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Abstract

Correctly specifying requirements for composite sys-
tems is essential to system safety, particularly in a dis-
tributed development environment. Goal-oriented re-
quirements engineering can be used to formally specify
system goals and decompose them into realizable sub-
goals for system components. However, an additional
aim of safety goal elaboration is to meet a goal cov-
erage strategy. In this paper we propose new tactics
for elaborating system safety goals across a composite
system. First, Indirect Control Path Analysis (ICPA) is
used to identify safety-related components and their re-
lationships to the parent goals. Then, goal coverage
strategies guide goal elaboration along indirect con-
trol paths identified by the ICPA. We demonstrate ap-
plicability in real safety critical embedded systems with
two case studies: a distributed elevator and a semiau-
tonomous automotive system.

1. Introduction
Research has shown that system safety, defined by
Leveson as “freedom from accidents or losses” [13],
is closely linked to requirements. One case study
of safety-critical software isolation revealed some in-
terfaces between safety-critical and non-safety-critical
components were missed during safety analysis [1].
Other research has linked safety-related software errors
and operational anomalies to latent requirements, mis-
understood requirements, and misunderstood interfaces
between the physical system and the software [15, 16].

System safety is difficult to define and ensure in a
distributed development environment. In the study of
software errors in spacecraft [15], miscommunication
between development teams was the primary cause of
safety-related interface faults. In the automotive indus-
try, vehicle subsystems are often developed by different
internal departments or external suppliers, often without

access to vehicle-level requirements or requirements for
other subsystems. In order to manage safety at the sub-
system level prior to system integration, system safety
requirements must be clearly defined for subsystems.

Unfortunately, decomposing non-functional require-
ments, also known as goals [6] or quality attributes [9,
2], is not straightforward. Some quantitative goals, such
as cost or performance, may be decomposed by allocat-
ing a fixed limit on each component in the functional
decomposition [17]. However, other goals may be qual-
itative or not easily represented as a sum of parts. For
example, an automotive safety goal might be “the ve-
hicle shall experience zero collisions.” Unlike perfor-
mance goals, where the concept of “time” is the same
for systems and subsystems, the concept of “collision”
in system safety does not have the same meaning at
lower levels of the system hierarchy.

This paper addresses the problem of elaborating sys-
tem safety goals across a composite system. Related
work in goal-oriented requirements engineering is de-
scribed in Section 2. The main contributions are: the
ICPA technique for identifying indirect control sources
of goal variables (Section 3), a definition ofgoal cover-
age strategyand classifications ofgoal assignmentand
goal scope(Section 4). Safety goals from a distributed
elevator system are used to demonstrate ICPA and the
goal coverage strategies. In Section 5, the full technique
is applied to a safety goal for a semiautonomous auto-
motive system. Section 6 contains a discussion of the
limitations of the approach, and future work. Finally,
conclusions are presented in Section 7.

2. Related work
Formal reasoning about specification of composite sys-
tems was introduced in [8], which proposed separate
specifications for describing decomposition of a system
into components and for describing composite system
behavior. Specifications of component behaviors were
derived by pruning (eliminating behaviors which vio-
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P current state ¬P false
❍P next state ●P previous state
♦P current or some future state �P some previous state
❑P current and all future states ■P all previous states
@P ●¬P ∧ P; true in current state, but not in previous state

P → Q P implies Q P ⇔ Q P iff Q
P ⇒ Q ❑(P → Q); P implies Q in all states

●■<T P true for duration T in previous state
●�<T P true at least once in duration T in previous state

Figure 1. Temporal logic operators

late some constraint) and decomposing constraints to
assign to agents.

A framework for specifying non-functional require-
ments in composite systems was proposed in [17]. It
presented a process-oriented approach that defined non-
functional requirements in terms of goals, links between
goals, methods for goal refinement, correlation rules,
and a labeling structure for linking goals to design deci-
sions. Similar to our approach to safety goal decompo-
sition, accuracy goals were decomposed by assigning
a separate goal to each component of the information
(e.g. report accuracy was divided by report types, re-
port sections, and function and input parameters).

