
Monitor Based Oracles for Cyber-Physical System
Testing

Practical Experience Report

Aaron Kane
Carnegie Mellon University

Pittsburgh, PA USA
akane@cmu.edu

Thomas Fuhrman
General Motors

Warren, MI USA
thomas.e.fuhrman@gm.com

Philip Koopman
Carnegie Mellon University

Pittsburgh, PA USA
koopman@cmu.edu

Abstract—Testing Cyber-Physical Systems is becoming in-
creasingly challenging as they incorporate advanced autonomy
features. We investigate using an external runtime monitor
as a partial test oracle to detect violations of critical system
behavioral requirements on an automotive development plat-
form. Despite limited source code access and using only existing
network messages, we were able to monitor a hardware-in-the-
loop vehicle simulator and analyze prototype vehicle log data
to detect violations of high-level critical properties. Interface
robustness testing was useful to further exercise the monitors.
Beyond demonstrating feasibility, the experience emphasized a
number of remaining research challenges, including: approxi-
mating system intent based on limited system state observability,
how to best balance the simplicity and expressiveness of the
specification language used to define monitored properties, how
to warm up monitoring of system variable state after mode
change discontinuities, and managing the differences between
simulation and real vehicles when conducting such tests.

I. INTRODUCTION

Modern automobiles are becoming increasingly complex
with the addition of advanced connectivity and autonomy
features. Many of these new features have substantial control
authority over vehicle motion, and are thus safety-critical.
Although full formal verification of such systems is still out
of reach, formal methods may be of some help in performing
more thorough system testing. This work describes our
experiences exploring the feasibility of using a “bolt-on”
external passive runtime monitor to improve the results of
system testing on a prototype vehicle design.

A major challenge when testing complex critical systems,
especially distributed Cyber-Physical Systems (CPSs), is cre-
ating an automated or semi-automated method to evaluate the
results of system testing. This is essentially the testing oracle
problem [18].

Runtime verification [13] is a lightweight formal method
that attempts to verify that execution traces (whether at
runtime or offline from logs) conform to a given specification.
A (runtime) monitor is a device that that reads a system
trace and yields a verdict about whether the trace satisfies
some target property. Although due to time and complexity
constraints of the experiments all the monitoring in this work
was performed offline (on stored log data), we use the term

runtime monitor in this work. There is no fundamental reason
the monitoring could not be done at runtime, but offline
verification was more useful at this stage of work since it
is more flexible to changes and system access restrictions.
It also permits running multiple experiments on identical
system traces, which would be impractical with live vehicle
testing.

Runtime verification can be used to provide a partial
oracle to ensure that critical system properties hold during
testing. While creating a formal specification that exactly
describes the runtime behavior of a system as complex as an
automobile is impractical, a specification that approximately
bounds safe behavior and is amenable to runtime verification
might be attainable.

Runtime monitors designed for testing safety-critical sys-
tems have additional constraints beyond traditional runtime
monitors. A significant consideration is that the monitor must
be isolated from the target system to minimize (or, ideally,
eliminate) any disruption of the system under test, especially
with regard to real time performance. Isolation is important
because if the monitor is not isolated, it must be designed to
at least the same level of safety integrity [8] as the system
it is monitoring, increasing development cost and requiring
that the monitor itself be deployed with the system. While
that approach might be desirable in some situations, our work
considers the common desire to have a ”bolt-on” testing box
that can be inserted into an existing safety-critical distributed
system to improve the ability to analyze system-level testing
results and then removed when deploying the final system
without invalidating the test results with regard to system
safety. Ultimately this will require a formalized argument
that the interface between the monitor and target system is
truly passive and non-interfering. This could be created using
a system model with wormholes [17] or through a rigorous
safety case argument [1].

Most runtime monitoring work to date has been in creating
integrated monitors that are not designed with isolation in
mind [7]. Moreover, most runtime monitoring work has
assumed access to source code, which is often not true
of components integrated into commercial systems. Thus,

1

koopman
Typewritten Text
Preprint: Dependable Systems and Networks 2014

we expected that there would be significant practical issues
in creating an isolated monitor. For example, there is the
question as to whether enough visibility into system operation
is likely to be available on an existing CPS embedded
network without having to modify the system design to make
monitoring viable.

The primary question we address is: given the constraints
inherent in such an approach, can a bolt-on testing monitor be
useful? To understand what happens when attempting to build
an external runtime safety monitor for use as a testing oracle,
we implemented a prototype runtime monitor on a hardware-
in-the-loop (HIL) vehicle simulator for a prototype system
provided by an automobile manufacturer. Besides passively
checking system test traces during normal operation, we also
performed robustness testing to better exercise the monitor.
Additionally, we compared results to passive monitoring on
logs from an operational prototype test vehicle. In this paper
we discuss our results on the feasility of and remaining
challenges for creating scalable runtime monitors of this type.

