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Abstract   A significant challenge to deploying mission- and safety-critical auton-
omous systems is the difficulty of creating a credible assurance argument. This 
paper collects lessons learned from having observed both credible and faulty as-
surance argumentation attempts, with a primary emphasis on autonomous ground 
vehicle safety cases. Various common argumentation approaches are described, 
including conformance to a non-autonomy safety standard, proven in use, field 
testing, simulation, and formal verification. Of particular note are argumentation 
faults and anti-patterns that have shown up in numerous safety cases that we have 
encountered. These observations can help both designers and auditors detect 
common mistakes in safety argumentation for autonomous systems. 

1 Introduction 

Ensuring that an autonomous vehicle will behave safely on public roads comes 
with a set of unique challenges. Established safety standards cover some, but not 
all aspects of vehicle operation. The use of machine learning technology generally 
results in aspects of the system for which there is no traditional design, making 
use of traditional V-model based safety methods problematic. Moreover, brute 
force testing approaches struggle to cope with ensuring the low failure rates re-
quired for critical applications. 

Even though safety practices are still evolving to address the unique issues pre-
sented by autonomy, such systems are already being built and deployed on public 
roads. Autonomous systems are also poised for deployment in public airspace 
(e.g. drones), medical applications (e.g. robotic surgery), and other critical do-
mains (e.g. cargo ships). Because of the pervasive secrecy of the autonomous ve-
hicle market, it is difficult to say how robust the safety cases for such vehicles 
actually are – or even if a credible safety case has been created at all for any par-
ticular vehicle that is being deployed. 

As the technology matures it will be imperative to establish standardized ap-
proaches to ensuring the safety of such systems. This paper proposes a set of pat-
terns and anti-patterns for autonomous ground vehicle safety arguments that might 
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be used within an autonomous system safety case. While our emphasis is on au-
tonomous ground vehicles, we expect a useful degree of overlap with autonomous 
system safety for other domains. This is intended as a starting point that should 
evolve over time as experienced is gained with how autonomous systems and au-
tonomy safety arguments fail in practice. 

1.1 Heterogeneous safety arguments 

A safety case is “a structured argument, supported by a body of evidence that 
provides a compelling, comprehensible and valid case that a system is safe for a 
given application in a given operating environment” (UK Ministry of Defence 
2017, page 26). For the purposes of this paper we assume that an autonomous 
ground vehicle designer wishes to produce a credible safety case, and in doing so 
needs to select argumentation strategies. 

In practice, there are many ways to attempt to argue safety, including ap-
proaches such as: following a prescribed set of engineering practices, brute force 
testing, and claiming that something has been “proven in use.” Whatever the strat-
egy, it is important to use a methodical approach to documenting the arguments 
and evidence to ensure that the safety case is valid (Kelly 1998). 

A common strategy is to argue that a system is sufficiently safe because an ac-
cepted applicable safety standard has been followed, implicitly adopting the un-
derlying safety argument strategy inherent in the standard. However, because both 
the technology and safety strategies for autonomous systems are still evolving, 
there is no one-size-fits-all safety standard currently published. Therefore, it 
seems likely that a more explicit argumentation strategy will be required for these 
systems. 

Because autonomous vehicles are a composite of comparatively mature tech-
nology (e.g. underlying conventional vehicle control systems) and novel technolo-
gy (e.g. machine learning), it seems likely that safety arguments will be heteroge-
neous in nature. By this, we mean that different portions of the safety argument 
will likely take fundamentally different argumentation approaches for different 
system functions and components. 

Consider an autonomy kit that has been added to a conventional consumer-
grade automobile. The safety of the underlying production ground vehicle systems 
can be – and hopefully has been – argued via conformance to ISO 26262 (ISO 
2011). However, some key aspects of autonomy functions are beyond the scope of 
that standard. Moreover, some assumptions made in determining conformance 
might be violated by the addition of autonomy, such as the availability of a human 
driver to exercise vehicle control in the event of a malfunction. 

Some additional functionality might be argued safe via conformance to a dif-
ferent standard, such as a draft SOTIF standard (ISO 2018). However, making a 
case for the safety of higher-level autonomy functions, especially perception, is 
likely to require additional argumentation beyond currently available standards, 
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potentially encompassing approaches ranging from large testing campaigns to 
formal proofs of correctness. 

There will be economic and time-to-market pressure to re-use safety arguments 
from other domains that have already been set up for components incorporated 
into autonomous systems. For example, industrial process equipment might be 
repurposed for autonomous ground vehicles, and automotive equipment might be 
repurposed for autonomous aircraft. In the end, an autonomous vehicle system-
level safety argument seems likely to be an amalgamation of different safety as-
surance approaches for various functions, encompassing multiple safety standards 
as well as various techniques for areas in which mature standards are not yet 
available. We call this approach a heterogeneous safety argument. 

1.2 Support for assessment 

While the contents of a safety case likely differs for each system being designed, 
there needs to be a consistent way to evaluate the sufficiency of the argumentation 
and supporting evidence. While ultimately there is no substitute for an experi-
enced and capable assessor, it can be helpful to support the assessment with a 
foundation of rules of thumb, lessons learned, and sets of good as well as bad 
practices to improve assessment consistency and reduce errors of omission in the 
assessment process. 

To that end, this paper proposes a set of safety argument approaches and anti-
patterns. A number of general approaches that we have seen used in practice or 
proposed for use in autonomous ground vehicles are briefly described. More im-
portantly, we discuss the typical threats to validity we see in safety cases that have 
attempted each argumentation pattern. 

While the emphasis in this discussion is on supporting assessment, the material 
should be beneficial to both developers (to avoid making argument mistakes in the 
first place) and assessors (to detect sometimes subtle, but common fallacies in 
arguments). We fully expect that this list can benefit from incorporating lessons 
learned as the technology matures, and intend it as a starting point to be built up-
on. Rather than attempting to set forth a library of formalized safety argument 
patterns, we concentrate on the main ideas and pitfalls behind typical argumenta-
tion strategies. 

1.3 Previous work 

Bishop and Bloomfield (1998) define a safety case as “a documented body of evi-
dence that provides a convincing and valid argument that a system is adequately 
safe for a given application in a given environment.” They argue that a safety case 
has four main elements (a claim, evidence, argument, and inference) and that each 
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element can be categorized by type. For example, the argument may be determin-
istic, probabilistic, or qualitative; and evidence may be design, process, testing, or 
historic experience. They also explain that the safety case for a safety claim about 
a system can be decomposed into safety cases for the supporting sub-claims, im-
plying that each sub-claim might be supported by a different type of argument. 

Kelly (1998) proposed the Goal Structuring Notation (GSN) approach to doc-
umenting safety arguments. A GSN community standard defines standardized 
terminology (ACWG 2018). Additionally, the Object Management Group has 
published the Structured Assurance Case Metamodel (SACM) for representing 
assurance cases (OMG 2018).  