Other approaches to specifying non-functional re-
quirements include intent specifications [14] and safety
patterns [3, 4]. Intent specifications provide hierarchi-
cal system abstraction that relies on means-to-ends rep-
resentation, rather than part-to-whole. Safety patterns
attempt to make formal specification more accessible to
non-formalists by mapping natural language represen-
tations of safety requirements to formal temporal logic
patterns. These approaches provide frameworks for ex-
pressing system safety goals, but do not offer tactics for
safety goal decomposition.

2.1. Goal-oriented requirements engineering

The approach proposed in this paper builds primar-
ily upon goal-oriented requirements engineering as de-
fined by the KAOS framework [6]. In goal-oriented re-
quirements elicitation, goals are constructed in tempo-
ral logic expressions [10]. Figure 1 lists the temporal
operators of KAOS used in this paper.

One advantage of using formal specifications is that
goal structure can guide elaboration. High-level goals
are refined into sub-goals byAND/ORreductions [18],
by applying formal refinement patterns for logical ex-
pressions [7], and by defining subgoals that are realiz-
able by particular agents [11]. Goal patterns also guide
operationalization into constraints and triggers for ac-
tions performed by agents in the system [12]. In ad-
dition, there are several techniques for identifying and
resolving conflicts between goals [20].

Additional tactics are needed for safety because ex-
isting tactics define subgoals that exactly meet the

parent goal without being more restrictive or redun-
dant [11]. Safety goals may require redundancy or re-
striction beyond exactly meeting the goal in order to
take into account component reliability.

3. Indirect Control Path Analysis (ICPA)
The aim of goal elaboration is to define subgoals that
meet the parent goal and are realizable by agents in the
system (i.e. can be operationalized) [11]. An additional
aim of safetygoal elaboration is to employ a goal cov-
erage strategy. To do this, it is first necessary to identify
all potential agents that may influence the safety goal.

This section presents a new technique for identify-
ing indirect control sources of goal variables called In-
direct Control Path Analysis (ICPA). ICPA is a top-
down search, similar to Fault Tree Analysis (FTA) [13].
Whereas FTA traces a top-level hazard to its lower-
level causal events, ICPA traces a top-level state vari-
able through the design to all components that influence
it. ICPA uses a table structure similar to Failure Modes
and Effects Analysis (FMEA) [13] to record these indi-
rect control relationships. Agents along the trace path
belong to the indirect control path and require further
analysis of their relationships to the root variable.

3.1. Identifying indirect control sources
In the KAOS framework, goal realizability is driven by
monitorability and controllability of system state vari-
ables [11]. A goal relation can be expressed asG(M,C),
whereG is the goal to be realized in the system,M is
the set of variables in the goal to be monitored, andC is
the set of variables in the goal to be controlled. A goal
is realizable by an agent ifM is a subset of the vari-
ables monitored by agentag andC is a subset of the
variables controlled by agentag, (M ⊆ Mon(ag) and
C ⊆ Ctrl(ag)).

In KAOS, only one agent may directly change the
value of a given state variable [11]. However, there
may be other agents in the system that influence how
those variables are controlled. Consider the following
goal that restricts movement in an overweight elevator:

Goal: Achieve[DriveStoppedWhenOverweight]
InformalDef: If the elevator weight exceeds the weight

threshold, then the drive shall be commanded to stop.
FormalDef: ∀ e: Elevator, dr: Drive, wt: WeightThreshold

● (e.weight > wt) ⇒ dr.Command = ‘STOP’

The drive controller directly changesdr.Command, but
it may do so based on input from an elevator schedul-
ing agent. The goal coverage strategy may require addi-
tional subgoals for these types of influential agents. Fur-
thermore, the notion of direct control in this paper does
not require strict controllability; more than one agent
may directly control a system state variable. In the same
elevator system, a hall button controller on each floor
may generate a hall call message on the network. It is
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Figure 2. Indirect control paths

necessary to apply goals that constrain these messages
to all agents that produce them.

The termsdirect controlandindirect controlare in-
troduced to distinguish between the ability to change
and the ability to influence change in variables. Fig-
ure 2 shows the direct and indirect control relationships
for an embedded system with sensing and actuation.