II. BACKGROUND

Test oracles are functions that identify whether a given
test has succeeded or failed. In traditional testing, human
users act as test oracles, sometimes aided by automatic tools.
Automated oracles can provide more accurate (no mistakes)
checking of test results at a faster rate than manual checking,
if they can be designed to accurately predict correct system
behavior in response to test stimuli. The oracle problem
is how to create such an automated predictor of system
responses, including addressing situations in which such a
predictor is impractical [18].

Partial oracles, which are oracles that can sometimes – but
not always – correctly decide whether a test has succeeded
or failed, can be simpler to identify. For this work we seek to
create test oracles that are partial in two respects. First, the
oracles only describe critical system properties rather than all
system behaviors. In particular, they only attempt to describe
properties that correspond to system safety. Second, the
oracles only provide approximate bounds to safety rather than
attempting to specify exact safety invariants. For this work,
such oracles are deemed useful if they discover problems
with the system that the designers did not discover using
their traditional testing techniques.

While typical runtime monitoring frameworks might be
used as partial testing oracles, they are largely targeted at
pure software systems rather than CPS applications. Good-
loe and Pike present a thorough survey of monitoring for
distributed real-time systems in [7]. Those runtime monitors
that are intended for CPS applications tend to assume that the
system under test must be augmented with instrumentation,
compromising isolation. For example, Copilot [15] generates
constant-time and constant-space on-chip monitors so that
the added overhead is known and bounded. But even so,
the system under test must be modified to accommodate

monitoring. Moreover, many existing monitors require access
to the underlying source code, which is often unavailable in
commercial systems.

At least one existing monitor framework, BusMOP [14],
generates external bus monitors from high level specifications
targeting commercial off-the-shelf peripherals (specifically,
the PCI-X bus). BusMOP avoids some observability issues
by limiting specification properties to bus-visible accesses
(memory, I/O, and interrupts). However, there has been no
full-scale experiment on a realistic system demonstrating
that safety monitoring of a black-box CPS with no added
instrumentation is feasible and useful.

III. TEST SYSTEM

Automobiles are a straightforward target for a passive net-
work monitor since they are highly distributed systems with a
broadcast bus (usually CAN [2]). Automotive networks tend
to periodically broadcast system state messages, enabling a
monitor to obtain an incomplete, but useful, view of the
state of the system without additional instrumentation and
without adding new message traffic. We use an external,
passive bus monitor which minimizes the intrusiveness of the
monitor on the target system. Our monitor checks properties
written in a specification language containing a simplified
bounded temporal logic loosely based on MTL [10] and
state machine descriptions used to encode mode-based state.
The logic contains the usual boolean connectives, arithmetic
comparisons, and two bounded temporal operators (always
and eventually). To ensure non-interference and avoid issues
related to performance (which are left to future work), the
monitoring in this work was done offline on system logs
captured from the target system.

The system under test was a dSPACE hardware-in-the-loop
(HIL) simulator testbench for an automobile manufacturer.
The simulator uses MATLAB SIMULINK models to gener-
ate the code for individual electronic control units (ECUs).
CARSIM [3] is used to provide the simulated vehicle and
environment which the feature models on the HIL operate
within.

The dSPACE HIL uses the dSPACE ControlDesk inter-
face software to manage loading models and running tests
(including calibration, logging/measurements, and diagnostic
access). ControlDesk includes a library (rtplib) allowing real-
time scripting access to the models running on the HIL. We
used this library to create some robustness testing scripts, and
additionally used ControlDesk’s control panel functionality
to control manual injection of some individual signals. All
logging was performed with ControlDesk’s trace capture
functionality.

The vehicle tested was a prototype development platform
for semi-autonomous driving features, including Full Speed
Range Adaptive Cruise Control (FSRACC), automated lane
keeping, and emergency collision avoidance. Because fea-
ture development was still in progress, the only feature we

2

were able to test was a third-party supplied FSRACC. The
FSRACC was not hardened for robustness, and therefore
our findings of robustness issues do not reflect upon the
quality of production-grade features. However, the FSRACC
did provide a prototype-quality realistic automotive feature
for our testing purposes.

To facilitate the black box interception and injection of
vehicle network messages for robustness testing purposes,
we added some instrumentation to the vehicle feature model.
(These modifications were solely for input interception/in-
jection to elicit system failures, and did not provide instru-
mentation for runtime monitoring. Moreover, they did not
involve modification of the FSRACC code itself.) Each input
signal to the FSRACC module was routed through an added
multiplexor with a inject signal value controlled by an enable
signal. This allowed us to have each input signal individually
passed-through or overwritten by the chosen injection signal.
These additional signals (the injection and enable signals)
were accessible through ControlDesk’s layouts and through
Python scripts using the included rtplib as if they were a
part of the original feature model. Because this part of the
system was a simulation running in a fast HIL computer, the
modifications did not affect system timing.