Rushby (2015) discusses inductive vs. deductive arguments in assurance cases 
as well as the role of confidence claims. An inductive argument means that the 
conjunction of sub-claims strongly suggests the claim. In contrast, a deductive 
argumentation approach means that the conjunction of sub-claims implies (or 
proves) the claim. A problem with inductive reasoning steps is that “there is no 
effective way to estimate the size of the gap in our reasoning.” He recommends 
that inductive arguments should be made deductive by explicitly stating or factor-
ing out assumptions. In other words, a claim that is merely implied can be con-
verted to a claim that is proven with the addition of an explicitly stated assumption 
required for the relevant proof to hold true. This has the virtue of making explicit 
all the assumptions required for a safety case to be valid.  

Goodenough et al. (2015) propose using an eliminative induction argumenta-
tion approach as a way to assess confidence in an assurance case argument based 
on inductive reasoning. Such an approach augments an inductive argumentation 
structure with sub-claims and evidence to demonstrate that various potential ar-
gumentation flaws are not present. In particular, they propose using defeaters, 
which are explicit statements of doubt regarding a particular inductive argument. 
They propose specific types of defeaters to attack claims (via looking for failure 
modes or possible counter-examples), undermine evidence (via looking for rea-
sons the evidence might be invalid), and undercut inference rules (via looking for 
conditions under which the inference rule is not adequate). Pitfalls presented in 
this paper can be considered to be defeaters for various aspects of a safety argu-
ment. 

Catapult (2017) presents GSN-notation safety cases for highway and urban pi-
lot autonomous vehicle use cases that address road etiquette, operational envelope 
enforcement, and other functionality. That analysis leads to a number of observa-
tions including a potential need for roadway infrastructure support and a need to 
deal with residual risks after all reasonable risk mitigation approaches have been 
applied.  

Wang et al. (2017) present a confidence assessment framework for safety ar-
guments. They assume that the argument is valid and deal primarily with manag-
ing the confidence in evidence. 

Burton et al. (2017) proposed a top level GSN-based safety case structure for 
autonomous vehicles, with follow up work that examines pedestrian detection 
(Gauerhof et al. 2018). 
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Graydon et al. (2012) propose publishing a catalogue of acceptable argumenta-
tion patterns. We extend this idea by proposing publishing a catalogue of com-
monly attempted but invalid argumentation patterns. 

2 Safety argumentation strategies 

We envision that safety cases for autonomous vehicles will be based upon a heter-
ogeneous collection of safety arguments using different strategies. Assessing such 
safety cases could use an approach that initially consults a catalogue of strategies 
and accompanying argumentation patterns. That catalogue would capture previ-
ously analysed argument patterns, types of evidence that are acceptable for each 
argument pattern, and argumentation pitfalls observed in previous assessments. 

Over time, such a catalogue could capture experience from lessons learned in 
assessments and field experience. The assessment process could then mature or-
ganically to one in which established and accepted patterns are well understood 
and documented, so there is a relatively stable baseline of expectations and as-
sessment criteria for common patterns. New technological advances and architec-
ture concepts would still require additions to the catalogue, and so continual 
growth and revision of the catalogue would need to be a part of any such ap-
proach. It is expected that any single system will require a combination of argu-
mentation approaches. It is understood that standards can evolve slowly. Setting 
up such a catalogue might be done via a periodically updated assessment work aid 
that does not require a new parent standard document version to incorporate les-
sons learned. 

We provide a starting point for such a process by listing argument strategies 
and pitfalls that we have observed in our work with autonomous ground vehicles. 
In analysing these patterns, we assume a common architectural approach of taking 
an existing production vehicle and adding an autonomy kit as an overlay. Such an 
overlay could completely replace a human vehicle driver (autonomous system), or 
require some aspects of human participation in vehicle operation (semi-
autonomous system). Other approaches, such as bespoke design of complete au-
tonomous vehicles, are likely to have many similarities, but also some differences 
that are beyond the scope of this paper. 

The following sections describe general argumentation strategies as well as a 
number of anti-patterns, pitfalls, or other faults that we have observed in practice. 
A later section summarizes a collection of special cases and other observations 
beyond the primary set of strategies discussed. 
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2.1 Conformance to an existing standard 

In this argumentation approach, a system component is constructed in accordance 
with a recognized, public safety standard, such as ISO 26262. Ideally, that com-
ponent is independently assessed for conformance to the safety standard. Based on 
conformance, an argument can be made that the component safely carries out its 
intended function to an appropriate degree (e.g. to a specific Automotive Safety 
Integrity Level, or ASIL). Ensuring that conformance actually results in the de-
sired system safety properties might require specific safety argumentation, and is 
subject to a number of additional pitfalls beyond those discussed herein (see 
Graydon et al. 2012). 

This pattern can (and for the most part probably should) be used for the con-
ventional software portions of the autonomy system. Moreover, this argumenta-
tion pattern can be used with a Doer/Checker pair (also called a monitor/actuator 
pair or a safety bag) to create a safety envelope around some types of autonomy 
functions (Koopman and Wagner 2016). The general idea is that a capable “Doer” 
satisfies the functional requirements of a system, potentially using difficult-to-
validate technology such as machine learning. For example, the Doer might be a 
path planner that uses non-deterministic algorithms, heuristics or even machine-
learning based approaches to find an optimal path. A “Checker” is designed with 
more conventional software techniques and used to enforce safety requirements. 
The Checker generally only checks for violations of safe operating envelopes and 
violations of assumptions made in the safety argument at run time. For a path 
planner example, the Checker simply needs to make sure that whatever plan has 
been selected does not intersect known obstacles. (We assume for this example 
that obstacle detection is a separate function that is dealt with outside the scope of 
the path planner safety argumentation.) Ideally the Checker has been designed to a 
high ASIL and is entirely responsible for ensuring safe operation of the function. 

Assuming that the Checker can completely enforce safety, an appropriate safety 
argument could be that the Doer is not safety-relevant because the Checker (1) has 
a complete ability to ensure safety, and (2) has been developed to an appropriate 
integrity level in conformance with a functional safety standard. There are a num-
ber of variations to this approach that ultimately result in a “safety relevant” por-
tion of the system being verified, and the remainder of the system not being veri-
fied with the same level of rigour. We use the Doer/Checker approach to illustrate 
issues that apply more generally to other types of systems with identified safety 
relevant portions. 

2.1.1 Command override anti-pattern 

A common pitfall when identifying safety relevant portions of a system is over-
looking the safety relevance of sensors, actuators, software, or some other portion 
of a system. A common example is creating a system that permits the Doer to per-
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form a command override of the Checker. (In other words, the designers think 
they are building a Doer/Checker pattern in which only the Checker is safety rele-
vant, but in fact the Doer is safety relevant due to its ability to override the Check-
er’s functionality.) 

The usual claim being made is that a safety layer will prevent any malfunction 
of an autonomy layer from creating a mishap. This claim generally involves argu-
ing that an autonomy failure will activate a safing function in the safety layer, and 
that an attempt by the autonomy to do something unsafe will be prevented. A typi-
cal (deficient) scheme is to have autonomy failure detected via some sort of self-
test combined with the safety layer monitoring an autonomy layer heartbeat sig-
nal. It is further argued that the safety layer is designed in conformance with a 
suitable functional safety standard, and therefore acts as a safety-rated Checker as 
part of a Doer/Checker pair. 