3.2. Defining indirect control relationships
Once indirect control sources have been identified, their
relationship to the original variable must be defined in
such a way that the general agent-based elaboration tac-
tic Introduce Actuation Goalfrom [11] can be applied.
If these relationships can be defined in the form (o = c)
or (Q ⇒ P ), then the goalG can be defined asG(o|c)
or G(P |Q). In other words, functions that relate the
variable in the parent goal to the indirect control vari-
ables must be defined.

For paths with a single branch, the indirect con-
trol relationship is defined between each pair of agents
along the path. Figure 3 shows indirect control paths
for two sensed values in a distributed elevator system.
A safety goal that restricts these sensed values might be:

Goal: Maintain[DoorClosedOrElevatorStopped]
InformalDef: At all times the door shall be closed or the

elevator shall be stopped.
FormalDef: ∀ do: Door, e: Elevator

❑ (do.IsClosed ∨ e.IsStopped)

Indirect control paths for the variables in this goal are
presented in Table 1. The control path ofe.IsStopped

includes the drive controller, via drive actuation, and
dispatch, which tells the drive controller where to go.

The relationship between sensed valuee.IsStopped

and drive actuation indicates that when the drive is
stopped the elevator will be stopped also:

dr.Value = ‘STOP’ ⇔ e.IsStopped (1)

However, a drive that is commanded to stop will do so
after some delay:

●■<MaxStopDelay dr.Command = ‘STOP’
⇒ dr.Value = ‘STOP’

(2)

DoorMotor Drive

Elevator.IsStopped

Door Controller Drive Controller
dr.Commanddm.Command

Door.IsClosed

Dispatch
DispatchRequestDispatchRequest

Door.
IsBlocked

Figure 3. Elevator indirect control paths

●�<MinStopDelay (¬(dr.Value = ‘STOP’)
∧ @(dr.Command = ‘STOP’)) ⇒ ¬(dr.Value = ‘STOP’)

(3)

Variables with multiple branches require relationship
among branches to be defined. Sometimes, the branches
represent independent control paths (i.e., one path tra-
versed at a time). In these situations each branch can
be evaluated as if it were a single branch path. In oth-
ers, the branches represent coordinated indirect control
between agents. In Figure 3, the door controller com-
manding the door motor to close the doors should even-
tually set thedo.IsClosed sensor to ‘TRUE’. However,
objects or passengers blocking the doors can physically
prevent the door from being closed:

● do.IsBlocked ⇒ ¬do.IsClosed (4)

The relationship between blocking agents and the
door motor is also constrained by a related safety goal
that requires a door reversal if the door is blocked. As
a design choice for this system, this safety goal is given
priority overMaintain[DoorClosedOrElevatorStopped]. The
resulting indirect control relationships are:

●■<MaxCloseDelay (¬do.IsBlocked
∧ (dm.Command = ‘CLOSE’)) ⇒ do.IsClosed

(5)

●�<MinCloseDelay (¬do.IsBlocked
∧ ¬do.IsClosed ∧ @(dm.Command = ‘CLOSE’))
⇒ ¬do.IsClosed

(6)

ICPA is a structured way to organize potential
sources of indirect control and their relationships. The
results of the ICPA will be applied with a goal coverage
strategy to define subgoals for safety-related agents.

4. Goal coverage strategies
A goal coverage strategyis a plan for allocating sub-
goals to ensure that a high-level goal is met. Each strat-
egy is defined bygoal assignmentandgoal scope.

4.1. Goal assignment
Goal assignment defines which indirect control sources
have subgoals and how those subgoals relate to each
other. It may be driven by physical limitations of the
system (e.g., actuation delays described in Section 3.2).