Although we added instrumentation for robustness testing,
we note that the monitor itself only requires access to network
messages that are already available on the vehicle’s CAN
broadcast network. This means that the monitor could be
used on a real vehicle without requiring any instrumentation
(beyond connecting it to the network or otherwise exporting
network logs). To validate the simulation, we also ran the
monitor on logs from an actual vehicle running similar code,
and caught some of the same violations on the real vehicle
as found on the simulator during normal (no signal injection)
operation.

A. Robustness Testing

In this work the primary goal of robustness testing was to
increase the chances of seeing system faults during testing to
better exercise the monitor, and not to characterize the quality
of prototype vehicle software, which was expected to be non-
robust. We used the existing ControlDesk interface to perform
network value interception and injection. The injected values
were limited by data-type bounds checking performed by the
interface. This limited injection target’s signal values to floats
(including exceptional values e.g., NaN, infinity), booleans
(true/false), and enumerations (positive integer values).

We performed three different classes of robustness testing
on the HIL: random bit flips (one, two, and four bits),
random value injections, and exceptional value injections.
For each testing type we injected a particular number of
faults each for 20s (to allow time for the fault to manifest
into a specification violation). Bits to flip were randomly
chosen for each individual bit flip fault. For random value
injection we injected values from [−2000, 2000] for floats,

I/O Name Type
Input Velocity float
Input AccelPedPos float
Input BrakePedPres float
Input ACCSetSpeed float
Input ThrotPos float
Input VehicleAhead boolean
Input TargetRange float
Input TargetRelVel float
Input SelHeadway float
Output ACCEnabled boolean
Output BrakeRequested boolean
Output TorqueRequested boolean
Output RequestedTorque float
Output RequestedDecel float
Output ServiceACC boolean

Fig. 1. FSRACC Module IO Signals

[0, 1] for booleans, and [0,maxint] for enums. The float
range was chosen such that it would go beyond the possible
non-faulty values of the target messages while keeping the
range small enough that at least some values chosen would
land in the value’s normal range. We used Ballista [9]
style exceptional value injection which targeted float-typed
messages with values chosen from the set {NaN, ∞,
−∞, 0.0, -0.0, 1.0, -1.0, π, π

2
π
4 , 2π, e, e

2 , e
4 ,
√
2,

√
2
2 ,

ln(2), ln(2)
2 , 4294967296.000001, 4294967295.9999995,

4.9406564584124654e-324, -4.9406564584124654e-324}.
Random valid value injection values were used for
exceptional-input injection targeting non-float data types due
to the strong value checking enforced on the HIL testbed.

We performed script-based injection both on each target
message individually and as well as some injections against
multiple messages at once. We also performed manual explo-
ration of identified faults by creating a ControlDesk Layout
with numeric input boxes providing manual control of the
injection framework.

B. The Feature Under Test
We performed black box testing of the FSRACC feature.

Source code was not available for the feature, so all testing
and specifications were based on external interfaces and
understanding of the high level behavior.

The inputs and outputs of interest to the FSRACC module
are listed in Figure 1. The module has other inputs and
outputs that were disregarded for testing because they had
no observable effect, immediately cancelled cruise control,
were interface indicators, or otherwise did not affect vehicle
safety.

The Velocity input message is the forward speed of
the vehicle. AccelPedPos gives the position of the accel-
erator pedal as a percent (0 being fully released, 100 fully
depressed). The pressure applied to the brake pedal is given
in BrakePedPres and the position of the throttle as a

3

percentage (i.e., how open is the throttle) is ThrotPos. The
commanded cruising speed is sent in the ACCSetSpeed
message. The VehicleAhead message tells the ACC
module whether a vehicle is detected ahead of it in the
lane. TargetRange and TargetRelVel are the distance
between the vehicle and the vehicle ahead of it (if one
exists) and the relative velocity between those two vehicles
respectively. The selected headway distance to the preceding
car is an enum SelHeadway.

The output ACCEnable is whether the ACC thinks
it is supposed to be in control of the vehicle (i.e., en-
gine and brake controllers should ignore these output val-
ues if ACC isn’t enabled). The BrakeRequested out-
put is true when the ACC feature is requesting a de-
celeration. If the BrakeRequested output is true, then
RequestedDecel is a requested deceleration in m/s2

for the brake controller to attempt to provide. If in-
stead the message TorqueRequested is true then the
RequestedTorque output is the additional amount of
torque the engine controller should attempt to provide. The
ServiceACC message is an error message used to enable
an interface indicator to alert the driver that the feature has
detected an error.