The flaw in that safety argumentation approach is that the autonomy layer has 
been presumed to fail silent via a combination of self-diagnosed fault detection 
and lack of heartbeat. However, self-diagnosis and heartbeat detection methods 
provide only partial fault detection (Hammett 2001). For example, there is always 
the possibility that the checking function itself has been compromised by a fault 
that leads to false negatives of checks for incorrect functionality. As a simple ex-
ample, a heartbeat signal might be generated by a timer interrupt in the autonomy 
computer that continues to function even if significant portions of the autonomy 
software have crashed or are generating incorrect results. In general, such an ar-
chitectural pattern is unsafe because it permits a non-silent failure in the autonomy 
layer to issue an unsafe vehicle trajectory command that overrides the safety layer. 
Fixing this fault requires making the autonomy layer safety-critical, which defeats 
a primary purpose of using a Doer/Checker architecture. 

In practice, safety layer logic is usually less permissive than the autonomy lay-
er. By less permissive, we mean that it under-approximates the safe state space of 
the system in exchange for simplifying computation (Machin et al. 2018). As a 
practical example, the safety layer might leave a larger spatial buffer area around 
obstacles to simplify computations, resulting in a longer total path length for the 
vehicle or even denying the vehicle entry into situations such as a tight alleyway 
that is only slightly larger than the vehicle. 

A significant safety compromise can occur when vehicle designers attempt to 
increase permissiveness by enabling a non-safety-rated autonomy layer to say 
“trust me, this is OK” to override the safety layer. This creates a way for a mal-
functioning autonomy layer to override the safety layer, again subverting the safe-
ty of the Doer/Checker pair architecture. 

Eliminating this command override anti-pattern requires that the designers ac-
cept that there is an inherent trade-off between permissiveness and simplicity. A 
simple Checker tends to have limited permissiveness. Increasing permissiveness 
makes the Checker more complex, increasing the fraction of the system design 
work that must be done with high integrity. Permitting a lower integrity Doer to 
override the safety-relevant behaviour of a high integrity Checker in an attempt to 
avoid Checker complexity is unsafe. 



8      Koopman, Kane & Black 

 

Related pitfalls are first a system in which the Checker only covers a subset of 
the safety properties of the system. This implicitly trusts the Doer to not have cer-
tain classes of defects, including potentially requirements defects. If the Checker 
does not actually check some aspects of safety, then the Doer is in fact safety rele-
vant. A second pitfall is having the Checker supervise a diagnosis operation for a 
Doer health check. Even if the Doer passes a health check, that does not mean its 
calculations are correct. At best it means that the Doer is operating as designed – 
which might be unsafe since the Doer has not been verified with the level of rig-
our required to assure safety.  

We have found it productive to conduct the following thought experiment 
when evaluating Doer/Checker architectural patterns and other systems that rely 
upon assuring the integrity of only a subset of safety-related functions. Ask this 
question: “Assume the Doer (a portion of the system, including software, sensors, 
and actuators, that are not ‘safety related’) maliciously attempts to compromise 
safety in the worst way possible, with full and complete knowledge of every as-
pect of the design. Could it compromise safety?” If the answer is yes, then the 
Doer is in fact safety relevant, and must be designed to a sufficiently high level of 
integrity. Attempts to argue that such an outcome is unlikely in practice must be 
supported by strong evidence. 

2.1.2 The implicit controllability pitfall 

A safety case must account for not only failures within the autonomy system, but 
also failures within the vehicle. 

A subtle pitfall when arguing based on conformance to a safety standard is ne-
glecting that the assumptions made when assessing the subsystem that have poten-
tially been violated or changed by the use of autonomy. Of particular concern for 
ground vehicles is the “controllability” aspect of an ISO 26262 ASIL analysis. 
(Severity and exposure might also change for an autonomous vehicle due to dif-
ferent usage patterns and should also be considered, but are beyond the scope of 
this discussion.) 

The risk analysis of an underlying conventional vehicle according to ISO 
26262 requires taking into account the severity, exposure, and controllability of 
each hazard (ISO 2011). The controllability aspect assumes a competent human 
driver is available to react to and mitigate equipment malfunctions. Taking credit 
for some degree of controllability generally reduces the integrity requirements of a 
component. This idea is especially relevant for Advanced Driver-Assistance Sys-
tems (ADAS) safety arguments, in which it is assumed that the driver will inter-
vene in a timely manner to correct any vehicle misbehaviour, including potential 
ADAS malfunctions. 

With a fully autonomous vehicle, responsibility for managing potentially un-
safe equipment malfunctions that were previously mitigated by a human driver 
falls to the autonomy. That means that all the assumed capabilities of a human 
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driver that have been built in to the safety arguments regarding underlying vehicle 
malfunctions are now imposed upon the autonomy system.  

If the autonomy design team does not have access to the analysis behind under-
lying equipment safety arguments, there might be no practical way to know what 
all the controllability assumptions are. In other words, the makers of an autonomy 
kit might be left guessing what failure response capabilities they must provide to 
preserve the correctness of the safety argumentation for the underlying vehicle. 

The need to mitigate some malfunctions is likely obvious, but we have found 
that “obvious” is in the eye of the beholder. Some examples of assumed human 
driver interventions we have noted, or even experienced first-hand include:  

• Pressing hard on the brake pedal to compensate for loss of power assist  
• Controlling the vehicle in the event of a tire blowout  
• Path planning after catastrophic windshield damage from debris impact  
• Manually pumping brakes when anti-lock brake mechanisms time out due to 

excessive activation  
• Navigating by ambient light after a lighting system electrical failure at speed  
• Attempting to mitigate the effects of uncommanded propulsion power  

To the degree that the integrity level requirements of the vehicle were reduced 
by the assumption that a human driver could mitigate the risk inherent in such 
malfunction scenarios, the safety case is insufficient if an autonomy kit does not 
have comparable capabilities. 

Creating a thorough safety argument will require either obtaining or reverse 
engineering all the controllability assumptions made in the design of the underly-
ing vehicle. Then, the autonomy must be assessed to have an adequate ability to 
provide the safety relevant controllability assumed in the vehicle design, or an 
alternate safety argument must be made. 

For cases in which the controllability assumptions are not available, there are at 
least two approaches that should both be used by a prudent design team. First,  
FMEA, HAZOP, and other appropriate analyses should be performed on vehicle 
components and safety relevant functions to ensure that the autonomy can react in 
a safe way to malfunctions. Such an analysis will likely struggle with whether or 
not it is safe to assume that the worst types of malfunctions will be adequately 
mitigated by the vehicle without autonomy intervention. 