Table 1. ICPA for goal Maintain[DoorClosedOrElevatorStopped]
Goal: Maintain[DoorClosedOrElevatorStopped] ∀ do: Door, e: Elevator; ❑ (do.IsClosed ∨ e.IsStopped)
Variable Physical Software Indirect Control Relationships

do.IsClosed DoorMotor (dm) dm.Command ●■<MaxCloseDelay (¬do.IsBlocked
Sensed Actuated ∧ (dm.Command = ‘CLOSE’)) ⇒ do.IsClosed

Passenger (p) do.IsBlocked ●�<MinCloseDelay (¬do.IsBlocked ∧ ¬do.IsClosed
User ∧ @(dm.Command = ‘CLOSE’)) ⇒ ¬do.IsClosed

● do.IsBlocked ⇒ dm.Command = ‘OPEN’
● do.IsBlocked ⇒ ¬do.IsClosed

e.IsStopped Drive (dr) dr.Command dr.Value = ‘STOP’ ⇔ e.IsStopped
Sensed Actuated ●■<MaxStopDelay dr.Command = ‘STOP’ ⇒ dr.Value = ‘STOP’

●�<MinStopDelay (¬(dr.Value = ‘STOP’)
∧ @(dr.Command = ‘STOP’)) ⇒ ¬(dr.Value = ‘STOP’)

It may also be influenced by possible loss of monitora-
bility and controllability by agents in the system. The
three categories of goal assignment presented in this
section aresingle responsibility, redundant responsibil-
ity, andcoordinated responsibility.
4.1.1. Single responsibility. In the base case for gen-
eral goal elaboration, the safety goal is met by assign-
ing one or more subgoals to a single agent. For sys-
tem safety, a single responsibility goal assignment fa-
cilitates isolation of safety-critical behaviors from other
non-critical components. It also allows more rigorous
(and expensive) development processes to be applied to
only those isolated, fewer agents. The agent responsible
for meeting the goal may be responsible for other, non-
critical functionality. Alternately, an agent’s behaviors
may be limited to the safety goal. Consider the follow-
ing safety goal that restricts elevator position relative to
the end of the hoistway:
Goal: Maintain[ElevatorBelowHoistwayUpperLimit]

InformalDef: The top of the elevator shall not exceed the
upper limit of the hoistway.

FormalDef: ∀ e: Elevator, h: Hoistway
❑ (e.Top ≤ h.UpperLimit)

This goal could be met by requiring the drive controller
to stop the elevator before the hoistway limit is reached:
Goal: Achieve[StopBeforeHoistwayUpperLimit]

InformalDef: If the elevator nears the upper hoistway
limit, then the drive shall be stopped.

FormalDef: ∀ e: Elevator, dr: Drive
●(e.Top ≥ dr.UpperStoppingPoint)
⇒ dr.Command = ‘STOP’)

Another solution is to have an emergency brake, trig-
gered by a physical switch or software monitor, stop the
elevator before the end of the hoistway:
Goal: Achieve[EmergencyStopBeforeHoistwayUpperLimit]

InformalDef: If the elevator nears the upper hoistway
limit, then the emergencybrake shall be applied.

FormalDef: ∀ e: Elevator, eb: Emergency Brake
●(e.Top ≥ eb.UpperTriggerPoint)
⇒ eb.Command = ‘APPLY’)

In this example, the drive controller is responsible
for passenger delivery and safety, whereas the emer-
gency brake is responsible only for passenger safety.

4.1.2. Redundant responsibility. Functional redun-
dancy is a common strategy for fault tolerance in which
different agents perform the same set of required func-
tions [13]. This redundant functionality may be iden-
tical, such as duplicate networks for tolerating dropped
messages, or different, such as a backup that provides a
minimal set of functions when the primary fails.

Goal redundancy is achieved by assigning primary
responsibility for a goal to one agent; secondary, to one
or more others. If at least one of the agents meets its
subgoal, the parent goal will be met. If the subgoals
vary in restriction, the agent with primary responsibil-
ity for the goal has the most restrictive subgoals and
agents with secondary responsibility have less restric-
tive subgoals (i.e., normal behavior has a greater safety
margin than emergency backup behavior). Goal scope
is discussed in more detail in Section 4.2.