C. Safety Specification

To evaluate the use of these techniques we created partial
behavioral specifications that were motivated by ensuring
system safety. We used six safety rules that checked a mix
of system robustness and functionality.

Since the feature under test is a third party provided code
module designed mainly as a placeholder function to support
early system integration, there was no available specification.
While it would be ideal to have a system specification from
which to derive monitoring rules, that was not the case for the
available systems we had to test. Instead we created a set of
specification rules based on “expert” elicited common sense
(i.e., properties a knowledgable engineer could expect to hold
based on automotive domain experience) through discussions
with the system’s engineers and looking over existing system
metrics and other potentially related documentation. While
we would have preferred to have rules directly derived from
system documentation, this is not always possible in industry
(as in this example). In cases like this the usefulness of the
monitoring results depend heavily on the experts and the
quality of the rules they choose. Though expert derived rules
may not provide as clear a notion of monitoring coverage,
they can be made with the expert’s direct needs in mind. For
example, while the rules we check in this work are in no
way complete, they would be high priority (likely leading to
vehicle collisions) for a production quality feature. The six
rules we checked against the robustness testing traces were:
Rule #0 If the ServiceACC signal is true, then

ACCEnabled must be false.
A simple consistency check to ensure that the feature

does not continue to attempt to control the vehicle when
it knows something is wrong.

Rule #1 If the actual vehicle headway time is below 1.0s,
then it must be recovered to greater than 1.0s within 5s
elapsed time.
This rule is derived from an existing headway metric for
another similar system

Rule #2 If TargetRange is less than half the desired
headway, then RequestedTorque should not be in-
creasing.
Check for feature trying to increase speed when it is
already too close to the target vehicle

Rule #3 If Velocity is greater than ACCSetSpeed
and RequestedTorque is less than 0,
RequestedTorque must still be less than 0 in
the next timestep.
Check for vehicle attempting to increase speed when
already above the set speed, avoiding tripping on
control oscillations by only checking after there are no
active requests.

Rule #4 If Velocity is greater than ACCSetSpeed
then RequestedTorque must not be increasing some
point within 400ms.
Similar to #3: if vehicle velocity is increasing while
above set speed, should start slowing down (or at least
hold speed) within 400ms

Rule #5 If BrakeRequested is true then
RequestedDecel must be less than or equal
to 0.
Checks if the value of a requested deceleration is in
fact a deceleration (negative).

Rule #6 If VehicleAhead is true and TargetRange
is less than 1, then TorqueRequest must be false or
RequestedTorque must be less than 0.
Checks for near collisions – assuming a feature should
not be requesting a increase in speed when the target
vehicle is extremely close.

Because these rules were picked without any knowledge
of the internal control algorithms or design parameters of
the system, some of them may be too strict (this turned out
to be the case as we shall see). It seems likely that this
sort of approach would be common when applying runtime
monitoring to real-world systems, which often have incom-
plete specifications and opaque internal operation. Thus, the
approach we took was to adopt these rules and then relax
them when false positives and uninteresting violations were
found. We think this is a reasonable approach to employing
runtime monitors in practice.

The issue of whether the data required to implement the
monitor would be observable was simple since we were able
to create our rules with knowledge of this restriction (and
thus write rules based on system state available on the CAN
bus). Observability would be a more difficult issue when
deriving rules from system requirements which may include

4

requirements on properties that are not externally observable.
We discuss this further in Section V-D.

Coverage of the safety rules is not intended to be complete.
Rather, the idea is to express a set of safety rules that are
useful and see if runtime monitoring detects rule violations
for a black-box system which has not been augmented with
additional monitoring information.

IV. TESTING RESULTS

For each of the eight target signals we ran three tests –
one Ballista-style injection, one bit flip test in which one,
two, and four bit bit-flips were injected, and one random
value injection. Random and Ballista testing included eight
different injection values per test and bit-flips included four
injections for each bit-flip size (with all injections held
for 20s). We also ran eight tests of 20 injection values
on multiple target signals at once (e.g., TargetRange,
VehAhead, and TargetRelVel at the same time). Testing
time was limited by the physical time to run tests on real
automotive hardware setups. Statistical analysis of robustness
testing techniques was not a goal of this work. The number of
tests were sufficient to demonstrate that monitoring detected
problems under robustness fault injection and indicated a lack
of problems (to the degree possible given available data) in
non-faulted operation.