Second, defects reported on comparable production vehicles should be consid-
ered as credible malfunctions of the non-autonomous portions of any vehicle con-
trol system since they have already happened in production systems. Such mal-
functions include issues such as the drivetrain reporting the opposite of the current 
direction of motion, uncommanded acceleration, significant braking lag, loss of 
headlights, and so on (Koopman 2018a).  
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2.1.3 Arguing compliance with an inadequate safety standard 

Historically some car makers have used internal, proprietary software safety 
guidelines as their way of attempting to assure an appropriate level of safety 
(Koopman 2018b). If a safety argument is based in part upon conformance to a 
safety standard, it is essential that the comprehensiveness of the safety standard 
itself be supported by evidence. For public standards that argument can involve 
group consensus by experts, public scrutiny, assessments of historical effective-
ness, improvement in response to loss events, and general industry acceptance.  

On the other hand, proprietary standards lack at least public scrutiny, and often 
lack other aspects such as general industry acceptance as well as falling short of 
accepted practices in technically substantive ways. One potential approach to ar-
gue that a proprietary safety standard is adequate is to map it to a publicly availa-
ble standard, although there might be other viable argumentation approaches. 

Sometimes arguing compliance with a well-known and documented industry 
safety standard may be inadequate for a particular safety case. Although all pas-
senger vehicle subsystems in the United States must comply with the Federal Mo-
tor Vehicle Safety Standards (FMVSS) issued by the National Highway Transpor-
tation Safety Administration (NHTSA), compliance with these standards alone 
concentrates on mechanical and electrical issues, and only high level electronics 
functionality. FMVSS compliance is insufficient for a safety case that must en-
compass software (Koopman 2018b). 

Similarly, use of particular standards might be an accepted or recommended 
practice, but not a means of ensuring safety. For example, the use of AUTOSAR 
(Autosar.org 2018) and Model Based Design techniques are sometimes proposed 
as indicators of safe software, but use of these technologies has essentially no pre-
dictive power with respect to system safety.  

 For automotive systems with safety-critical software, ISO 26262 is typically 
an appropriate standard, although other standards such as IEC 61508 (IEC 1998) 
can be relevant as well. For some autonomous system functions, conformance to 
ISO PAS 21448 (ISO 2018) might well be appropriate.  

Arguments of the form "technology X, standard Y, or methodology Z is ade-
quate because it has historically produced safe systems in that past" should ad-
dress the potential issues with "proven in use" argumentation considered in the 
following section. 

2.2 Proven in use 

The proven in use argumentation pattern uses field experience of a component (or, 
potentially, an engineering process) to argue that field failure rates have been suf-
ficiently low to assure a necessary level of integrity.  

Historically this has been used as a way to grandfather existing components in-
to new safety standards (for example, in the process industry under IEC 61508). 
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The basis of the argument is generally that if a huge number of operational hours 
of experience in the actual application have been accumulated with a sufficiently 
low number of safety-relevant failures, then there is compelling experimental data 
supporting the integrity claim for a component. We assume in this section that 
sufficient field experience has actually been obtained to make a credible argu-
ment. A subsequent section on field testing addresses the issue of how much expe-
rience is required to make a statistically valid claim. 

A plausible variant could be that a component is initially deployed with tempo-
rary additional level of redundancy or other safety backup mechanism such as 
using a Doer/Checker pair. (By analogy, the Checker is a set of training wheels for 
a child learning to ride a bicycle.) When sufficient field experience has been ac-
cumulated to attain confidence regarding the safety of the main system, the addi-
tional safety mechanism might be removed to reduce cost.  

For autonomous vehicles, the safety backup mechanism frequently manifests as 
a human safety driver, and the argument being made is that a sufficient amount of 
safe operation with a human safety driver enables removal of that safety driver for 
future deployments. The ability of a human safety driver to adequately supervise 
autonomy is itself a difficult topic (Koopman and Latronico 2019, Gao 2016), but 
is beyond the scope of this paper. 

2.2.1 The violated assumptions pitfall 

A significant threat to validity for proven in use argumentation is that the system 
will be used in an operational environment that differs in a safety-relevant way 
from its field history. In other words, a proven in use argument is invalidated if the 
component in question is exposed to operational conditions substantively different 
than the historical experience. 

Diverging from historical usage can happen in subtle ways, especially for soft-
ware components. Issues of data value limits, timing, and resource exhaustion can 
be relevant and might be caused by functionally unrelated components within a 
system. Differences in fault modes, sensor input values, or the occurrence of ex-
ceptional situations can also cause problems.  

A proven in use safety argument must address how the risk of the system being 
deployed outside this operational profile is mitigated (e.g. by detecting distribu-
tional shifts in the environment, by external limitations on the environment, or by 
procedural mitigations). It is important to realize that an operational profile for a 
safety critical system must include not only typical cases, but also rare but ex-
pected edge cases as well. An even more challenging issue is that there might be 
operational environment assumptions that designers do not realize are being made, 
resulting in a residual risk of violated assumptions even after a thorough engineer-
ing review of the component reuse plan. 

A classic example of this pitfall is the failure of Ariane 5 flight 501. That mis-
hap involved reusing an inertial navigation system from the Ariane 4 design em-
ploying a proven in use argument (Lyons 1996). A contributing factor was that 
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software functionality used by Ariane 4 but not required for Ariane 5 flight was 
left in place to avoid having to requalify the component. 

2.2.2 Depending upon COTS components 

It is common to repurpose Commercial Off-The-Shelf (COTS) software or com-
ponents for use in critical autonomous vehicle applications. These include compo-
nents originally developed for other domains such as mine safety, low volume 
research components such as LIDAR units, and automotive components such as 
radars previously used in non-critical or less critical ADAS applications. 

Generally such COTS components are being used in a somewhat different way 
than the original non-critical commercial purpose, and are often modified for use 
as well. Moreover, even field proven automotive components are typically cus-
tomized for each vehicle manufacturer to conform to customer-specific design 
requirements. When arguing that a COTS item is proven in use, it is important to 
account for at least whether there is in fact sufficient field experience, whether the 
field experience is for a previous or modified version of the component, and other 
factors such as potential supply-chain changes, manufacturing quality fade, and 
the possibility of counterfeit goods. 

In some cases we have seen proven in use arguments attempted for which the 
primary evidence relied upon is the reputation of a manufacturer based on histori-
cal performance on other components. While purchasing from a reputable manu-
facturer is often a good start, a brand name label by itself does not necessarily 
demonstrate that a particular component is fit for purpose, especially if a complex 
supply chain is involved. 

2.2.3 The “small” change pitfall 

Another threat to validity for a proven in use strategy is permitting “small” chang-
es without revalidation (e.g. as implicitly permitted by (NHTSA 2016), which 
requires an updated safety assessment for significant changes). Change analysis 
can be difficult in general for software, and ineffective for software that has high 
coupling between modules and resultant complex interdependencies. 

Because even one line of bad code can result in a catastrophic system failure, it 
is highly questionable to argue that a change is “small” because it only affects a 
small fraction of the source code base. Rigorous analysis should be performed on 
the change and its possible effects, which generally requires analysis of design 
artefacts beyond just source code. 

A variant of this pitfall is arguing that a particular type of technology is gener-
ally “well understood” and implying based upon this that no special attention is 
required to ensure safety. There is no reason to expect that a completely new im-
plementation – potentially by a different development team with a different engi-
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neering process – has sufficient safety integrity simply because it is not a novel 
function to the application domain. 

