US005757923A

United States Patent (o (1] Patent Number: 5,757,923
Koopman, Jr. 1451 Date of Patent: *May 26, 1998
[54] METHOD OF GENERATING SECRET 5,048,086 9/1991 Biancoetal. .
IDENTIFICATION NUMBERS 5363448 11/1994 Koopman, Ir. et al. .
5398284 3/1995 Koopman, Jr. etal. .
[75] Inventor: Philip J. Koopman, Jr.. Hebron. Conn. 5434,806 7/1995 Hofverberg .

Primary Examiner—David C. Cain
Attorney, Agent, or Firm—Ozer M. N. Teitelbaum

[57] ABSTRACT

[73] Assignee: UT Automotive Dearborn, Inc..
Dearborn. Mich.

[*] Notice: The term of this patent shall not extend
beyond the expiration date of Pat. No. The present invention teaches a method of generating a

5.696.828. secret identification number from a random digital data

stream. The method comprises the step of initially selecting

; a first and a second group of bytes from the random digital

(21 Appl. No.: 635,145 data stream. wherein the first and second groups of bytes
[22] Filed: Apr. 19, 1996 have a first and second numerical value. Subsequently. a first
maximal length LFSR feedback term is looked up from a list

Related U.S. Application Data in response to said first numerical value, while a second

o maximal length LFSR feedback term is looked up from the
[63] Continuation-in-part of Ser. No. 532,337, Sep. 22,1995, Pat. Jist in response to said second numerical value. The method

No. 5,696,828. additionally comprises the step of generating a cyclic redun-
[51] Int. CL® HO4L 9/00 dancy code feedback term in response to executing a cyclic
[52]1 U.S.CL 380/46; 364/717 redundancy code check on a third group of bytes selected
[58] Field of Searchowomrmmnn 380/46; 364/717 from the random digital data stream. Moreover, the method
comprises the step of forming the secret identification num-
{561 References Cited ber from the first and second maximal length LFSR feed-
back terms, the cyclic redundancy code feedback term. and
U.S. PATENT DOCUMENTS a fourth group of bytes from the random digital data stream.
4424414 1/1984 Hellman et al. .
4,853,884 8/1989 Brown et al. . 30 Claims, 4 Drawing Sheets
e ke 'ﬂl
20 _ E 30 '
5 N MEMORY| !
|]
\ : ARRAY] 39 :
f | 1
i]
| :
: 135
I]
| 1
' :
15 ! i 40
CHAQTIC | | SAMPLER i COMPARATOR
NOISE - RESSVng'ENG re{ AND uP 4 —
SOURCE | |PIGITIZER ! /'MEMORY |
l i 2
| i
: A XOR g 44
38 H
l ' DUPLICATE

5,757,923

Sheet 1 of 4

May 26, 1998

U.S. Patent

dANa vivQd
31vordng

vt

| .

401V4VdWNOI

AJONIN T

1"--""""""--"'-'

8¢
1/

JOX

0)4

J

r

]

|

]

'

]

]

1

' y3ZILIOI
3 n_i ANV
: YIS
“ cz

i

]

i

] J

-

]

]

“

) o i

: AYOW3IN

[]

i og’

—— v — —— ———— - —— — —— W ————

J

321A30
ONIQY0I3y

Sl

J

328N0S
3ISION
OILOVHO

o1

1014

5,757,923

Sheet 2 of 4

May 26, 1998

U.S. Patent

vivd WOONVY Q31VyINIO

S3NIvA vNLOVY 40 QY003 NO g3sva Q31d313s
v ONId33X 1NOHIIM ~ 3yv (SWy3L »ovead3ds do¥d
NOILYOINdNG SIN3A3Yd ANV ¥S47) STIVINONATOd
S3NTVA SNOIAIYd ONIXIN-VIVQ ONY HION3I1
30 HSWH jwm:oum v_ VAIXYW 3LvIddOdddY
Y
SINTVA 13¥03S
2noI3Hd 40 | nNowoams]
319vL HSYH _ MOVEd33s
Sug vivd 3HL S31EAVHOS
ONIHSYH 118 A318IS¥3IATHY NOILONNA
3¥NDIS—0LdAYD ONIHSYH 3d4Nn23S
ATIVOIHJVEOOLJAND ¥
AJOYIN3
NOILYWHOANI T11SId OL
wa_mmw%_w (NOISS3¥dW0D viva 40
3dAL V) Q3Q0ON3
_ NYW43NH St viva
SEINEEL
YILLINSNVYL 8-v-4d WIINILOd [ONIM4INHS | J WAIOSNNIS Hv3dg
OINI G3NKWVYO0dd SI 41 ayvoHsia v1va 0l G3144NHS Sl

INOHJOHIIN
v A8 431337100
SI HOIHM "3SION
SALVHIN3O Nvid

AN L

U.S. Patent May 26, 1998

FIG.3

60

Sheet 3 of 4

50

52
54

s 56
DATA |

SHUFFLING

l - >8
HUFEMAN l

ENCODING

| e

TIME OF
DAY

}_.