The results of the robustness testing identified many
specification violations. The testing results are summarized
in Table I. An “S” represents a rule satisfied by the
given trace, while a “V” represents a violated rule. The
mBallista, mRandom, and mBitFlip entries are tests where
more than one message was targeted at once. “Range+”
injected TargetRange, TargetRelVel and VehAhead.
“Range+Set” also included SetSpeed, and “All” was all 9
FSRACC inputs. Six out of the seven rules were detected
as violated during testing (all except Rule #0). Many of the
violations could be caused, and were detected, by multiple
test runs (i.e. different signals being targeted or different
types of injections to the same signal).

All three types of robustness testing found similar ro-
bustness problems in the system under test. This is not
an unreasonable outcome, because all three fault classes
easily exercised out-of-range faults that caused most of the
identified violations.

A major identified cause of problems was the lack of input
checking in the feature. The Velocity, TargetRange,
TargetRelVel, and ACCSetSpeed messages all have
direct and strong effects on the control output, but are neither
bounds checked (for exceptional inputs) nor consistency
checked against each other or other inputs. This makes them
vulnerable to a bad input value causing the control algorithm
to command an unsafe output. For example, an exceptional
TargetRange value when following a target causes the
ACC feature to command the vehicle to accelerate into (and
through, because the simulator doesn’t check collisions) the

TABLE I
FAULT INJECTION RESULTS

Specification Rule
Injection Target Signal 0 1 2 3 4 5 6
Random Velocity S V S V S S V
Random TargetRange S S V S V S V
Random TargetRelVel S V S S S S V
Random ACCSetSpeed S V S V S S V
Random ThrotPos S S S S S S S
Random AccelPedPos S S S S S S S
Random BrakePedPos S S S S S S S
Random SelHeadway S S S S S S S
Ballista Velocity S S V S S V V
Ballista TargetRange S V S S S V V
Ballista TargetRelVel S V S S S S V
Ballista ACCSetSpeed S S V V V S S
Ballista ThrotPos S S S S S S S
Ballista AccelPedPos S S S S S S S
Ballista BrakePedPos S S S S S S S
Ballista SelHeadway S S S S S S S
Bitflips Velocity S V V S V V V
Bitflips TargetRange S V S S S V V
Bitflips TargetRelVel S V S S S V V
Bitflips ACCSetSpeed S V S S S V V
Bitflips ThrotPos S S S S S S S
Bitflips AccelPedPos S S S S S S S
Bitflips BrakePedPos S S S S S S S
Bitflips SelHeadway S S S S S S S
mBallista Range+ S V S S V V V
mBallista All S V S S S S S
mRandom Range+ S V V S V V S
mRandom All S V S S S V S
mRandom Range+Set S V S S S V S
mBitflip1 Range+ S V S S S V V
mBitflip2 Range+ S V V V V V V
mBitflip4 Range+ S V S S S V S

target vehicle. This is an obviously dangerous situation (the
ACC feature causing a crash during target following). The
same problem can be caused by an incorrectly negative
relative velocity, which is a situation caught by Rule #6. The
feature does have enough information to protect against these
two signals being inconsistent and causing a failure by check-
ing the consistency between the change of TargetRange
and TargetRelVel. It just doesn’t do the checking.

Some violations turned out to be overly strict rules, but
sometimes a violation that is primarily a too-strict rule can
also detect a valid transient violation. Most violations of Rule
#5 were due to control system overshoot from negative to a
single-cycle positive acceleration when brakes were released,
which might be considered acceptable. But there were also
transient violations of this rule caused by an injected fault
turning the ACC feature on that caused a one cycle blip
of positive RequestedDecel. While one cycle of bad
requested deceleration may be tolerated in an operational
vehicle, it is worth noting such anomalies in test data, because
they can provide a clue to a potential latent bug that will
have more severe effects in difficult-to-test corner cases. Such
violations can be hard to detect without a tool such as a
runtime monitor, since the vehicle may appear to behave
properly from a driver’s point of view during these fleeting

5

problems.

A. Real Vehicle Logs

We also analyzed log data from a prototype vehicle that
implemented the functions in the HIL simulation. These logs
were of normal operation, not robustness testing, covering a
couple hours of vehicle operation for representative driving
scenarios. Data was limited due to the experiments being
of lower priority than vehicle development work on the
limited resource of a single available test vehicle at an
industry partner facility. No safety problems were detected
in the vehicle logs we had available. However, results did
correspond to observations made on non-faulty HIL test
results.

The same rules checked on the simulator were checked
against the real vehicle logs, and similar system dynamics
were found. Rules #0, 1, 5 and 6 were not violated in
the vehicle logs. Rules #2, 3, and 4 had some violations,
but upon further examination they were determined to be
reasonable violations (i.e., overly strict rules). Rule #2 does
not gracefully handle small headway gaps and acceleration
that can occur during overtaking (passing) or a vehicle cutting
in, and Rules #3 and #4 are not fair to the real dynamics of
the system where torque request increases do not necessarily
imply system intent (e.g., starting up a hill torque must
increase to maintain constant vehicle speed). The identified
violations included negligibly sized increases as well as
extremely short transient increases. These results lead to our
identifying intent approximation as a challenge, as discussed
below.