In the elevator system, the motion controller relia-
bility may be too low or too unmeasurable to ensure
the safety goal is met, particularly for complex software
control. Physical component reliability, such as a phys-
ical emergency brake trigger, is better known. However,
relying on the emergency brake alone to meet the safety
goal is also undesirable because of equipment wear and
harm to passengers with sudden stops. By assigning
primary responsibility to the elevator drive controller
and secondary responsibility to the emergency brake,
the safety goal may be reliably met while largely avoid-
ing application of the physical emergency brake.

4.1.3. Shared responsibility.Sometimes a safety
goal may require coordination among agents, or physi-
cal system dynamics may limit the extent to which vari-
ables can be controlled. In shared responsibility, two or
more agents are assigned subgoals that must all be met
in order to meet the parent goal.

The goal Maintain[DoorClosedOrElevatorStopped] de-
fined in Section 3.2 cannot be assigned to the drive con-
troller or door controller alone because of physical actu-
ation delays. Suppose the door controller alone is given
responsibility for the goal with the subgoal:



●�<MaxCloseDelay(¬e.IsStopped ∧ ¬ do.IsBlocked)
⇒ dm.Command = ‘CLOSE’

(7)

Operationalization of this goal prohibits opening the
door while the elevator is in motion and prescribes clos-
ing the door if the elevator moves. If the drive controller
activates the drive motorwhile the doors are already
open, the safety goal will be violated while the door
controller is closing the doors. Another subgoal is re-
quired to prevent the drive controller from moving the
elevator while the doors are open:

●�<MaxStopDelay ¬do.IsClosed
⇒ dr.Command = ‘STOP’))

(8)

Even though the behavior of both controllers is re-
stricted, the goal may be violated when the elevator is
stopped and the doors are closed, if the door controller
attempts to open the doors at the same time as the drive
controller attempts to move the elevator. By including
both the sensed value of the monitored variable and its
indirect control source, the two controllers may be able
to avoid violating the parent goal. The new subgoals for
the door controller and drive controller are:

●�<MaxCloseDelay(¬e.IsStopped ∧ ¬ do.IsBlocked
∨ ¬(dr.Command = ‘STOP’))
⇒ dm.Command = ‘CLOSE’

(9)

●�<MaxStopDelay (¬do.IsClosed
∨ ¬(dm.Command = ‘CLOSE’))
⇒ dr.Command = ‘STOP’

(10)

The door controller monitors both elevator motion and
drive commands. The drive controller monitors both the
door closed sensor and the drive actuator commands. If
the physical actuation delays are much smaller than the
network message delays and there is atomic broadcast
of system state in the composite system, each controller
will be able to cancel its own actuation command when
it observes the command of the other, before they have
actually begun to open the doors or move the drive.

Sometimes physical actuation and network delays
are insufficient for ensuring the goal is met. Aninter-
lock is a common solution for enforcing sequencing in
coordinated actions [13]. Suppose a safety goal coordi-
nating two actions takes the form❑(A∨B), whereA is
indirectly controlled by agentagA andB, byagB. The
basic patterns of the primary subgoals are:

●¬B ⇒ A (11)

●¬A ⇒ B (12)

Before negatingA, agA must set its own interlock vari-
ableLA and check thatagB’s interlock variableLB is
not set. Basic patterns of interlock subgoals are:

●(¬LA ∨ LB) ⇒ A (13)

●(¬LB ∨ LA) ⇒ B (14)

Now supposeA andB have actuation delays, where
A1 causesA to be set after some delay, andA2 causes
A to be unset after some delay. The indirect control
relationships for setting and unsettingA are defined as:

●■<MaxDelayA A1 ⇒ A (15)

●�<MinDelayA (@A1 ∧ ¬A) ⇒ ¬A (16)

●■<MaxDelay¬A A2 ⇒ ¬A (17)

●�<MinDelay¬A (@A2 ∧ A) ⇒ A (18)

❑¬(A1 ∧ A2) (19)

If all variables shared between agents also have com-
munication delays, the new subgoals foragA are:

●�<MinComDelay(¬B ∨ B2) ⇒ A1 ∧ ¬A2 (20)

●�<MinComDelay (¬LA ∨ LB) ⇒ A1 ∧ ¬A2 (21)