2.2.4 The discounted failure pitfall 

A particularly tricky pitfall occurs when a proven in use argument is based upon a 
lack of observed field failures when field failures have been systematically under-
reported or even not reported at all. In this case, the argument is based upon faulty 
evidence. 

One way that this pitfall manifests in practice is that faults that result in low 
consequence failures tend to go un-reported, with system redundancy tending to 
reduce the consequences of a typical incident. It can take time and effort to report 
failures, and there is little incentive to report each incident if the consequence is 
small, the system can readily continue service, and the subjective impression is 
that the system is perceived as overall safe. Perversely, reporting numerous recov-
ered malfunctions or warnings can actually increase user confidence in a system 
even while events go un-reported. This can be a significant issue when removing 
backup systems such as mechanical interlocks based on a lack of reported loss 
events. If the interlocks were keeping the system safe but interlock or other fail-
safe engagements go unreported, removing those interlocks can be deadly. Vari-
ous aspects of this pitfall came into play in the Therac 25 loss events (Leveson 
1993). 

An alternate way that this pitfall manifests is when there is a significant eco-
nomic or other incentive for suppressing or mischaracterizing the cause of field 
failures. For example, there can be significant pressure and even systematic ap-
proaches to failure reporting and analysis that emphasize human error over 
equipment failure in mishap reporting (Koopman 2018b). Similarly, if technologi-
cal maturity is being measured by a trend of reduced safety mechanism engage-
ments (e.g. autonomy disengagements during road testing (Banerjee et al. 2018)), 
there can be significant pressure to artificially reduce the number of events report-
ed. Claiming proven in use integrity for a component subject to artificially re-
duced or suppressed error reports is again basing an argument on faulty evidence. 

2.2.5 The human filter pitfall 

The operational history (and thus the failure history) of many systems is filtered 
by human control actions, pre-emptive incident avoidance actions and exposure to 
operator-specific errors. This history might not cover the entirety of the required 
functionality, might primarily cover the system in a comparatively low risk envi-
ronment, and might under-represent failures that manifest infrequently with hu-
man operators present. 

From a proven in use perspective, trying to use data from human-operated ve-
hicles, such as historical crash data, might be insufficient to establish safety re-
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quirements or a basis for autonomous vehicle safety metrics. The situations in 
which human-operated vehicles have trouble may not be the same situations that 
autonomous systems find difficult. It is easy to overlook the situations humans are 
good at navigating but which may cause problems for autonomous systems when 
looking at existing data of situations that humans get wrong. An autonomous sys-
tem cannot be validated only against problematic human driving scenarios (e.g. 
NHTSA (2007) pre-crash typology). The autonomy might handle these hazardous 
situations perfectly yet fail often in otherwise common situations that humans 
regularly perform safely. Thus, an argument that a system is safe solely because it 
has been checked to properly handle situations that have high rates of human mis-
haps is incomplete in that it does not address the possibility of new types of mis-
haps. 

This pitfall can also occur when arguing safety for existing components being 
used in a new system. For example, consider a safety shutdown system used as a 
backup to a human operator, such as an Automated Emergency Braking (AEB) 
system. It might be that human operators tend to systematically avoid putting an 
AEB system in some particular situation that it has trouble handling. As a hypo-
thetical example, consider an AEB system that has trouble operating effectively 
when encountering obstacles in tight curves. If human drivers habitually slow 
down on such curves there might be no significant historical data indicating this is 
a potential problem, and autonomous vehicles that operate at the vehicle dynamics 
limit rather than a sight distance limit on such curves will be exposed to collisions 
due to this bias in historical operational data that hides an AEB weakness. A prov-
en-in-use argument in such a situation has a systematic bias and is based on in-
complete evidence. It could be unsafe, for example, to base a safety argument 
primarily upon that AEB system for a fully autonomous vehicle, since it would be 
exposed to situations that would normally be pre-emptively handled by a human 
driver, even though field data does not directly reveal this as a problem. 

2.3 Field testing 

In a field testing argumentation approach a fleet of systems is tested in real-world 
conditions to build up confidence. At a certain point the testers declare that the 
system has been demonstrated to be safe and proceed with production deploy-
ment. 

An appropriate argumentation approach for field testing is that a sufficiently 
large number of exposure hours have been attained in a highly representative real-
world environment. In other words, this is a variant of a proven in use argument in 
which the “use” was via testing rather than a production deployment. As such, the 
same proven in use argumentation issues apply, including especially the needs for 
representativeness and statistical significance. However, there are additional pit-
falls encountered in field testing that must also be dealt with. 
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2.3.1 The insufficient testing pitfall 

Accumulating an appropriate amount of field testing data for high dependability 
systems is challenging. In general, real-world testing needs to last approximately 3 
to 10 times the acceptable mean time between hazardous failure to provide statis-
tical significance (Kalra and Paddock 2016). For life-critical testing this can be an 
infeasible amount of testing (Butler and Finelli 1993, Littlewood and Strigini 
1993). 

Even if a sufficient amount of testing has been performed, it must also be ar-
gued that the testing is representative of the intended operational environment. To 
be representative, the field testing must at least have an operational profile (Musa 
et al. 1996) that matches the types of operational scenarios, actions, and other at-
tributes of what the system will experience when deployed. For autonomous vehi-
cles this includes a host of factors such as geography, roadway infrastructure, 
weather, expected obstacle types, and so on. 

While the need to perform a statistically significant amount of field testing 
should be obvious, it is common to see plans to build public confidence in a sys-
tem via comparatively small amounts of public field testing. (Whether there is 
additional non-public-facing argumentation in place is unclear in many of these 
cases.)  

To illustrate the magnitude of the problem, in 2016 there were 1.18 fatalities 
per 100 million vehicle miles travelled in the United States, making the Mean 
Time Between Failures (MTBF) with respect to fatalities by a human driver 85 
million miles (NHTSA 2017). Assuming an exponential failure distribution, for a 
given MTBF the required test time in which r failures occur can be computed with 
confidence α using a chi square distribution (Morris 2018): 

Required Test Time =  χ2(α, 2r + 2)(MTBF)/2 
 
Based on this, a single-occupant system needs to accumulate 255 million test 

miles with no fatalities to be 95% sure that the mean time is only 85 million miles. 
If there is a mishap during that time, more testing is required to distinguish normal 
statistical fluctuations from a lower MTBF: a total of 403 million miles to reach 
95% confidence. If a second mishap occurs, 535 million miles of testing are need-
ed, and so on. Additional testing might also be needed if the system is changed, as 
discussed in a subsequent section. Significantly more testing would also be re-
quired to ensure a comparable per-occupant fatality rate for multi-occupant vehi-
cle configurations. 