V. DISCUSSION

In the process of building the monitor, writing the speci-
fication, and performing testing we ran into issues that on
further inspection lead to deeper research questions. We
identified three major research challenges:
Intent Approximation: How do we approximate or rep-

resent a desired system intent based on the available
observable system properties?

Specification Languages: What language features are nec-
essary for efficiently specifying the desired system prop-
erties?

System Mapping: How do we map the target system onto
the monitor’s assumed model of the system?

We also discuss how generalizable we believe these in-
sights are to other systems and some issues regarding the
passive observability of a target system.

A. Intent Approximation

The viability of a black box, external runtime monitor
rests upon the assumption that some portion of the desired
specification can be directly checked from the observable
state of the system. The obvious concern is that not enough
data such as vehicle speed or steering commands will be

available for monitoring. As it turns out, automotive networks
have plenty of such data available due to their use of a
distributed system architecture that broadcasts such data on a
CAN bus. However, a more subtle problem with observability
emerged in the course of doing this work in the form of the
intent estimation problem. This is the question of how to
represent a feature’s intent to perform some high-level action
based on some set of lower level properties [6]. This problem
has been explored in many areas including defense aerospace
[11], unmanned undersea vehicles [5] and automobile driver
intent [12].

We would expect the intent estimation problem to be easier
when performing white-box rather than black box testing,
since being able to directly see how a system’s input affects
its output would help understand system intent. But since
source code doesn’t necessarily explicitly encode intent it is
unclear how much system access affects intent estimation.

In these experiments we used an increase in FSRACC
requested torque as an estimation for the FSRACC intending
to accelerate the vehicle. While this is a somewhat causal re-
lationship (increasing engine torque should generally increase
vehicle speed), torque requests depend upon a host of factors
such as road conditions and grade, and can be differentiated
by factors such as duration and amplitude of the increase.
Based on this example, we expect that designers who wish
to employ an external monitor will face a tradeoff between
carefully architecting selected internal system information
that reveals intent vs. building somewhat more complicated
monitors that decipher intent based on observable informa-
tion. (It is easy to say that intent should always be broadcast,
but that may not be feasible for system integrators purchasing
off-the-shelf components from multiple outside vendors.)

In order to be able to tune these approximations, designers
must be able to evaluate a given violation and decide whether
the violation was real or not. This may be non-trivial on some
systems, especially if a part of the reason for the use of a
monitor is to help developers understand the test traces. In
our case, we took into account the intensity and duration
of the violations, as well as the apparent cause to make a
decision on whether a violation was a safety problem or not.

A monitor used as a test oracle for safety rules can provide
evidence for a system safety case [1] that the system did
in fact pass the executed tests. For this type of use we
want to have no false negatives (i.e. the estimation catches
every violation of the intended high level rule) to allow the
testing results to be used as strong evidence. If having no
false negatives is impossible or it results in an unmanageable
amount of false positives, using an intent estimation that
reports some false negatives is still more useful as part of
a comprehensive safety approach than not checking at all.
(Detecting even a single safety violation provides useful
evidence that the system is unsafe.)

6

B. Specification Languages

We have designed our monitor to use a simplified temporal
logic combined with state machines. Most existing monitor
technologies use some form of logic [4] or a domain specific
language that matches the implementation [16]. Logic-like
languages are promising, but some researchers use a form of
state machine to encode modal system state or to reduce the
complexity of temporal operators in logic. For example, we
avoid nesting of temporal operators by using state machines
when needed, and that proved useful in this work.

The trade-off between simplicity and expressiveness in
monitor logic is important because it affects the efficiency
of the monitor, and the ultimate goal for this type of system
is to operate with the system being monitored in real time. It
is not yet clear what degree of expressiveness is required
to monitor typical safety properties on real systems. The
specification rules that we used in this work are relatively
simple, yet they did identify system faults under robustness
testing. So it may be that relatively simple logic languages
which only provide a subset of the usual temporal logic
functions suffice for runtime CPS monitoring. There are
additional complexity trade-offs between the specification
notation and in the system-to-monitor mapping (discussed
below).

C. Monitor Rule to System Mapping

A major challenge is that of mapping the real system to
an abstracted model at run-time that provides the system
state information for the monitor to check. There are many
different existing monitoring techniques that each have their
own unique model of a system. Here we generally discuss
issues related to external monitors such as ours. Inline
monitors (i.e. monitors that exist within the system code,
which are beyond the scope of this work) may have fewer
mapping issues because they are more directly integrated into
the system, but it would be no surprise if they have similar
tradeoffs.

