require a history structure to eval-

uate the policy ϕ.
incrS(Si−1ϕ ,Siϕ, σi, τi, i) updates the history structure Si−1ϕ to step i given the

current trace and history state.

Top-level monitoring algorithm. The top-level monitoring algorithm EgMon

is a sampling-based periodic monitor which uses history structures to store trace
state for evaluating temporal subformulas. History structures are lists of residues
along with past-time markers for evaluating infinite past-time formulas. The al-
gorithm checks the given policy ϕ periodically at every trace sample step. When
the policy cannot be decided at a given step (e.g., it requires future state to
evaluate), the remaining policy residue is saved in a history structure for evalu-
ation in future steps when the state will be available. The history structure for
formula φ at trace step i is denoted Siφ. We use Siϕ to denote the set of history

structures for all temporal subformula of ϕ, i.e., Siϕ =
⋃
φ∈tempSub(ϕ) S

i
φ.

The high level algorithm EgMon is shown in Figure 2. First, all the necessary
history structures Sφ are identified using tempSub(ϕ) and initialized. Once these
structures are identified, the monitoring loop begins. In each step, all the history
structures are updated with the new trace step. This is done in increasing formula
size since larger formula can depend on the history of smaller formula (which may



1: For all recognized formulas φ ∈ tempSub(ϕ): S−1
ϕ1
← ∅

2: i← 0
3: loop
4: Obtain next trace step (σi, τi)
5: for every φ ∈ tempSub(ϕ) in increasing size do
6: Siφ ← incrS(Si−1

φ , Siφ, σi, τi, i)
7: end for
8: Siϕ ← incrS(Si−1

ϕ , Siϕ, σi, τi, i)
9: for all 〈j, f〉 ∈ Siϕ do

10: Report violation on σ at position j
11: end for
12: i← i+ 1
13: end loop

Fig. 2. EgMon Algorithm

be their subformula). Each structure is updated using incrS(Si−1φ ,Siφ, σi, τi, i)
which adds a residue for the current trace step to the structure and reduces
all the contained residues with the new step state. Then, the same procedure is
performed for the top level policy that is being monitored – the policy’s structure
is updated with incrS(Si−1ϕ ,Siϕ, σi, τi, i). Once updated, this structure contains
the evaluation of the top-level policy. The algorithm reports any identified policy
violations (i.e., any f residues) before continuing to the next trace step. We note
that due to the recursive nature of the monitoring algorithm, the top-level policy
is treated exactly the same as any temporal subformula would be (which follows
from the fact that the top-level policy contains an implicit always ). The
history structure updates for the top-level policy are separated in the algorithm
description for clarity only. The only difference between the top-level policy and
other temporal subformula is that violations are reported for the top-level policy.

Reducing Residues. EgMon works primarily by reducing policy residues
down to truth values. Residues are reduced by the reduce(σi, τi,Siϕ, 〈j, φ〉ϕ)

function, which uses the current state (σi, τi) and the stored history in Siϕ to
rewrite the policy φ to a reduced form, either a truth value or a new policy
which will evaluate to the same truth value as the original. For past or present-
time formulas, reduce() is able to return a truth value residue since all the
necessary information to decide the policy is available in the history and current
state. Future-time policies may be fully-reducible if enough state information
is available. If a future-time policy cannot be reduced to a truth value, it is
returned as a reduced (potentially unchanged) residue.

For residues whose formula is an until formula αU [l,h]β, the history struc-
tures Siα and Siβ are used to reduce the formula. If the formula can be evaluated
conclusively then the truth value is returned, otherwise the residue is returned
unchanged. Figure 3 shows the reduction algorithm for until temporal formula.
Reducing since formulas is essentially the same except with reversed minimum/-
maximums and past time bounds.