MD-5 SECURE
ONE—-WAY HASH

l - 64

RANDOM
BYTE VALUES

5,757,923

5,757,923

Sheet 4 of 4

May 26, 1998

U.S. Patent

SAIXN SNOIAIYd 40
$31v2INdna 38 (ALNI8vA0¥d
MO AN3A HLIM) LHOIW
AJHL 3ISNYD38 ‘Q3Q¥VISI3 3yV
(1 40 3INvA 378vL dvnug)
INIVA 1S3910
Q3¥3IINNOINI ATSNOIAINI
¥ ONILYYINIO sql

\ J
h'd

31v21ndna
TVIIN3LOd
ayvasia

. ——. 'AY3NLS 3148 WOONVY 3HL
013 "S3NIVA VLN = e S 03193735 S Viva ¥3HLO0

ALA8 HOV3 LvHL OS Q3N33¥0S
34V S3INTVA X0v8Q334 J¥

\
S18 | OML QNV
HOVEAI34 OMD LIG—6C—e —- SLUB O OML ISYI1 LV SVH

¥SIQ NO 1S Q31NdNOJ—3dd
¥V WOY4 (310313S ATNOAONYY
~+ == 3yv SWy3L XIv8Q33d
¥SJT HIONIT TVNIXYA

MOvea3ds ¥si1 Lig—6h
MOvaa3ls ¥s41 18-02

S31A8 WOAONVY
vyixX3 Qyvasid

A

avoINMOQ NIVA QI L3¥23S 3HL ON3S

o_mn._u...u_mwwm Amus_/‘mwoxa 804 3HL Ol
3

@1 13403S
40 1S3914
Qy023y

18vL dYWLIG 3HL 3NDINN 39 0L

Q33INVEVND SY 314300V v
(0 40 3INTVA 318Vl dvALIS)
INTIVA 1S3 M3IN VvV HLIM SQI

S3NIVA 1S3910 SNOIA3dd
HLUIM NOISITIOD,, ANV 304
a

INVA 13910 MIN
A 3L 404 1 OL 135 SI
3

¢31vondnd

INIJ3H I SANTVA 1S3010
TVILN310d M9 S

Q31VY3IN3D AIISNOINTYD
40 318vL d3ddvihlig v

'SINTVA 118 JO NOILNGIYLSIO
153910 WHO4INN ¥V 3AVH S3NTVA 1S301d
ar 13¥03S '1S3910 v 3LVY3INID 0L 43sSn
J1NdW0D SI'NOILONNS HSVH 33NJ3S
1 ATIVOIHAYYO01dAYD Vv 'S—ONW

A3X 13403S 3Hl1 d0d
SIANTVA ALVINHO¥ddY 10373S
0L 43sn Si viva WOONVY

gl 13403S 804
103713S ATNOAONVY

A

7" S3nvA M3IN 3LV¥INID

AR €

A1A8 WOAONVY (QyvOSId

ATIVANILNOD ‘S3NTVA WVINLS

SANTYA A3 13423S M3N
vV 033N YIWNWVIO0Ud
804 3HL S30d

SIONINAVHOON
Y04 AQv3y 804

a S31A8 WOAONVY 30 W3YIS
SANTVA 3LA8 JIYINIO Vv SI SSI00¥d
WOANVY SIHL Ol LNdNI 3HL

'5,757,923

1

'METHOD OF GENERATING SECRET
IDENTIFICATION NUMBERS

RELATED APPLICATIONS

This application is a continuation in part of an application
(Ser. No. 08/532.337) filed on Sep. 22. 1995, commonly
assigned with the present invention. now U.S. Pat. No.
5.696.828.

FIELD OF THE INVENTION

The present invention relates to cryptography. and more
particularly to a method of generating secret identification
numbers,

BACKGROUND OF THE INVENTION

Pseudo-random number generators are well known in the
cryptographic sciences. Cryptography is defined as the art
and science of preventing eavesdroppers from understand-
ing the meaning of intercepted messages. In such security
minded applications, pseudo-random as well as truly ran-
dom number generators may be used to support the encryp-
tion and decryption of information. These number genera-
tors are primarily employed to generate “secret keys” for use
in cryptographic encoding and decoding of information.

Within the application of a number generator for creating
secret keys, a set of secret numbers is used as a crypto-
graphic key for encoding and/or decoding messages. It is
vitally important that this key not be known by unauthorized
parties, nor discernible via cryptanalysis based on knowl-
edge of messages. Thus, it is desirable to generate a
sequence of apparently random numbers in order to manu-
facture a plurality of secret keys. An “apparently random”
number is definable as a number within a sequence or
progression of successive numbers having a value which is
neither practically reconstructible nor may the set of pos-
sible values of that particular number be substantially
narrowed, even when given (1) copies of the generator
algorithms; (2) non-invasive access to the equipment while
generating the numbers; and (3) a complete list of all other
numbers in the sequence.

An inexpensive manufacturing process for secret keys
poses special requirements on generating apparently random
pumbers. In particular, only widely available off-the-shelf
equipment may be used in order to minimize procurement.
maintenance, and repair costs. Further, the sequence of
numbers used to create the secret keys must not be
reproducible. even by the manufacturer while in full pos-
session of all equipment and algorithms used in the process.
Moreover, there must be a guarantee of no duplicate secret
keys ever being generated and. at the same time, no record
of the actual key values may be retained by the manufac-
turer.

Traditionally. pseudo random number generators have
been the means of choice in low security applications.
Pseudo-random number generators produce a sequence of
apparently random numbers utilizing a deterministic
algorithm. and assume that any potential unauthorized party
has neither access to nor desire to discover the generating
algorithm.

Pseudo-random numbers serve as an approximation to
truly random numbers for a limited set of purposes. Tradi-
tional pseudo-random number generators are implemented
using linear feedback shift registers or linear congruential
generators using either hardware or software. Given the
algorithm and current state, such as the contents of a

10

15

20

25

30

35

45

50

55

65

2

hardware register or values of computer software variables,
the output of a pseudo-random number generator may be
exactly replicated. As this state information may be inferred
from a one or more values within the number sequence.
traditional pseudo-random number generators have substan-
tial limitations.