❑(MinComDelay < MaxDelay¬A) (22)

The subgoals foragB are analogous.
A lockout coordinates enforcement of safety goals

by prohibiting an action from occurring [13]. For ex-
ample, a bus guardian is used to prevent faulty nodes
on a network from interfering with communication by
others. In time-triggered networks a bus guardian will
enable transmission access only during the node’s allot-
ted time slot [19]. Suppose a safety goal takes the form
●�<T D ⇒ ¬C, whereC is indirectly controlled by
agentagA andD is observed by agentagA. The con-
trol relationship of C byagA is defined by:

●A ⇒ C (23)

●¬A ⇒ ¬C (24)

and the safety goal for agentagA is:

●�<T D ⇒ ¬A (25)

If a lockout agentagB is added to the system to pre-
vent agentagA from violating the safety goal, the new
shared indirect control relationship would be:

●(A ∧ B) ⇒ C (26)

●(¬A ∨ ¬B) ⇒ ¬C (27)

The safety goal for agentsagA andagB would be:

●�<T D ⇒ ¬A (28)

●�<T D ⇒ ¬B (29)

4.2. Goal scope

Goal scope defines how closely the safety subgoals
meet the system safety goal. It may be possible for
agents to meet the original safety goal without restric-
tion. However, it may sometimes be necessary or desir-
able to assign subgoals that are more restrictive than the
original safety goal.



4.2.1. Nonrestrictive. Nonrestrictive subgoals meet
the parent goal with no additional limitations on
functional behavior. This is the base case where
the system-level goal is fully realizable. Sub-
goal Achieve[EmergencyStopBeforeHoistwayUpperLimit]

from 4.1.1 is nonrestrictive if emergency brake dy-
namics ensure the elevator will stop at the very end of
the hoistway when the emergency brake is triggered,
allowing full use of the hoistway:

e.Top = eb.StoppingDistance + eb.UpperTriggerPoint (30)

h.UpperLimit = eb.StoppingDistance
+ eb.UpperTriggerPoint

(31)

4.2.2. Restrictive. A restrictive subgoal meets the
parent goal but places additional limitations on system
functionality. The most common restrictive subgoal is
achieved by OR reductions [18]. A goal of the form
❑(A ∨ B) is always met if subgoalA is met (A is al-
ways true). A is more restrictive than the parent goal
because it excludes some functional behaviors that are
non-hazardous: whenA is false andB is true. Restric-
tive subgoals, which are usually less complex than the
parent goal and possibly easier to implement correctly
and analyze, may be necessary if variables are not con-
trollable, or if control delays are great.

A subgoal may also be made restrictive by employ-
ing a safety margin, a hazard reduction technique for
handling variability in failure rates of components [13].
For example, in the elevator system the emergency
brake trigger point could be placed far enough away
from the hoistway limit so that the elevator stops some
distance before the hoistway limit, rather than at the end
of the hoistway limit. The elevator would no longer
have full use of the hoistway, but the safety goal could
be maintained if the stopping distance of the emergency
brake varies. If a safety goal has the form❑ (A ≤ B),
then a subgoal with a safety marginC would be:

❑ (A ≤ (B - C)) (32)

It may not always be possible to restrict subgoals if
the restrictions make the final product unusable. The
goalMaintain[ElevatorBelowHoistwayUpperLimit] can always
be met if the elevator is always stopped, but this trivial
solution prevents functionality required in an elevator.

5. Example: automotive acceleration
This section demonstrates how ICPA and goal coverage
strategies are combined to generate subgoals for indi-
rect control agents of a parent goal. Figure 4 shows in-
direct control paths for vehicle acceleration in a semiau-
tonomous automotive vehicle. Two features, Adaptive
Cruise Control (ACC) and Collision Avoidance (CA),
indirectly control vehicle motion via brake and throt-
tle actuation. ACC commands the vehicle to a speed

Throttle Brake

Vehicle.Acceleration

Arbiter

Adaptive
Cruise Control

Collision
AvoidanceDriver

AccelRequestAccelRequest

t.Command b.Command

BrakePedal
ThrottlePedal

Figure 4. Indirect control of acceleration

set by the driver, or to a set following distance behind
a slower lead vehicle. CA detects objects in the vehi-
cle path and stops the vehicle to avoid them. A cen-
tral arbiter chooses values fort.Command andb.Command

based on the acceleration requests and the driver’s brake
and throttle pedal signals.