The reduce function for until formulas uses marker values to evaluate the
semantics of until. reduce calculates five marker values: aa is the earliest step



reduce(σi, τ, i, SiαU[l,h] β , 〈j, αU[l,h] β〉) =



let aa ← min({k|τj ≤ τk ≤ τj + h ∧ 〈k,⊥〉 ∈ Siα}, i)
au ← max({k|τk ∈ [τj , τj + h]

∧ ∀k′ ∈ [j, k − 1].(〈k′, α′〉 ∈ Siα ∧ α′ ≡ >}, i)

ba ← min({k|τj + l ≤ τk ≤ τj + h ∧ 〈k, β′〉 ∈ Siβ ∧ β′ 6= ⊥})

bt ← min({k|τj + l ≤ τk ≤ τj + h ∧ 〈k,>〉 ∈ Siβ})
bn ← > if (τi − τj ≥ ∆w(ψ))

∧ ∀k.(τj + l ≤ τk ≤ τj + h).〈k,⊥〉 ∈ Siβ
if bt 6= ∅ ∧ au ≥ bt

return〈j,>〉
else if (ba 6= ∅ ∧ aa < ba) or bn = >

return〈j,⊥〉
else

return〈j, αU[l,h] β〉

Fig. 3. Definition of reduce for until formulas

within the time interval where α is known false. au is the latest step within the
interval that αU [l,h]β would be true if β were true at that step. ba is the earliest
step within the interval at which β is not conclusively false, and bt is the earliest
step within the interval at which β is conclusively true. bn holds whether the
current step i is later than the wait delay and all β values within the interval
are false. With these marker variables, reduce can directly check the semantics
of until, and either return the correct value or the unchanged residue if the
semantics are not conclusive with the current history. Reducing since formulas
works in the same way (using the same marker values) adjusted to past time
intervals and utilizing the unbounded past time history values.

Incrementing History Structures. To evaluate past and future-time poli-
cies, we must correctly store trace history which can be looked up during a
residue reduction. We store the trace history of a policy φ in a history structure
Sφ. This history structure contains a list of residues for the number of steps re-
quired to evaluate the top-level policy. History structures are incremented by the
function incrS(Si−1φ ,Siφ, σi, τi, i) = (

⋃
r∈Si−1

φ
reduce(σi, τi, S

i
φ, r))∪reduce(σi, τi, S

i
φ, 〈i, φ〉)

This function takes the previous step’s history structure Si−1φ and the current

state and performs two actions: 1) Adds a residue for the current step i to Si−1φ

and 2) Reduces all residues contained in Si−1φ with the current state.

4.3 Algorithm Properties

There are two important properties of EgMon which need to be shown. First,
correctness states that the algorithm’s results are correct. That is, that if EgMon
reports a policy violation, the trace really did violate the policy. Second, prompt-



ness requires that the algorithm provide a decision for the given policy in a
timely fashion (i.e., with t such that t ≤ ∆w(ϕ)). Promptness requires that the
algorithm decide satisfaction as soon as it is guaranteed to be possible.

The following theorem states that EgMon is correct and prompt. It requires
the history structures Siϕ to be consistent at i analogous to the trace σ, τ . This
means that the history structures contain correct history of the trace till step i.

Theorem 1 (Correctness and Promptness of EgMon). For all i ∈ N, all
formula ϕ, all time stamp sequences τ and all traces σ it is the case that (1) if
〈j, f〉 ∈ Siϕ then σ, τ, j 2 ϕ and if 〈j, t〉 ∈ Siϕ then σ, τ, j � ϕ (Correctness) and

(2) if τi − τj ≥ ∆w(ϕ) then if σ, τ, j 2 ϕ then 〈j, f〉 ∈ Siϕ and if σ, τ, j � ϕ then

〈j, t〉 ∈ Siϕ (Promptness) .

Proof. By induction on the policy formula ϕ and time step i. See [16]

5 Monitor Implementation and Evaluation

To evaluate the feasibility of our monitoring algorithm for safety-critical real-
time systems we have built a real-time CAN monitor on an ARM Cortex-M4
development board. This allowed us to explore the necessary optimizations and
features required to perform real-time checking of realistic safety policies.