Cryptographically secure pseudo-random number genera-
tors are special pseudo-random number generators designed
to resist attempts to determine the current state of the
generated random number stream through analysis. These
systems typically assume that unauthorized parties have
complete access to the algorithm. though not to the current
state values. Such generators are, however. still determinis-
tic. As such, in the event the current state is breached by
cryptanalysis or other method. all numbers created by the
generator in the future—and, in many designs. the past—
may be deduced. Typically. in these systems. it is assumed
that the legitimate owner of the generator may be trusted not
to reveal or exploit knowledge of the current generator state.
However. a defecting employee or industrial espionage may
compromise a cryptographically secure generator. Thus.
these generators also have substantial disadvantages.

Alternatively, a “truly random” sequence of numbers may
be defined as one in which there is a theoretical basis for
stating that the next number in the sequence canmnot be
predicted using either a mathematical or scientific method
given an arbitrarily long history of the sequence behavior. In
particular, a truly random number provide absolutely no
pattern, correlation, or dependency among the remaining
numbers in a sequence of numbers other than chance pat-
terns. Generation of truly random sequences typically
requires physical measurement of quantum mechanical
uncertainty. such as. for example, radioactive decay. While
truly random numbers may be employed for use as appar-
ently random numbers, relevant measurement equipment is
presently not commerically available for such purposes. It
should be noted that even using physical measurement of
quantum mechanical uncertainty to generate truly random
sequences does not guarantee against sub-sequences of
random numbers repeating and thus generating duplicate
secret keys.

A further known approach to generating truly random
numbers relies on chaos theory. Here, chaotically generated
numbers are created by repeated experimental trials using a
chaotic system with quantized outcomes. such as coin toss-
ing or rolling dice. In a chaotic system. outcomes vary
greatly and non-linearly according to minute variations of
initial experimental conditions. Therefore small sources of
experimental error that are inevitably present in the physical
world are magnified. thereby making it impractical to cor-
relate system outputs, or numbers, with available measure-
ments of system inputs. such as initial conditions. Generat-
ing large volumes of chaotic experimental results has in the
past, however, required special purpose hardware. such as
for example a nonlinear oscillator, which is not readily
available. Furthermore, there is no guarantee against unin-
tentionally repeating generated secret key values.

Using deterministic mathematical algorithms that com-
pute simulations of chaotic systems has been proposed as a
scheme for generating apparently random numbers. Because
such simulations are computed using exactly specified num-
bers representing initial conditions. the source of apparent
randomness due to minute variation of initial conditions is
lost when performing simulations instead of physical experi-
ments. These approaches are deterministic and therefore
vulnerable and also subject to attack and compromise if the
particular chaotic formula being used becomes known-—

5.757.923

3

such as for example by examining the relevant patent—or
deduced by cryptanalysis. Similarly, pseudo-random num-
ber generators are based on algorithmic recursion formulas
are subject to compromise.

Strategies employed in pseudo-random number generator
designs have often relied upon specialized digital hardware.
One such method uses a linear feedback shift register
(“LFSR”) for obtaining an n-bit pseudo random number by
serially shifting out bits from the shift register or shift
register chain during a substantially long period outside the
purview of potential eavesdroppers. For example. a sixty
four (64) bit maximal length LFSR running at a clocked
frequency of 1 MHZ could be sampled every few seconds to
approximate a random number stream. In such an example.
the random number stream will not be repeated for 585,000
years. However. this LFSR approach is still deterministic.
As such, all future and past states are predictable when the
present state of the shift register is known. For example,
purchase and reverse-engineering of a single manufactured
unit to determine its secret key value would allow intelligent
guessing of the values of other units manufactured in the
same or proximate batches.

As a result of the hereinabove shortcomings and in view
of the growth of cryptographic applications. a demand eXists
for a random number generator which is not deterministic.
implementable with commonly available equipment. and
which will not generate duplicate secret keys. A need further
exists for such a random number generator from which
results cannot be duplicated, even by the designer or secret
key manufacturer.

DISCLOSURE OF THE INVENTION

The primary advantage of the present invention is to
overcome the limitations of the prior art.

Another advantage of the present invention is to provide
a method and system for generating a number stream that,
using the most advanced cryptanalytic and statistical meth-
ods available. is indistinguishable from a truly random
number stream.

Another advantage of the present invention is to provide
a method and system for generating random numbers which

- is non-deterministic.

Another advantage of the present invention is to provide
a method and system for guaranteeing that no particular
sub-sequence of random numbers or derivative value is used
twice while at the same time eliminating vulnerabilities
normally associated with keeping records of values gener-
ated.

A further advantage of the present invention is to provide
a method and system for generating random numbers which
is immune to attack and compromise, even from the manu-
facturer of the random numbers.

Yet another advantage of the present invenmtion is to
provide a method and system for generating random num-
bers which utilizes the apparently random nature of chaotic
systems generally.

In order to achieve the advantages of the present
invention, a method of generating secret identification num-
bers from a random digital data stream is disclosed. The
method comprises the step of initially selecting a first and a
second group of bytes from the random digital data stream.
wherein the first and second groups of bytes have a first and
second numerical value. Subsequently. a first maximal
length LFSR feedback term is looked up from a list in
response to said first numerical value. The method addition-

10

15

20

25

30

35

45

50

55

65

4

ally comprises the step of generating a cyclic redundancy
code feedback term in response to filtering out predeter-
mined values from a third group of bytes selected from the
random digital data stream. Moreover, the method com-
prises the step of forming the secret identification number
from the first maximal length LFSR feedback term. the
cyclic redundancy code feedback term. and a fourth group of
bytes from the random digital data stream.