Attempting to use a proxy metric such as rate of non-fatal crashes and extrapo-
late to fatal mishaps requires also substantiating the assumption that the mishap 
profiles will be the same for autonomous systems as they are for human drivers. 
(See the human filter pitfall previously discussed.) 
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2.3.2 The fly-fix-fly anti-pattern 

In practice, autonomous vehicle field testing has typically not been a deployment 
of a finished product to demonstrate a suitable integrity level. Rather, it is an itera-
tive development approach that can amount to debugging followed by attempting 
to achieve improved system dependability over time based on field experience. In 
the aerospace domain this is called a “fly-fix-fly” strategy. The system is operated 
and each problem that crops up in operations is fixed in an attempt to remove all 
defects. While this can help improve safety, it is most effective for a rigorously 
engineered system that is nearly perfect to begin with, and for which the fixes do 
not substantially alter the vehicle’s design in ways that could produce new safety 
defects. 

A significant problem with argumentation based on fly-fix-fly occurs when de-
signers try to take credit for previous field testing despite a major change. When 
arguing field testing safety, it is generally inappropriate to take credit for field 
experience accumulated before the last change to the system that can affect safety-
relevant behaviour. (The “small change” pitfall has already been discussed.)  

There is no denying the intuitive appeal to an argument that the system is being 
tested until all bugs have been fixed. However, this is a fundamentally flawed 
argument. That is because this amounts to saying that no matter how many fail-
ures are seen during field testing, none of them “count” if a story can be concocted 
as to how they were non-reproducible, fixed via bug patches, and so on. 

To the degree such an argument could be credible, it would have to find and fix 
the root cause of essentially all field failures. It would further have to demonstrate 
(somehow) that the field failure root cause had been correctly diagnosed, which is 
no small thing, especially if the fix involves retraining a machine-learning based 
system. Additionally, it would have to argue that a sufficiently high fraction of 
field failures have actually been encountered, resulting in a sufficiently low prob-
ability of encountering novel additional failures during deployment. 

A fly-fix-fly argument must also address both the fault reinjection problem. 
Fault reinjection occurs when a bug fix introduces a new bug as a side effect of 
that fix. Ensuring that this has not happened via field testing alone requires reset-
ting the field testing clock to zero after every bug fix. (Hybrid arguments that in-
clude rigorous engineering analysis are possible, but simply assuming no fault 
reinjection without any supporting evidence is not credible.)  

It is difficult to believe an argument that claims that a fly-fix-fly process alone 
(without any rigorous engineering analysis to back it up) will identify and fix all 
safety-relevant bugs. If there is a large population of bugs that activate infrequent-
ly compared to the amount of field testing exposure, such a claim would clearly be 
incorrect. Generally speaking, fly-fix-fly requires an infeasible amount of opera-
tion to achieve the ultra-dependable results required for life critical systems, and 
typically makes unrealistic assumptions such as no new faults are injected by fix-
ing a fault identified in testing (Littlewood and Strigini 1996). A specific issue is 
the matter of edge cases, discussed in the next section. 
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2.3.3 Dealing with edge cases 

A significant limitation to a field testing argument is the assumption of random 
independent failures inherent in the statistical analysis. Arguing that software fail-
ures are random and independent is clearly questionable, since multiple instances 
of a system will have identical software defects. Moreover, arguing that the arrival 
of exceptional external events is random and independent across a fleet is clearly 
incorrect in the general case. A few simple examples of correlated events between 
vehicles in a fleet include: 

• Timekeeping events (e.g. daylight savings time, leap second) 
• Extreme weather (e.g. tornado, tsunami, flooding, blizzard white-out, wild-

fires) affecting multiple systems in the same geographic area 
• Appearance of novel-looking pedestrians occurring on holidays (e.g. Hallow-

een, Mardi Gras) 
• Security vulnerabilities being attacked in a coordinated way 

For life-critical systems, proper operation in typical situations needs to be vali-
dated. But this should be a given. Progressing from baseline functionality (a vehi-
cle that can operate acceptably in normal situations) to a safe system (a vehicle 
that safely handles unusual situations and unexpected situations) requires dealing 
with unusual cases that will inevitably occur in the deployed fleet. 

We define an edge case as a rare situation that will occur only occasionally, but 
still needs specific design attention to be dealt with in a reasonable and safe way. 
The quantification of “rare” is relative, and generally refers to situations or condi-
tions that will occur often enough in a full-scale deployed fleet to be a problem but 
have not been captured in the design or requirements process. (It is understood 
that the process of identifying and handling edge cases makes them – by definition 
– no longer edge cases. So in practice the term applies to situations that would not 
have otherwise been handled had special attempts not be made to identify them 
during the design and validation process.) 

It is useful to distinguish edge cases from corner cases. Corner cases are com-
binations of normal operational parameters. Not all corner cases are edge cases, 
and the converse. An example of a corner case could be a driving situation with an 
iced over road, low sun angle, heavy traffic, and a pedestrian in the roadway. This 
is a corner case since each item in that list ought to be an expected operational 
parameter, and it is the combination that might be rare. This would be an edge 
case only if there is some novelty to the combination that produces an emergent 
effect with system behaviour. If the system can handle the combination of factors 
in a corner case without any special design work, then it’s not really an edge case 
by our definition. In practice, even difficult-to-handle corner cases that occur fre-
quently will be identified during system design. Only corner cases that are both 
infrequent and present novelty due to the combination of conditions are edge cas-
es. It is worth noting that changing geographic location, season of year, or other 
factors can result in different corner cases being identified during design and test, 
and leave different sets of edge cases unresolved. Thus, in practice, edge cases 
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that remain after normal system design procedures could differ depending upon 
the operational design domain of the vehicle, the test plan, and even random 
chance occurrences of which corner cases happened to appear in training data and 
field trials.  

Classically an edge case refers to a type of boundary condition that affects in-
puts or reveals gaps in requirements. More generally, edge cases can be wholly 
unexpected events, such as the appearance of a unique road sign, or an unexpected 
animal type on a highway. They can be a corner case that was thought to be im-
possible, such as an icy road in a tropical climate. They can also be an unremarka-
ble (to a human), non-corner case that somehow triggers an autonomy fault or 
stumbles upon a gap in training data, such as a light haze that results in perception 
failure. The thing that makes something an edge case is that it unexpectedly acti-
vates a requirements, design, or implementation defect in the system. 

There are two implications to the occurrence of such edge cases in safety ar-
gumentation. One is that fixing edge cases as they arrive might not improve safety 
appreciably if the population of edge cases is large due to the heavy tail distribu-
tion problem (Koopman 2018c). This is because removing even a large number of 
individual defects from an essentially infinite-size pool of rarely activated defects 
does not materially improve things. Another implication is that the arrival of edge 
cases might be correlated by date, time, weather, societal events, micro-location, 
or combinations of these triggers. Such a correlation can invalidate an assumption 
that losses from activation of a safety defect will result in small losses between the 
time the defect first activates and the time a fix can be produced. (Such correlated 
mishaps can be thought of as the safety equivalent of a “zero day attack” from the 
security world.) 

It is helpful to identify edge cases to the degree possible within the constraints 
of the budget and resources available to a project. This can be partially accom-
plished via corner case testing (e.g. Ding 2017). The strategy here would be to test 
essentially all corner cases to flush out any that happen to present special prob-
lems that make them edge cases. However, some edge cases also require identify-
ing likely novel situations beyond combinations of ordinary and expected scenario 
components. And other edge cases are exceptional to an autonomous system, but 
not obviously corner cases in the eyes of a human test designer. 