Software for safety-critical embedded systems typically contains more strict
design and programming model constraints than less critical software. Two im-
portant and common constraints for these systems are avoiding recursion and
not using dynamic memory allocations. Common safety-critical coding guidelines
discourage or prohibit dynamic memory allocation to avoid memory leaks. Be-
cause our specification language is bounded, we can avoid dynamic allocation in
our EgMon implementation by statically allocating space for the maximum num-
ber of entries for our history structures and other temporary data structures.
Recursion is also usually prohibited because it can be difficult to guarantee a
maximum stack depth when using recursion. Although EgMon utilizes recursion
extensively, we can implement EgMon using a traditional iterative traversal of
the specification formulas instead.
Hybrid Algorithm. Our eager monitoring algorithm attempts to evaluate spec-
ification rules as soon as possible, but this requires checking trace properties
which may not be fully reducible given the current trace. These unfinished for-
mula reductions require extra computation time, and in practice the majority of
the policy reductions performed by EgMon will be these eager reductions which
may not fully reduce.

While early detection of violations can be useful, there are situations where
eagerly checking an entire target specification may require more computation
than is available from the monitor in a given period.

To enable the benefits of eager checking while avoiding the risks of losing
real-time correctness, we have implemented a hybrid eager monitoring algorithm
which performs non-eager (conservative) checking first and uses any spare time



Fig. 4. Oscilloscope capture of embedded monitor task execution

to eagerly check the remaining monitor residues. Conservative EgMon monitor-
ing is performed by only checking residues which are older than their formula
delay, which guarantees that these residue will be reduced at their first eval-
uation. Under our periodic sampling design, each step of conservative monitor
only requires updating the history structures and checking a single residue (the
oldest remaining one) for each specification policy. This conservative check can
be done quickly at each period, leaving any extra time until the next period
for eager checking. This provides a conservative monitoring guarantee (i.e., the
specification is checked within a known promptness delay) while also allowing
the monitor to eagerly check as much of the specification as possible.

We have implemented the hybrid monitoring algorithm in our embedded
monitor. The monitor updates the history structures (shared between the con-
servative and eager checking) and performs a conservative check once every
monitoring period. It then uses the idle time between periods to perform eager
checking of any remaining unchecked specification properties. Figure 4 shows
the execution of the embedded monitor instrumented to output the currently
executing task to an oscilloscope. The residue checks run twice per trace update
due to the monitor configuration used during the test, but this is not required
for correct monitoring. This task output was captured while monitoring the
specification used in the case study (see Section 5.1) plus another 200 time-step
eventually rule which was never satisfied. The rule never being satisfied means
that the monitor performed an eager check of all 200 residues for this rule at ev-
ery step (i.e., since they were never satisfied, they could never be reduced early).
Even with this excess computation there was still a large portion of extra idle
time – 23ms of the 25ms monitoring loop was spent idle. This shows the eager
checking finished reasonably quickly and the monitor could handle much longer
formula durations or more complex formulas before the execution time becomes
bad enough to require the hybrid algorithm for correctness guarantees.

5.1 Case Study

This section reports our case study performing real-time monitoring of a CAN
network for realistic safety properties. For this case study we have obtained
CAN network logs from a series of robustness tests on the ARV which we have
replayed on a test CAN bus for the monitor to check. This setup helps us show



Rule #
Informal Rule
MTL

0
A feature heartbeat will be sent within every 500ms
HeartbeatOn→[0,500ms]HeartBeat

1
The interface component heartbeat counter is correct
HeartbeatOn→ HeartbeatCounterOk

2
The vehicle shall not transition from manual mode to autonomous mode
¬(([0,25ms]IntManualState) ∧ IntAutoStat)

3
The vehicle controller shall not command a transition from manual mode to
autonomous mode
¬(([0,25ms]VehManualModeCmd) ∧ VehAutoModeCmd)

4
The vehicle shall not transition from system off mode to autonomous mode
¬(([0,25ms]IntSDState) ∧ IntAutoStat)

5
The vehicle controller shall not command a transition from system off mode to
autonomous mode
¬(([0,25ms]VehSDModeCmd) ∧ VehAutoModeCmd)

Table 1. Case study monitoring specification

the feasibility of performing external bus monitoring on this class of system with
real safety specifications.