Our monitor is designed around the use of a set of network
messages representing system state.

1) Multiple Sampling Periods: In the vehicle we tested
there are two relevant message periods, with some messages
being updated four times slower than most others. At first
we simply assumed that these slower values stayed constant
between updates. But, dealing with values across multiple
timesteps required more care, because a slowly sampled value
that is in fact increasing would appear to be unchanging for
several cycles while the faster samples were being checked.

As an example, to see if the FSRACC feature was re-
questing increasing torque, we would calculate the difference
of the previous and current RequestedTorque value.
However, if the held value is used in a monitor that updates
four times between every RequestedTorque update, the
torque would appear to be constant for three samples out
of four due to the repetition of the most recent sampled

value being held. Additionally, jitter would sometimes cause
slower-period messages to be delayed, resulting in five faster
frequency message updates occuring between the slower
message updates. Once recognized, it was relatively simple
to work around these problems in an ad hoc manner. But,
the observation remains that runtime monitoring that involves
data sampled at different periods can be tricky, and a runtime
monitoring architecture should have a uniformly applied
mechanism to deal with that issue.

2) Discrete Value Jumps: Another network value issue
that we came across was ensuring that rules could handle
message transitions from non-active to active. Some mes-
sages in a system, such as TargetRange can perform
large discrete jumps when they are activated even though
they represent continuous physical properties. As an example,
TargetRange is 0 when there is no target being tracked,
but once a target is found this value will immediately jump
to the actual range. This was noticed for rules that checked
if the ACC would command control when the change in
TargetRange did not agree with sign of TargetRelVel.
So while these values should always agree in a non-fault
condition, there is one situation where they may not: when a
vehicle comes into sensor view the relative velocity may be
correctly reported as negative, but the first change in range
seen is necessarily positive (change from zero to the actual
positive range). Delaying the check of such a rule until after
the activation (allowing the “change” variable to initialize
before testing) avoids this problem.

Other message or rule types may also have initialization
issues, such as rules that rely on an integrator or running
average of a value. A general observation is that run-time
monitors should have a uniform way of “warming up”
monitors for data that changes state abruptly, especially when
changing from invalid to valid, to avoid false alarms.

3) System vs. Model: Even though a HIL simulation is
supposed to be of high fidelity, we found a significant
difference in that the HIL platform performed strong type
checking of fault-injected values, prohibiting things such as
out-of-range enumerated values. This limited the amount of
fault injection possible compared to what might be done
on a complete vehicle (which we were not permitted to do
robustness testing on). As a result, robustness testing of the
HIL platform likely missed problems that would be expected
to be present in the real system, which does not have such
type checking. For this reason it can be important to do
runtime monitoring on the actual vehicle even if HIL testing
finds no problems, especially if robustness testing results are
desired on the real vehicle.

D. Observability and Generalizability

The most limiting factor for a passive monitor targeting
a specific system is how much system state is observable
passively (without invasive instrumentation). For our target
application (modern automobiles) and other similar systems

7

(autonomous ground vehicles) there is a useful though not
complete set of observable state available to be passively
monitored due to the prevailing architecture where system
state is broadcast between distributed system nodes on a
single or small number of bus networks. While there are
likely some systems which require instrumentation to reveal
system state, we expect that there is a non-negligible class of
systems that have similar architectures to automobiles. This is
likely since high criticality systems tend to be distributed or
have visible communication between replicated components.
If a system is distributed, then some amount of useful state
will be observable as the distributed nodes must communicate
their state to each other. Whether this communicated state is
enough to allow monitoring useful system properties is left to
be seen in other systems, but for automobiles it does appear
to be the case.

Whether the insights and results we have seen here are
generalizable to other systems hinges essentially on whether
other systems can be monitored in a similar manner. While it
is unclear how many other classes of systems lend themselves
to passive monitoring, at worst the explained methods and
insights are applicable to other autonomous ground systems
which are becoming increasingly important. We expect that
other types of systems are similar, though some may require
different levels of instrumentation. Intent approximation and
mapping systems onto their abstract models are problems that
will exist in some degree for any practical formal verification
techniques for the foreseeable future.

VI. CONCLUSION

Automated testing of complex safety-critical systems is
an important method to increase the number of tests that
can be completed, but an automated analysis of such test
results is not necessarily easy. Runtime monitors can be used
to create partial test oracles for critical system properties,
such as system-level safety rules. Isolated, external runtime
modules are especially attractive, but pose some potential
challenges.