Moreover, a method is disclosed for generating a plurality
of random numbers. The method comprises the initial step of
generating chaotic noise. Subsequently. the chaotic noise is
sampled and converted to digital data such that a random
number is generated responsive to the sampled value. A
refinement of the method further processes the digital data
by reordering. compressing. and hashing a plurality of
samples in order to create a plurality of random numbers. A
further refinement of the method retains digests of generated
values in order to provide absolute guarantees that value
sequences of a predetermined length are never duplicated.

Additionally, a system of generating a plurality of random
numbers is also disclosed. The system comprises a chaotic
noise generator for generating chaotic noise, and a recording
device for sampling the chaotic noise such that a plurality of
samples are created. Moreover. a digitizer is incorporated for
converting each sample of the plurality into digital data such
that random numbers are generated responsive to the sample
values. A processing element is used to process the data in
order to provide optimally random values. Additionally. a
table containing digests of previously generated values is
provided in order to filter out potential duplicate value
sub-sequences.

These and other advantages and objects will become
apparent to those skilled in the art from the following
detailed description read in conjunction with the appended
claims and the drawings attached hereto.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be better understood from
reading the following description of non-limitative
embodiments, with reference to the attached drawings.
wherein below:

FIG. 1 illustrates a block diagram of the preferred
embodiment the present invention;

FIG. 2 illustrates a high-level overview flow chart of the
preferred embodiment the present invention;

FIG. 3 illustrates a more detailed flow chart of the first
several steps of the preferred embodiment of the present
invention; and

FIG. 4 illustrates a more detailed flow chart of the
remaining steps of the preferred embodiment of the present
invention.

It should be emphasized that the drawings of the instant
application are not to scale but are merely schematic repre-
sentations and are not intended to portray the specific
parameters or the structural details of the invention. which
can be determined by one of skill in the art by examination
of the information herein.

DETAILED DESCRIPTION OF THE
INVENTION

Referring to FIG. 1. a block diagram of the preferred
embodiment of the present invention is illustrated depicting
a system 5 for generating a plurality for random numbers. It
should be noted that for the purposes of the present disclo-
sure the phrase “random numbers” refers to “apparently”

5,757,923

5

random numbers. Moreover. as will become evident upon
understanding the present disclosure. and the preferred
embodiment particularly, system 5 generates a random
sequence of secret identification numbers, hereinafter
referred to as IDs. In the preferred embodiment, each ID is
associated with a fob of a remote keyless entry system. To
improve and ensure the security of such an entry system.
cryptography is incorporated to substantially restrict the
opportunity to compromise any random ID generated by
system S.

System 5 comprises a chaotic noise source 10 for gener-
ating chaotic noise to realize the aim of generating random
IDs. In one embodiment of the present invention. chaotic
noise source 10 comprises an electromechanical generator
for generating turbulent air flow. Turbulent air flow exhibits
characteristics that may be classified as randomly occurring
in nature. as opposed to those elements having a pseudo
randomness resulting from simulated chaos created by deter-
ministic mathematics. In the preferred embodiment of the
present invention, the turbulent air flow output of the chaotic
noise generator 10 is generated by a small. high-air-volume,
generically “noisy” fan because it provides turbulent air flow
and thus creates noise that is inherently chaotic. It should be
apparent that a spectrally pure noise source. such as a pure
sinusoidal tone, is highly undesirable.

System 5 further comprises a recording device 1§ for
capturing the chaotic noise according to the unique spatial
perspective of the recording device 15. Recording device 15
records the chaotic noise output generated by chaotic noise
source 10, as well as the ambient noise and any other
extraneous sounds. such as fan motor noise, uniquely
present at its particular spatial coordinates. In the preferred
embodiment, recording device 15 comprises a microphone
positioned in reasonably proximate distance to the chaotic
noise source 10 for recording the air flow around the
microphone. It should be apparent to one of ordinary skill in
the art that the relevant amplitudes of the sounds and noises
recorded by recording device 15 when combined with
self-noise from turbulent air flow over and around recording
device 15. are unique, and as such, may not be reproduced
as the coordinates of the device 15 are inhabited by only one
spatial element.

Once the chaotic noise generated by source 10 is recorded
by device 15, the resultant recorded sound is fed into a
computer 20, and more particularly sampler and digitizer 25.
Sampler and digitizer 25 performs two functions. First,
sampler and digitizer 25 samples the sound recorded by
recording device 15 at an interval responsive to the com-
puting speed of the microprocessor 35. In the preferred
embodiment, the interval varies due to timing variations
inherent in software execution but is always longer than the
period of the fundamental frequency of dominant noise
elements in the chaotic noise source 10. An example of such
a scenario is where the sampling interval is slower than the
time required for one rotation of the fan generating the
turbulent chaotic noise.

Sampler and digitizer 25 generates a plurality of samples
responsive to the sampled chaotic noise. Each sample is then
digitized by an analog to digital converter. such that each
sample is converted into a digital data set. which in one
embodiment comprises 8 bits. In the preferred embodiment
of the present invention. both functions of sampler and
digitizer 25 are realized by a personal computer (“PC”)
sound card. such as for example the Sound Blaster® SBPro
sound card.

Moreover. system 5 additionally comprises a micropro-
cessor or microcontroller 35, and a memory 30. Micropro-

10

15

20

25

30

3s

45

55

65

6

cessor 35 performs a series of algorithmic functions stored
in memory 30 for obscuring the generated random numbers.
and for ensuring the randomness of the random numbers
generated. As a result of performing these algorithmic
functions. a random number output is generated. An over-
view of the algorithmic functions performed is provided in
FIG. 2.