ICPA and goal coverage strategies have been applied
to this system’s safety goals. Due to space limitations,
this section will focus on just one of these goals:

Goal: Achieve[AutoAccelBelowThreshold]
InformalDef: Vehicle acceleration caused by autonomous

vehicle control shall not exceed the threshold.
FormalDef: ∀ b: Brake, t:Throttle, v: Vehicle,

at:AccelThreshold
● (IsSubsystem(b.Source) ∨ IsSubsystem(t.Source))
⇒ v.Acceleration < at

The intent is to prevent features from startling the driver
by causing an unusually fast acceleration.

The ICPA for Achieve[AutoAccelBelowThreshold] is
listed in Table 2. AccelFromThrottle() and AccelFrom-

Brake() describe the acceleration caused by throttle and
brake (brake acceleration is negative or zero).BrakeFro-

mAccel() and ThrottleFromAccel() describe the brake and
throttle components of an acceleration value.

Vehicle acceleration is indirectly controlled by coor-
dinated brake and throttle actuation, defined by:

v.Acceleration = AccelFromThrottle(t.Value)
+ AccelFromBrake(b.Value)

(33)

Substituting (33) into the parent goal results in:

●(IsSubsystem(b.Source) ∨ IsSubsystem(t.Source))
⇒ (AccelFromThrottle(t.Value)
+ AccelFromBrake(b.Value)) < at

(34)

This subgoal is not yet realizable because brake and
throttle actuation are controlled indirectly by actuation
commands. However, this vehicle employs electronic
brake and electronic throttle with low actuation delays
relative to communication and computation speed, such
that the relationships between commands from the ar-
biter and actuation are defined by the simple equations:



Table 2. ICPA for goal Achieve[AutoAccelBelowThreshold]
Goal: Achieve[AutoAccelBelowThreshold] b: Brake, t:Throttle, v: Vehicle, at:AccelThreshold
● (IsSubsystem(b.Source) ∨ IsSubsystem(t.Source)) ⇒ v.Acceleration < at
Variable Physical Software Indirect Control Relationships

v.Acceleration Brake (b) b.Command v.Acceleration = AccelFromThrottle(t.Value) + AccelFromBrake(b.Value)
Sensed Actuated b.Value = b.Command.Value

AccelRequest (ar) b.Command.Value = BrakeFromAccel(ar.Value)
ar.Value = AccelFromThrottle(ThrottleFromAccel(ar.Value))

+ AccelFromBrake(BrakeFromAccel(ar.Value))
BrakePedal (bp) b.Command.Value = BrakeFromPedal(bp.Value)

Throttle (t) t.Command v.Acceleration = AccelFromThrottle(t.Value) + AccelFromBrake(b.Value)
Actuated t.Value = t.Command.Value

AccelRequest (ar) t.Command.Value = ThrottleFromAccel(ar.Value)
ar.Value = AccelFromThrottle(ThrottleFromAccel(ar.Value))

+ AccelFromBrake(BrakeFromAccel(ar.Value))
ThrottlePedal (tp) t.Command.Value = ThrottleFromPedal(tp.Value)

b.Source Brake (b) b.Command b.Source = b.Command.Source
Computed Actuated AccelRequest (ar) b.Command.Source = ar.Source

(b.Source = ar.Source) ∨ (t.Source = ar.Source)
⇒ b.Source = t.Source = ar.Source ∧ b.Value = BrakeFromAccel(ar.Value)
∧ t.Value = ThrottleFromAccel(ar.Value)

BrakePedal (bp) b.Command.Source = bp.Source
t.Source Throttle (t) t.Command t.Source = t.Command.Source
Computed Actuated AccelRequest (ar) t.Command.Source = ar.Source