We showed the feasibility of a bolt-on monitor by imple-
menting a passive network monitor (using log analysis) to
check a HIL simulated vehicle provided by an automobile
manufacturer. Despite not having source code access and
working only with existing network signals, a practical
monitor was developed with a half-dozen rules that identified
system faults under robustness testing of a HIL system.
This illustrates the possibility of expanding the use of this
approach in testing key properties of CPS designs.

The experience revealed a number of challenges remaining
to further advance this approach, including: approximating
system intent based on limited system state observability,
how to best balance complexity vs. expressiveness and scope
of the specification language used to define the monitored

properties, how to warm up monitoring of system variable
state after mode change discontinuities, and managing the
differences between simulation and real vehicles when con-
ducting such tests.

ACKNOWLEDGMENT

This research was funded in part by General Motors
through the GM-Carnegie Mellon Vehicular Information
Technology Collaborative Research Lab.

REFERENCES

[1] Bishop, P., Bloomfield, R.: A methodology for safety case develop-
ment. In: SAFETY-CRITICAL SYSTEMS SYMPOSIUM, BIRMING-
HAM, UK, FEB 1998. Springer-Verlag, ISBN 3-540-76189-6 (1998),

[2] Bosch, R.: CAN specification version 2.0 (Sep 1991)
[3] Corporation, M.S.: Carsim overview (November 2013)
[4] Delgado, N., Gates, A., Roach, S.: A taxonomy and catalog of

runtime software-fault monitoring tools. Software Engineering, IEEE
Transactions on 30(12), 859 – 872 (dec 2004)

[5] Fong, E.H.L.: Maritime intent estimation and the detection of unknown
obstacles. Master’s thesis, MIT (2004), http://hdl.handle.net/1721.1/
30279

[6] Foo, P.H., Ng, G.W., Ng, K.H., Yang, R.: Application of intent
inference for surveillance and conformance monitoring to aid human
cognition. In: Information Fusion, 2007 10th International Conference
on. pp. 1–8 (2007)

[7] Goodloe, A., Pike, L.: Monitoring distributed real-time systems:
a survey and future directions (NASA/CR-2010-216724) (July
2010), http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.159.
4769\&rep=rep1\&type=pdf,

[8] ISO: ISO/DIS 26262 - Road vehicles – Functional safety. Tech. rep.,
Geneva, Switzerland (November 2011)

[9] Koopman, P., Devale, K., Devale, J.: Interface Robustness Testing:
Experience and Lessons Learned from the Ballista Project, pp. 201–
226. John Wiley & Sons, Inc. (2008)

[10] Koymans, R.: Specifying real-time properties with metric temporal
logic. Real-Time Syst. 2, 255–299 (October 1990),

[11] Lee, K., Lunas, J.: Hybrid model for intent estimation. In: Information
Fusion, 2003. Proceedings of the Sixth International Conference of.
vol. 2, pp. 1215–1222 (2003)

[12] Lefevre, S., Ibanez-Guzman, J., Laugier, C.: Context-based estimation
of driver intent at road intersections. In: Computational Intelligence in
Vehicles and Transportation Systems (CIVTS), 2011 IEEE Symposium
on. pp. 67–72 (2011)

[13] Leucker, M., Schallhart, C.: A brief account of runtime verification.
Journal of Logic and Algebraic Programming 78(5), 293 – 303 (2009),
the 1st Workshop on Formal Languages and Analysis of Contract-
Oriented Software (FLACOS’07)

[14] Pellizzoni, R., Meredith, P., Caccamo, M., Rosu, G.: Hardware Run-
time Monitoring for Dependable COTS-Based Real-Time Embedded
Systems. 2008 Real-Time Systems Symposium pp. 481–491 (Nov
2008),

[15] Pike, L.: Copilot: Monitoring embedded systems. Tech. Rep.
NASA/CR-2012-217329, NASA Langley Research Center
(January 2012), available at http://ntrs.nasa.gov/search.jsp?
R=20120001989&hterms=pike+goodloe&qs=Ntx%3Dmode%
2520matchallpartial%2520%26Ntk%3DAll%26N%3D0%26Ntt%
3Dpike%2520goodloe

[16] Pike, L., Goodloe, A., Morisset, R.: Copilot: A Hard Real-Time
Runtime Monitor. In: 1st International Conference on Runtime Ver-
ification. No. Rv (2010), http://www.cs.indiana.edu/\∼{}lepike/pubs/
pike-rv2010.pdf

[17] Verı́ssimo, P.E.: Travelling through wormholes: A new look at dis-
tributed systems models. SIGACT News 37(1), 66–81 (Mar 2006),

[18] Weyuker, E.J.: On testing non-testable programs. The Computer Jour-
nal 25(4), 465–470 (1982),

8