Referring to FIG. 3, a detailed flow chart for generating a
stream of apparently random numbers according to the
preferred embodiment of the present invention is illustrated.
It should be noted that the crux of the manufacturing process
of FIG. 3 is to illustrate an inexpensive method for creating
a stream or sequence of random numbers. The present
invention concentrates on the application of generating
apparently random numbers for “secret key” creation. also
with the understanding that the discussion applies equally to
generating any stream of apparently random numbers. such
as that used by one-time pad/Vernam cipher encryption
techniques or for Monte Carlo computer simulations.

The first function performed by microprocessor 35 is the
algorithmic step of shuffling each data set. Upon receiving
a digital data set of each converted sample, microprocessor
35 positions the digital data set into a data array 32. In the
preferred embodiment, array 32 is realized by a disk drive.
However. array 32 may be realized as a portion of memory
30 so as to cover an application that leaves it in RAM.
Nonetheless. rather than simply place samples in adjacent
array locations, an access stride with wraparound is used to
place sequential samples into array 32.

1t is important to note the reasoning behind not putting
sequential samples in adjacent array locations is as follows.
If. for example, a sinusoidal input signal is sampled much
more quickly than the frequency of the sinusoid. sequential
samples will have similar and readily predictable values
because the input signal changes relatively slowly compared
to the sampling rate. While it is desirable to sample slowly
enough that this does not happen. in a practical commercial
system the demand for high data acquisition rates may
require fast enough sampling that this problem must be
resolved in another way. In the preferred embodiment. fast
sampling is permitted, but the data from sequential samples
is dispersed in a data array in order. This dispersion helps
obscure data correlations between successive samples by
spreading the information out. It also facilitates mixing of
data samples from widely different times in later steps.
because the mixing is performed on blocks of adjacent
samples.

In the preferred embodiment, an 8 Kbyte array 32 is used
for data samples. A stride of 89 is used for storing
elements—in other words, each element is stored 89 array
locations past the previous element. modulo 8192. 89 was
picked as a prime number approximately equal to the square
root of 8192. Selecting a stride relatively prime to the array
size guarantees that the strided access will touch every
location within the array before repeating.

It is also preferred that the dominant harmonics of the
chaotic noise source 10 be distinct from the frequency at
which the address for filling array 32 wraps around. In the
preferred embodiment with a stride of 89. this means that the
sampling rate should be such that complete sinusoids of any
strong harmonic do not fit or almost fit in a multiple of 92
samples-8192 array elements divided by a stride of 89
equals approximately 92 strided accesses before wraparound
occurs. If this preferred characteristic is not provided. then
it could result in adjacent samples in the array having similar
values sampled from similar places on a generally periodic.
although chaotically varying waveform.

15.757.923

7

Additionally. microprocessor 35 performs the algorithmic
step of compressing each data set in order to “distill” the
chaotic noise content. The portion of the theoretical infor-
mation content, or entropy. in the data stream is generally
less than the number of raw data bits associated with each
data bit set. By compressing the data bits associated with
each data bit set. the information content is “‘squeezed” into
a smaller space by transforming the raw data stream into a
data stream that is closer in size to the theoretical minimum
based on information entropy. The average entropy of each
bit after compression is higher than the entropy per bit
before compression. Because a higher amount of entropy per
bit better approximates true randomness. this compression
step hampers crypt analysts attempting to perform statistical
analysis on the sampled data.

In the preferred embodiment, each digital data set of 8
Kbytes has been shuffled prior to executing the compression
step. By performing compression on each digital data set.
each number in the resultant compressed data set is better
approximation to apparently random numbers than the raw
samples. Various compression techniques are known to one
of ordinary skill in the art, such as PKZIP compression
software and UNIX compression software. though Huffman
encoding is preferred for this application due to its simplic-
ity.

Huffman encoding entails a byte by byte compression
technique wherein the number of occurrences in the 8 Kbyte
data input set of byte values from 0 to 255 is tallied. Each
byte value is assigned a bit string. with shorter strings
assigned to more frequent byte values. In the event all 256
values of the 8 bit input occur with equal probability. the
data is unaffected. However. as is much more likely the case.
in the event that the probability distribution of imputs is
nonuniform, the Huffman encoding process substitutes a
sequence of varying length bit streams for the array of byte
values. It should be apparent to one of ordinary skill in the
art that as the lengths of the bit strings vary in relation with
the input byte probability distribution, numerous output byte
values exist irrespective of the repetition of the sequence of
input byte values due to undesirable correlations. As such.
Huffman encoding is the preferred compression technique. It
should be noted that in the general case Huffman encoding
or any other off the shelf compression technology will not
provide perfect compression for all possible input data
sets—i.e.. will not result in an entropy of one bit of theo-
retical information content per bit of resultant values—but
will in most practical cases substantially compress the data.

A third algorithmic step performed by microprocessor 35
is one way encrypting the data set. Because compression
will in general not give perfectly random results. a further
step is needed to foil potential attacks by crypt analysts. To
insure against compromise by prediction techniques, each
compressed sample is one way encrypted. The step of one
way encryption is performed for two essential reasons. First,
encrypting the input bits insures the randomness of the
resultant numbers generated by system 5. Second, perform-
ing a one way encryption step frustrates attempts to sample
the random data stream for extrapolating other generated
values based on attempts to model fan noise.