(b.Source = ar.Source) ∨ (t.Source = ar.Source)
⇒ b.Source = t.Source = ar.Source ∧ b.Value = BrakeFromAccel(ar.Value)
∧ t.Value = ThrottleFromAccel(ar.Value)

ThrottlePedal (tp) t.Command.Source = tp.Source

b.Value = b.Command.Value (35)

b.Source = b.Command.Source (36)

t.Value = t.Command.Value (37)

t.Source = t.Command.Source (38)

Substituting relationships (35)-(38) into to subgoal
(34) gives the following subgoal for the arbiter:

●(IsSubsystem(b.Command.Source)
∨ IsSubsystem(t.Command.Source))
⇒ (AccelFromThrottle(t.Command.Value)
+ AccelFromBrake(b.Command.Value)) < at

(39)

A single responsibility goal assignment can be as-
signed to the arbiter alone. But, this would make the
arbiter a single point of failure for the goal. The arbiter
chooses brake and throttle commands based on input
from the driver brake and throttle pedals, and from ACC
and CA acceleration requests. Another safety goal, de-
signed to prevent unexpected feature interactions [5],
ensures one feature at a time controls both the throttle
command and the brake command:

(b.Source = ar.Source) ∨ (t.Source = ar.Source)
⇒ b.Source = t.Source = ar.Source
∧ b.Value = BrakeFromAccel(ar.Value)
∧ t.Value = ThrottleFromAccel(ar.Value)

(40)

The relationships between a feature (ACC or CA) and
the brake and throttle commands are defined by:

b.Command.Value = BrakeFromAccel(ar.Value) (41)

b.Command.Source = ar.Source (42)

t.Command.Value = ThrottleFromAccel(ar.Value) (43)

t.Command.Source = ar.Source (44)
ar. Value =

AccelFromThrottle(ThrottleFromAccel(ar.Value))
+ AccelFromBrake(BrakeFromAccel(ar.Value))

(45)

To achieve the redundant responsibility goal assign-
ment, relationships (40)-(45) are substituted into (39) to
get the following subgoal for both ACC and CA:

ar.Value < at (46)

This can be made more restrictive by using a smaller
acceleration threshold than that of the original goal.

6. Discussion and future work
Systematic analysis and record-keeping is vital to sys-
tem safety. Although a set of subgoals may meet the
parent goal, it is important to record why a particular set
of subgoals is chosen and what process was followed to
choose it. ICPA can facilitate identification of safety-
critical agents and their relationships. Goal coverage
strategies guide subgoal choice for these agents.

A limitation of the approach is that decompositions
based on incorrect or incomplete system goals or speci-
fications will be incorrect as well. As development pro-
gresses, the safety goals and their subgoals will have



to be reanalyzed. However, this is also true of require-
ments engineering and hazard analysis in general. Fi-
nally, ICPA is not intended to be an automatable syn-
thesis approach. It provides guidance for choosing sub-
goals but will not decide which subgoals are “best.”

A future automatable step is formal verification of
the subgoals. State space explosion is a concern for ver-
ification of software systems, but the set of safety goals
is much smaller than the set of all functional behaviors
of the system. Future work will also include analysis of
scalability of the technique, in general.

7. Conclusion
In this paper we introduce Indirect Control Path Analy-
sis as an approach to elaborating system safety goals in
composite systems based on goal-oriented requirements
engineering. Critical agents are identified by tracing in-
direct control paths from parent goal variables. Rela-
tionships between indirect control sources and parent
goal variables are cataloged to make critical assump-
tions about the safety subgoals explicit. Goal coverage
strategies guide elaboration of subgoals and allocation
to agents along the indirect control paths, and focus on
defining subgoals that meet the system goalandachieve
hazard reduction. We demonstrate that the techniques
can be applied to two different safety-critical system do-
mains: a distributed elevator and an automotive vehicle.

The importance of these contributions is twofold.
First, analysis of potential subgoal agents is structured
and documented. Second, the goal coverage strategy
achieved by the chosen subgoals is deliberate and ex-
plicit. This not only facilitates correct implementation
and analysis of safety throughout the design process,
but also contributes to the documented safety case.
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