Ultimately, it is unclear if it can ever be shown that all edge cases have been 
identified and corresponding mitigations designed into the system. (Formal meth-
ods could help here, but the question would be whether any assumptions that 
needed to be made to support proofs were themselves vulnerable to edge cases.) 
Therefore, for immature systems it is important to be able to argue that inevitable 
edge cases will be dealt with in a safe way frequently enough to achieve an appro-
priate level of safety. One potential argumentation approach is to aggressively 
monitor and report unusual operational scenarios and proactively respond to near 
misses and incidents before a similar edge case can trigger a loss event, arguing 
that the probability of a loss event from unhandled edge cases is sufficiently low. 
Such an argument would have to address potential issues from correlated activa-
tion of edge cases. 
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2.4 Vehicle simulation 

In this pattern, vehicle-level simulation rather than on-road operation is used as a 
proxy field testing strategy. Simulation offers a number of potential advantages 
over field testing of a real vehicle including lower marginal cost per mile, better 
scalability, and reduced risk to the public from testing. Ultimately, simulation is 
based upon data that generates scenarios used to exercise the system under test, 
commonly called the simulation workload. The validity of the simulation work-
load is just as relevant as the validity of the simulation models and software. 

Simulation-based validation is often accomplished with a weighting of scenari-
os that is intentionally different than the expected operational profile. Such an 
approach has the virtue of being able to exercise corner cases and known rare 
events with less total exposure than would be required by waiting for such situa-
tions to happen by chance in real-world testing (Ding 2017). To the extent that 
corner cases and known rare events are intentionally induced in physical vehicle 
field testing or closed course testing, those amount to simulation in that the occur-
rence of those events is being simulated for the benefit of the test vehicle. 

A more sophisticated simulation approach should use a simulation “stack” with 
layered levels of abstraction. High level, faster simulation can explore system-
level issues while more detailed but slower simulations, bench tests, and other 
higher fidelity validation approaches are used for subsystems and components. 

Regardless of the mix of simulation approaches, simulation fidelity and realism 
of the scenarios is generally recognized as a potential threat to validity. The simu-
lation must be validated to ensure that it produces sufficiently accurate results for 
aspects that matter to the safety case. This might include requiring conformance of 
the simulation code and model data to a safety-critical software standard.  

2.4.1 Missing rare events 

Even with a conceptually perfect simulation, the question remains as to what 
events to simulate. Even if simulation were to cover enough miles to statistically 
assure safety, the question would remain as to whether there are gaps in the types 
of situations simulated. This corresponds to the representativeness issue with field 
testing and proven in use arguments. However, representativeness is a more press-
ing matter if simulation scenarios are being designed as part of a test plan rather 
than being based solely on statistically significant amounts of collected field data. 

Another way to look at this problem is that simulation can remove the need to 
do field testing for rare events, but does not remove determine what rare events 
matter. All things being equal, simulation does not reduce the number of road 
miles needed for data collection to observe rare events. Rather, it permits a sub-
stantial fraction of data collection to be done with a non-autonomous vehicle. 
Thus, even if simulating billions of miles is feasible, there needs to be a way to 
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ensure that the test plan and simulation workload exercise all the aspects of a ve-
hicle that would have been exercised in field testing of the same magnitude. 

As with the fly-fix-fly anti-pattern, fixing defects identified in simulation re-
quires additional simulation input data to validate the design. Simply re-running 
the same simulation and fixing bugs until the simulation passes invokes the “pes-
ticide paradox.” (Beizer 1990) This paradox holds that a system which has been 
debugged to the point that it passes a set of tests can’t be considered completely 
bug free. Rather, it is simply free of the bugs that the test suite knows how to find, 
leaving the system exposed to bugs that might involve only very subtle differences 
from the test suite. 

2.4.2 Nondeterministic behaviour and legibility 

The nature of the algorithms used by autonomy systems creates problems for 
modelling and testing that go beyond typical safety critical software. Some auton-
omy algorithms, such as randomized path planning, are inherently non-
deterministic. Others can be brittle, failing dramatically with subtle variations in 
data, such as perception false negatives induced by adversarial attacks (Szegedy at 
al. 2013) or false negatives induced by slight image degradation due to haze or 
defocus (Pezzementi et al. 2018). 

A related issue is over-fitting to the test, in which an autonomy system over-fits 
and learns how to beat a fixed test. By analogy, this is the pitfall of the system 
cheating by having memorized the correct answers. A proposed way to deal with 
this risk is by randomly varying aspects of test cases. In such a fuzzing or variable 
testing approach it is important to randomly vary all relevant aspects of a problem. 
For example, varying geometries for traffic situations can be helpful, but probably 
does not address potential over-fitting for perception algorithms that perform ob-
ject classification. 

The use of potentially non-deterministic test scenarios combined with non-
deterministic system behaviours and opaque system designs means it is difficult to 
know whether a system has passed a test, because there is no single correct an-
swer. Rather, there must be some algorithmic way to determine whether a particu-
lar system response is acceptable or not, making that test oracle algorithm safety 
critical. 

Moreover, it is possible that a system has passed a particular test by chance. 
For example, a pedestrian might be avoided due to a properly functioning detec-
tion and avoidance algorithm. But a pedestrian might also be avoided merely be-
cause a random path planner by chance picked a path that did not intersect the 
pedestrian, or responded to a completely unrelated aspect of the environment that 
caused it to pick a fortuitously safe path. Similarly, a pedestrian might be detected 
in one image, but undetected in another that differs in ways that are essentially 
imperceptible to a human. 

It is unclear if resolving this issue requires solving the difficult problem of ex-
plainable AI (Gunning 2018). As a minimum, a credible safety argument will need 
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to address the problem of how plans to test vehicles with less than a statistically 
valid amount of real-world exposure data can avoid these pitfalls. It seems likely 
that a credible argument will also have to establish that each type of test has been 
passed due to safe operation of the system rather than simply by chance. 

2.4.3 Human test scenario bias 

Simulation-based testing (including especially closed-course testing of real vehi-
cles) can suffer from a test planning bias. The problem is that a test plan is often 
made according to human perception of the scenario being tested. For example, a 
test scenario might be “child crossing in a painted cross-walk.” Details of the test 
scenario might explore various corner cases involving child clothing, size, weather 
conditions, scene clutter, and so on. 

Commonly test scenarios map to a human-interpretable taxonomy of the sys-
tem and environmental state space. However, autonomy systems might have a 
different internal state space representation than humans, meaning that they classi-
fy the world in ways that differ from how humans do so. This in turn can lead to a 
situation in which a human believes apparent complete coverage via a testing plan 
has been achieved, while in reality significant aspects of the autonomy system 
have not been tested. As a hypothetical example, the autonomy system might have 
deduced that a human’s shirt colour is a predictor of whether that human will step 
into a street because of accidental correlations in a training data set. But the test 
plan might not specify shirt colour as a variable, because test designers did not 
realize it was a relevant autonomy feature for pedestrian motion prediction. 