In the preferred embodiment. the one way encryption
technique of choice is MD-5. This selection is based on
several factors. including the fact that MD-5 is a one way
hash function with no cryptographic key requirements.
MD-5 is inherently irreversible because it reduces a 64 byte
input array to a 16 byte output array, making brute force
attacks based on guessing inputs impractical—any given
output could have been generated by 4x10'!° separate

10

15

20

25

30

35

45

50

55

65

8

inputs. Additionally, the fact that MD-5 works on 64 byte
input blocks permits mixing of sampled data from many
non-sequential samples from the strided filling of the input
array 32. As such, recovery of the original data stream is
made impossible. even by the original encryptor. Moreover.
MD-5 comprises a uniformly distributed probability of
output bit values when given inputs with essentially any set
of varying input values. It should be apparent. however. that
the MD-5 approach may replaced by various other encryp-
tion methods in view of the instant disclosure. including
MD-2 encryption, MD-4 encryption. SHA encryption, SNE-
FRU encryption. or even simply Exclusive OR-ing a plu-
rality of input byte values to form each output byte value as
well as other techniques apparent to one of ordinary skill in
the art in view of the present invention.

To further ensure the randomness of the numbers gener-
ated by system S. in an alternate embodiment of the present
invention. an additional algorithmic step is performed by
microprocessor 35. Here, a portion of each compressed
sample preferably. or in the alternative a portion of each data
set are input to a logical exclusive OR (“XOR”) gate 38
simultaneously with an independently varying. guaranteed
non-repeating value, preferably the date and time of day. The
output of the XOR is then one way encrypted algorithmic
step by microprocessor 35. In so doing. some variation is
instituted in the input of the one way encryption algorithm
in the event an unintentionally repetitive data input exists.
As a point of illustration. it should be apparent to one of
ordinary skill in the art that simply running the time of day
or a counter output through an MD-5 encryption scheme
would be vulnerable to attack by someone who knows the
process and guesses the time of day while looking for a
matching output. However, Exclusive OR-ing the time of
day with approximately random values effectively obscures
the information and makes guessing the input to the encryp-
tion algorithm impracticable.

As a result of the hereinabove algorithmic steps. a one
way encrypted random number output is generated by
computer 20, and more particularly microprocessor 35. This
output is comprises a stream of random byte values 64. Each
random byte value comprises a uniform probability of
distribution with respect to a predetermined range.

Referring to FIG. 4, a flow chart of a method for con-
verting the random byte values 64 into ID values is illus-
trated. With a stream of random byte values generated.
several additional steps may be performed to realize a secret
identification value. This is of particular significance where
a secret number is required to uniquely identify a particular
object. such as a keyless entry fob in the preferred
embodiment, or a cellular phone for example.

The first step performed on the stream of random byte
values involves a determination as to whether a secret
identification number is needed. This is particularly of note
in the preferred embodiment where fob transmitters are
manufactured as part of a remote control keyless entry
systems. Here, the fob programmer examines the present
need for a secret identification number for downloading
during production. In the event a secret identification num-
ber is not needed. the random byte stream is discarded while
new values are continuously generated. Discarding bytes
when the programmer is idle further complicates cryptanaly-
sis by making the number of discarded bytes responsive to
the varying interval between fob programming events.

However, when a secret identification number is required.
the random byte values generated are used as a basis for
creating the number. Because the actual numbers used

5,757.923

9

within the secret ID must satisfy certain predetermined
properties. the raw random byte values are not used as the
secret ID value itself. Rather, the secret ID is created in
response to the random byte values as described herein. As
such, the secret IDs are themselves randomly generated—
i.e.. any particular secret ID cannot be predicted even given
complete information about all other secret IDs generated.
The values that comprise the generated secret ID fall within
three categories: linear feedback shift register (“LFSR”).
cyclic redundancy code (*CRC"), and other values.

The LFSR values are selected to correspond with maxi-
mal length feedback polynomials. These are feedback terms
that. when used in an LFSR. produce sequences that cycle
through all possible values except zero before repeating.
Selection of a 20 bit and a 19 bit feedback term, as detailed
in U.S. Pat. No. 5.363.448, commonly assigned with the
present invention is accomplished by using the random byte
stream to randomly select an entry in a file with precom-
puted maximal length LFSR feedback terms.

The CRC feedback value for the secret ID is selected to
correspond to a feedback polynomial that has a mixture of
one and zero bits. The preferred criteria is that random bytes
are employed for the feedback terms. but bytes having fewer
than two “one” bits or fewer than two “zero” bits are
discarded. Thus, each byte of the 39 bit CRC feedback
polynomials is guaranteed to have no more than 6 bits of the
same value. Of course, the top polynomial bit is forced to ‘1’
while the bit above that is set to ‘0’ in view of the fact that
the 39 bit polynomial is contained in a 40 bit set of bytes.
Given that some byte values are discarded, there are [(238°)
/4] or 190.908.292.792 possible values for the CRC feed-
back term, wherein the 5 represents the number of bytes with
238 possible values each. and the four corresponds with the
number of constant values of the top two bits,

As for the third category. the other secret identification
values are selected by simply using the random byte stream
values. In the case of initial LFSR seed values. a non-zero
random value is required, rejecting all zeros.)

Thus, the feedback term of a maximal length linear
feedback shift register (“LFSR”) is randomly selected from
a pre-computed list in a memory device. This results in a 20
bit LFSR feedback and 19 bit LFSR feedback arrangement,
although other sized LFSRs could be readily accommo-
dated.

