
Code Review Checklist Ver 1.01 Page 1 of 2 

Embedded System Code Review Checklist 

Gautam Khattak & Philip Koopman 
July 2012     Version 1.01 

Recommended Usage: 
 Assign each section below to a specific reviewer, giving two or three sections to each reviewer.  
 Ensure that each question has been considered for every piece of code. 
 Review 100-400 lines of code per 1-2 hour review session. Do the review in person. 

FUNCTION 
 F-1. Does the code match the design and the system requirements?  
 F-2. Does the code do what it should be doing? 
 F-3. Does the code do anything it should not be doing? 
 F-4. Can the code be made simpler while still doing what it needs to do? 
 F-5. Are available building blocks used when appropriate? (algorithms, data structures, types, 

templates, libraries, RTOS functions) 
 F-6. Does the code use good patterns and abstractions? (e.g., state charts, no copy-and paste) 
 F-7. Can this function be written with a single point of exit? (no returns in middle of function) 
 F-8. Are all variables initialized before use? 
 F-9. Are there unused variables? 
 F-10. Is each function doing only one thing? (Does it make sense to break it down into smaller 

modules that each do something different?) 

STYLE 
 S-1. Does the code follow the style guide for this project? 
 S-2. Is the header information for each file and each function descriptive enough? 
 S-3. Is there an appropriate amount of comments? (frequency, location, and level of detail) 
 S-4. Is the code well structured? (typographically and functionally) 
 S-5. Are the variable and function names descriptive and consistent in style? 
 S-6. Are "magic numbers" avoided? (use named constants rather than numbers) 
 S-7. Is there any “dead code” (commented out code or unreachable code) that should be 

removed? 
 S-8. Is it possible to remove any of the assembly language code, if present? 
 S-9. Is the code too tricky? (Did you have to think hard to understand what it does?) 
 S-10. Did you have to ask the author what the code does? (code should be self-explanatory) 

ARCHITECTURE 
 A-1. Is the function too long? (e.g., longer than fits on one printed page) 
 A-2. Can this code be reused?  Should it be reusing something else? 
 A-3. Is there minimal use of global variables? Do all variables have minimum scope? 
 A-4. Are classes and functions that are doing related things grouped appropriately? (cohesion) 
 A-5. Is the code portable? (especially variable sizes, e.g., “int32” instead of “long”) 
 A-6. Are specific types used when possible? (e.g., “unsigned” and typedef, not just "int") 
 A-7. Are there any if/else structures nested more than two deep? (consecutive “else if” is OK) 
 A-8. Are there nested switch or case statements? (they should never be nested) 



Code Review Checklist Ver 1.01 Page 2 of 2 

EXCEPTION HANDLING 
 E-1. Are input parameters checked for proper values (sanity checking)?  
 E-2. Are error return codes/exceptions generated and passed back up to the calling function? 
 E-3. Are error return codes/exceptions handled by the calling function? 
 E-4. Are null pointers and negative numbers handled properly? 
 E-5. Do switch statements have a default clause used for error detection? 
 E-6. Are arrays checked for out of range indexing? Are pointers similarly checked? 
 E-7. Is garbage collection being done properly, especially for errors/exceptions?  
 E-8. Is there a chance of mathematical overflow/underflow? 
 E-9. Are error conditions checked and logged? Are the error messages/codes meaningful? 
 E-10. Would an error handling structure such as try/catch be useful? (depends upon language) 

TIMING 
 T-1. Is the worst case timing bounded? (no unbounded loops, no recursion) 
 T-2. Are there any race conditions? (especially multi-byte variables modified by an interrupt) 
 T-3. Is appropriate code thread safe and reentrant? 
 T-4. Are there any long-running ISRs? (no loops inside ISRs; should be half-page of code) 
 T-5. Are interrupts masked for more than a few clocks? 
 T-6. Is priority inversion avoided or handled by the RTOS? 
 T-7. Is the watchdog timer turned on? Is the watchdog kicked only if every task is executing? 
 T-8. Has code readability been sacrificed for unnecessary optimization? 

VALIDATION & TEST 
 V-1. Is the code easy to test? (how many paths are there through the code?) 
 V-2. Do unit tests have 100% branch coverage? (code should be written to make this easy) 
 V-3. Are the compilation and/or lint checks 100% warning-free? (are warnings enabled?) 
 V-4. Is special attention given to corner cases, boundaries, and negative test cases? 
 V-5. Does the code provide convenient ways to inject faulty conditions for testing? 
 V-6. Are all interfaces tested, including all exceptions? 
 V-7. Has the worst case resource use been validated? (stack space, memory allocation) 
 V-8. Are run-time assertions being used? Are assertion violations logged? 
 V-9. Is there commented out code (for testing) that should be removed? 

HARDWARE 
 H-1. Do I/O operations put the hardware in correct state? 
 H-2. Are min/max timing requirements met for the hardware interface? 
 H-3. Are you sure that multi-byte hardware registers can’t change during read/write? 
 H-4. Does the software ensure that the system resets to a well defined hardware system state? 
 H-5. Have brownout and power loss been handled? 
 H-6. Is the system correctly configured for entering/leaving sleep mode (e.g. timers)? 
 H-7. Have unused interrupt vectors been directed to an error handler? 
 H-8. Has care been taken to avoid EEPROM corruption? (e.g., power loss during write) 

 

This document is placed in the public domain. Credit to the original authors is appreciated. 