Machine-learning based systems are known to be vulnerable to learning bias 
that is not recognized by human testers, at least initially. Some such failures have 
been quite dramatic (e.g. Grush 2015). Thus, simplistic tests such as having an 
average body size white male in neutral summer clothing cross a street to test pe-
destrian avoidance do not demonstrate a robust safety capability. Rather, such 
tests tend to demonstrate a minimum performance capability. 

Interpreting the results of human-constructed test designs, including humans in-
terpreting why a particular on-road scenario failed, are also subject to human test 
scenario bias. A credible safety argument that relies upon human-constructed tests 
or human interpretation of root cause analysis in claiming that test failures have 
been fixed should address this pitfall. 

2.4.4 Data validity 

Any safety argument that relies upon simulation must not only argue that the sim-
ulation is sufficiently accurate, but also that the workload is sufficiently accurate. 

For example, consider a workload derived from a collection of on-road data. 
The sensors that captured the data, the data recording mechanism, the data transla-
tion programs, and the data handling procedures that eventually produce the simu-
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lation workload are all safety relevant. This is because any biases or faults in that 
data handling process will produce inaccurate testing data, potentially resulting in 
flawed simulation evidence of safety. Relevant guidance exists on the topic of 
safety relevant data, and should be taken into account (DSIWG 2018). 

As a simple example of how simulation data collection can go wrong, consider 
a data handling approach that discards outliers or seemingly invalid data. That 
approach might usually discard legitimate outliers. On the other hand, the outlier 
rejection method might also discard legitimate edge cases that are then excluded 
from simulation, resulting in a deficient safety case. 

2.5 Formal proof of correctness 

In this pattern, formal methods are used to define and prove system safety proper-
ties. These might include model checking, control system analysis, use of validat-
ed synthesis tools, kinematic analysis, and correct by construction approaches. It 
is unlikely that any such technique will scale up to the entirety of an autonomous 
vehicle in the near future, but such techniques can be a valuable part of appropri-
ate aspects of a safety argument. 

2.5.1 Assumption validity 

Any assumptions made in formal analysis must be shown to be valid – or at least 
not safety relevant – in deployed systems. Assumptions vary widely and can in-
clude items such as: defect-free computational hardware, defect free computation 
execution (e.g. no soft errors), defect-free sensors, 100% fault diagnosis coverage, 
objects obeying expectations such as following traffic laws, absence of unex-
pected obstacles, model accuracy, and perfect vehicle maintenance. Additionally, 
any specific model or proof is likely to have other assumptions or simplifications 
required to make a formal proof practicable. 

A way to mitigate the threats to validity posed by incorrect assumptions is to 
monitor them for validity during deployment using some type of runtime monitor-
ing (Koopman and Wagner 2016). When an assumption violation does occur that 
does not quite mean that the system is unsafe, nor does it mean a mishap is inevi-
table. But an assumption violation does mean that the safety case is invalid while 
the assumption is being violated. 

2.5.2 Proving safety 

While formal methods can be an extremely useful piece of verifying correctness 
of a system, safety is an emergent property that touches the system’s implementa-
tion and environment in ways that often reach beyond the formal verification. 
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There are many subtle ways in which formal verification can provide less as-
surance than is assumed, including model or implementation bugs (e.g. Vanhoef 
and Piessens 2017) or requirements gaps (failures which occur outside the mod-
el/proof or outside the hypothesized fault model). These types of issues highlight 
the value of an explicit, heterogeneous safety case that can clearly delineate what 
evidence the formal methods are actually providing as well as the strengths and 
limitations of how that evidence can be used in a credible manner.  

3 Other autonomous vehicle safety argument observations 

While not necessarily argumentation patterns, we have observed a number of oth-
er common issues that are worthy of comment.  
 
Defective disengagement mechanisms. Generally this involves the ability of an 
arbitrary fail-active autonomy failure to prevent successful disengagement by a 
human supervisor. As a concrete example, a system might read the state of the 
disengagement activation mechanism (the “big red button”) as an I/O device fed 
directly into the primary autonomy computer rather than using an independent 
safing mechanism. This is a special case of a single point of failure in the form of 
the autonomy computer. 
 
Assuming perception failures are independent. Some arguments assume inde-
pendent failures of multiple perception modes. While there is clearly utility in 
creating a safety case for the non-perception parts of an autonomous vehicle, one 
must argue rather than assume the safety of perception to create a credible safety 
case at the vehicle level.  
 
Requiring perfect human supervision of autonomy. Humans are well known to 
struggle when assigned such monitoring tasks. Koopman et al. (2019) cover this 
topic in more detail as it relates to autonomous vehicle road testing safety. 
 
Dismissing a potential fault as “unrealistic” without supporting data. For ex-
ample, argumentation might state that a lightning strike on a moving vehicle is 
unrealistic or could not happen in the “real world,” despite data to the contrary 
(e.g. Holle 2008). To be sure, this does not mean that something like a lightning 
strike must be completely mitigated via keeping the vehicle fully operational. Ra-
ther, such faults must be considered in risk analysis. Dismissing hazards without 
risk analysis based on a subjective assertion that they are “unrealistic” results in a 
safety case with insufficient evidence. 
 
Using multi-channel comparison approaches for autonomy. In general auton-
omy algorithms are nondeterministic, sensitive to initial conditions, and have 
many acceptable (or at least safe) behaviours for any given situation. Architectural 
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approaches based on voting diverse autonomy algorithms tend to run into a prob-
lem of deciding whether the outputs are close enough to be valid. Averaging and 
other similar approaches are not necessarily appropriate. As a simple example, the 
average of veering to the right and veering to the left to avoid an obstacle could 
result in hitting the obstacle dead-on. 
 
Confusion about fault vs. failure. While there is a widely recognized terminolo-
gy document for dependable system design (Avizienis 2004), we have found that 
there is widespread confusion about the terms fault and failure in practical use. 
This is especially true when discussing malfunctions that are not due to a compo-
nent fault, but rather a requirements gap or an excursion from the intended opera-
tional environment. It is beyond the scope of this paper to attempt to resolve this, 
but we note it as an area worthy of future work and particular attention in interdis-
ciplinary discussions of autonomy safety. 

4 Conclusions 

Creating a credible safety case for an autonomous vehicle seems likely to require a 
heterogeneous approach, with various aspects argued via different methods. It 
would be no surprise if a safety case for a complete autonomous vehicle required 
using all of the strategies described in this paper and more. It is important to note 
that addressing all the pitfalls in this paper is necessary, but is likely insufficient 
for creating a safe autonomous vehicle. A number of other factors must be re-
solved including understanding the role of engineering rigor, software quality, and 
the special needs of validating system functionality based upon machine learning 
techniques. Along the way, we expect that additional pitfalls and argumentation 
anti-patterns will be identified that should be added to the list given in this paper. 

We believe that assuring the validity and credibility of autonomous vehicle 
safety cases can benefit from a library of both valid and invalid argumentation 
strategies as well as examples and pitfalls. Such a library at the very least provides 
fodder for assessors to ensure that the most common argumentation and evidence 
pitfalls are avoided in safety cases. This paper provides a starting point for such an 
approach.  
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