Moreover, a cyclic redundancy checking (“CRC”) device
subsequently screens feedback values using a 39 bit CRC
feedback configuration such that each byte has at a least two
logical 0 bits and two logical 1 bits. The remainder of the
process involves selecting other data from the random byte
stream as initial values. As a result, the output generated is
a candidate 128 bit secret identification number. Prior to
acceptance, it must be demonstrated to be unique with
respect to all previously generated secret identification val-
ues.

In still a further embodiment of the present invention.
duplicate secret ID values are suppressed without keeping
precise records of secret ID values previously generated.
Duplicate ID values would cause problems in that they
would result in issuing two fobs with identical cryptographic
keys. In order to provide a guarantee of uniqueness. each ID
value generated must be compared against all previously
generated values. However, keeping a list of previously
generated values represents a security vulnerability in that
such a list is subject to theft or other compromise. Thus. the
further embodiment of the present invention keeps a digest
or condensed version of generated IDs in order to guarantee
uniqueness without compromising security.

15

20

30

35

40

45

50

65

10

Detection and elimination of accidentally duplicated
results in the output of computer 20 is performed by means
of a comparator 40 for comparing each output with all
previous outputs. While in the preferred embodiment these
outputs are secret IDs. it will be apparent to one of ordinary
skill in the art that the following techniques could be applied
to any data set comprising a plurality of bits that must be
kept secure. yet be guaranteed unique.

To effectively perform this function of guaranteeing
uniqueness, comparator 40 comprises a memory 42 for
storing a digest of each secret ID generated. Further. in the
preferred embodiment. duplicates are simply ignored.
However. in an a alternate embodiment, a discarding device
or duplicate data dump 44 is incorporated for discarding
duplicates in the plurality of encrypted random numbers.

The comparator 40 and memory 42 operate as follows. As
the first step of maintaining the uniqueness of all secret
identification numbers, a secure digest of the candidate
secret identification number is computed. In the preferred
embodiment, this digest comprises a 32 bit number that is
deterministically computed from the 128 bit identification
number in such a way as to ensure knowledge of the 32 bit
digest does not reveal any useful information about the
original secret identification number. Each secret identifica-
tion number corresponds to one and only one digest value.
Therefore, ensuring that no two secret ID numbers having
identical digest values are ever issued guarantees that no two
identical secret ID numbers are issued. And as a very large
number of distinct secret identification numbers formulate
the same digest value, it is thus difficult to infer which secret
identification number caused any particular digest value to
be generated.

The secret identification digest may be realized by per-
forming a cryptographically secure hash function. While the
MD-5 encryption method is the preferable choice. MD-2,
MD-4, SHA, SNEFRU encryption processes. as well as
other techniques apparent to one of ordinary skill in the art
in view of the present invention may also be employed. The
16 byte identification value is padded with zeros to form a
64 byte input. MD-5 then computes a 128-bit result that is
treated as four 32 bit words which are XORed together to
form a 32 bit resultant digest value. This resultant digest
value is uniformly distributed over the range of a 32 bit
values.

As result of computing a secret identification digest.
according to the preferred embodiment, a bitmapped table of
previously generated digest values is checked for duplicates.
Tt should be noted that the probability of an actual duplicate
is vanishingly small. With no “twiddle factor”—defined as
the value of bit pattern 26 in U.S. Pat. No. 5.398.284—the
possible number of combinations equal the product of the
number (256) of ID byte values, the count number (255) of
LFSR initializer values. the count number (2048) of LFSR
feedback values. the identification number (8.355.840) of
LFSR initializer values, the identification number (356.960)
of LFSR feedback values, and the number (190.908.292,
792) of CRC feedback values. or 7.61x10°! possible valid
identification numbers.

For randomly generating values. an approximation to the
expected number of identification numbers for which a
single duplicate will be generated is approximately V),
where V is the total number of possible of identification
numbers. As 7.61x10°! possible valid identification num-
bers exist. one duplicate is expected to be generated for
every (2x(7.61x10%))"2=1.23x10'° secret identification
numbers manufactured. Thus, where an identification num-

5.757.923

11

ber is generated once per second, one duplicate will be
generated every 390 million years.

However, human errors. hardware failures. software bugs.
and mechanical failures must also be considered. Thus, a
duplicate checking function is performed. By checking for
duplicates. a “collision” with previous digest values may be
detected and discarded to insure against the possibility that
two secret identification numbers are generated. This is
realized by first comparing the digest value with a list of all
previously generated digest values. Subsequently. new
secret identification numbers having duplicate digest values
are discarded. As such. identification numbers generating a
previously encountered digest value having a bitmapped
table value of 1 are discarded.

With potential duplicates discarded. an accepted identifi-
cation number is input with a new digest value having a
bitmap table value of 0. This unique resultant identification
number then causes the bitmap table for the new digest value
to be set to 1. indicating that the new identification number
has been issued. After doing so, the programmer may
transfer the secret identification number to the object requir-
ing a secret number.

Using the above process. a resultant secret identification
number may be programmed into a fob transmitter in a
remote keyless entry vehicular system. Once residing within
the fob transmitter, a base receiver of the remote keyless
entry vehicular system may be programmed with the secret
identification number. By this arrangement, the secret iden-
tification number is transmitted by means of the computer
only a single time to insure against compromise as is well
known in the art.