The logs contain both normal system operation as well as some operation
under network-based robustness testing. During robustness testing, the testing
framework can intercept targeted network messages on the bus and inject its
own testing values. A PC was connected to a PCAN-USB Pro [1] device which
provides a USB interface to two CAN connections. One CAN channel was used
to replay the logs, while the other was used as a bus logger for analysis purposes.

Requirements documentation for this system was available, so we were able
to build a monitoring specification based on actual system requirements. The
specification evaluated in the embedded monitor on the test logs are shown in
Table 1. This specification was derived from the system requirements based on
the observable system state available in the testing logs.

Rule #0 is a heartbeat detection which ensures that the interface component
is still running (essentially a watchdog message). Rule #1 is a second component
of this check. The system’s heartbeat message contains a single heartbeat status
bit which we checked directly in Rule #0, but the message also has a rolling
counter field. We use the SF Map to ensure that this counter is incrementing
correctly and output this check as the HeartbeakOk predicate which is checked
in Rule #1. We also checked for illegal state transitions. Rules #2 through #5
check both for illegal transition commands from the vehicle controller and actual
illegal state transitions in the interface component.

5.2 Monitoring Results

Monitoring the test logs with the above specification resulted in identifying two
real violations as well as some false positive violation detections caused by the
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Fig. 5. Heartbeat counter values over time

testing infrastructure. Three different types of heartbeat violations were identi-
fied after inspecting the monitor results, with one being a false positive. We also
identified infrastructure-caused false-positive violations of the transition rules.

Specification violations. The first violation is a late heartbeat message. In one
of the robustness testing logs the heartbeat message was not sent on time, which
is clearly a heartbeat violation. Figure 5 shows the heartbeat counter values and
the inter-arrival time of the heartbeat messages over time for this violation. We
can see here that the heartbeat counter did in fact increment in a valid way, just
too slowly. The second violation is on-time heartbeat status message but the
heartbeat status field is 0. We do not know from the available documentation
whether a bad status in an on-time message with a good counter is valid or not.
So without more information we cannot tell whether these violations are false
positives or not. This is worthy of further investigation.

False-positive violations. The last type of heartbeat violation is a bad counter.
A good rolling counter should increment by one every message up to its maximum
(255 in this case) before wrapping back to zero. Every consecutive heartbeat
status message must have an incremented heartbeat counter or a violation will
be triggered. Figure 6 shows the counter value history for one of the traces with
a heartbeat violation caused by a bad counter value. Further inspection of this
violation showed that the bad counter values were sent by the testing framework
rather than the actual system. In this case, the network traffic the monitor is
seeing is not real system state but actually it is messages being injected by the
testing framework. This is not a real violation (since the violating state is not
the actual system state), and so we consider this a false positive violation.
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The monitor also reported violations of the legal transition rules, but these,
similar to the heartbeat counter violation, also turned out to be false positives
triggered by message injections by the robustness testing harness. Since the
monitor checks network state, if we perform testing that directly affects the
values seen on the network (such as injection/interception of network messages)
we may detect violations which are created by the testing framework rather than
the system. Information about the test configurations can be used to filter out
these types of false positives which arise from test-controlled state. This type of
filtering can be automated if the test information can be input to the monitor,
either directly on the network (e.g., adding a message value to injected messages)
or through a side-channel (i.e., building a testing-aware monitor).

6 Conclusion

We have developed a runtime monitoring approach for an autonomous research
vehicle. Rather than instrumenting the target system, we passively monitor the
system, generating the system trace from the observed network state. We have
developed an efficient runtime monitoring algorithm, EgMon, that eagerly checks
for violations of properties written in our future-bounded propositional MTL.
We have shown the efficiency of EgMon by implementing it and evaluating it
against logs obtained from system testing of the ARV. EgMon was able to detect
violations of several safety requirements in real-time.
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