While the particular invention has been described with
reference to illustrative embodiments, this description is not
meant to be construed in a limiting sense. It is understood
that although the present invention has been described in a
preferred embodiment, various modifications of the illustra-
tive embodiments, as well as additional embodiments of the
invention. will be apparent to persons skilled in the art upon
reference to this description without departing from the
spirit of the invention, as recited in the claims appended
hereto. Thus. while detailed for use in remote keyless entry
systems for automobiles and other vehicles, it should also be
apparent to one of ordinary skill in the art that the present
invention is also applicable to others remote systems requir-
ing security. generally, as well as RFID tags. garage door
openers, cellular phones and remote computer access
systems, more specifically. It is therefore contemplated that
the appended claims will cover any such modifications or
embodiments as fall within the true scope of the invention.

All of the U.S. Patents cited herein are hereby incorpo-
rated by reference as if set forth in their entirety.

We claim:

1. A method of generating a secret identification number
from a random digital data stream. the method comprising
the steps of:

selecting a first group of bytes from the random digital

data stream, said first group of bytes having a first
numerical value;
looking up a first maximal length LFSR feedback term
from a list in response to said first numerical value;

generating a cyclic redundancy code feedback term in
response to filtering out predetermined values from a
third group of bytes selected from said random digital
data stream; and

forming the secret identification number from said first

maximal length LFSR feedback term. said cyclic

10

15

20

25

30

35

50

55

65

12

redundancy code feedback term. and a fourth group of
bytes from said random digital data stream.
2. The method of generating a secret identification num-
ber from a random digital data stream of claim 1. wherein
said step of generating a cyclic redundancy code feedback
term comprises the steps of:
examining whether said cyclic redundancy code feedback
term comprises less than two “0” bits or “1” bits; and

generating a replacement feedback term for said cyclic
redundancy code feedback term if said cyclic redun-
dancy code feedback term comprises less than two “0”
bits or “1” bits.

3. The method of generating a secret identification num-
ber from a random digital data stream of claim 1. further
comprising the steps of:

selecting a second group of bytes from the random digital

data stream. said second group of bytes having a second
numerical value; and

looking up a second maximal length LFSR feedback term

from a list in response to said second numerical value
such that said secret identification number is formed
from said first and second maximal length LFSR feed-
back terma, said cyclic redundancy code feedback
term, and a fourth group of bytes from said random
digital data stream.

4. The method of generating a secret identification num-
ber from a random digital data stream of claim 3. further
comprising the steps of:

repeating the steps of randomly selecting a first and a

second group of bytes, looking up a first maximal
length LFSR feedback term, looking up a second
maximal length LFSR feedback term. generating a
cyclic redundancy code feedback term, N times to
create N secret identification numbers;

one way encrypting each of said N secret identification

numbers;

computing a secure digest for each one way encrypted

secret identification number of said N secret identifi-
cation numbers;

comparing each one way encrypted secret identification

number of said N secret identification numbers with
each other one way encrypted secret identification
number of said N secret identification numbers within
said digest; and

discarding each one way encrypted secret identification

number of said multiplicity within said digest when two
identical compressed one way encrypted secret identi-
fication number are discovered.

5. A method for generating a multiplicity of random
numbers, the method comprising the steps of:

generating chaotic noise;

sampling said chaotic noise such that a plurality of

samples are created;

converting said plurality of samples into a random digital

data stream; and

forming the multiplicity of random numbers from said

random digital data stream.

6. The method for generating a multiplicity of random
numbers of claim 5, wherein said step of forming the
multiplicity of random numbers comprises:

shuffling said plurality of converted samples to obscure

correlations between the multiplicity of random num-
bers.

7. The method for generating a multiplicity of random
numbers of claim S, wherein said step of forming the
multiplicity of random numbers comprises:

5.757.923

13

compressing said plurality of converted samples such that
each random number of the multiplicity has an equal
probability of being generated.

8. The method for generating a multiplicity of random
numbers of claim 5, wherein said step of forming the
multiplicity of random numbers comprises:

one way encrypting said plurality of converted samples to

prevent sampling the random digital data stream for
extrapolating other generated values based on model-
ing said generated chaotic noise.

9. The method for generating a multiplicity of random
numbers of claim 8. further comprising the step of:

examining said one way encrypted plurality of converted

samples for duplicate converted samples; and
discarding said duplicate one way encrypted converted
samples.

10. The method for generating a multiplicity of random
numbers of claim 8. further comprising the step of:

exclusively ORing an independent perspective marker

with said compressed plurality of converted samples to
insure the randomness of the multiplicity of random
numbers.

11. The method for generating a multiplicity of random
numbers of claim §, wherein said step of generating chaotic
noise comprises the step of:

generating turbulent air flow.

12. The method for generating a multiplicity of random
numbers of claim 11, wherein said step of generating tur-
bulent air flow comprises the step of:

operating a fan for generating said turbulent air flow.

13. The method for generating a multiplicity of random
numbers of claim 12, wherein said step of sampling is
performed at a lower frequency than said fan operates.

14. The method for generating a multiplicity of random
numbers of claim 5, wherein said further comprising the
steps of:

selecting a first group of bytes from said random digital

data stream, said first group of bytes having a first
numerical value. respectively;
looking up a first maximal length LFSR feedback term
from a list in response to said first numerical value;

generating a cyclic redudancy code feedback term in
response to filtering out predetermined values from a
third group of bytes selected from said random digital
data stream; and

forming a secret identification number from said first

maximal length LFSR feedback term, said cyclic
redudancy code feedback term, and a fourth group of
bytes from said random digital data stream.
15. The method for generating a multiplicity of random
numbers of claim 14. wherein said step of generating a
cyclic redudancy code feedback term comprises the step:
examing whether said cyclic redundancy code feedback
term comprises less than two “0” bits or “1” bits; and

generating a replacement feedback term for said cyclic
redundancy code feedback term if said cyclic redun-
dancy code feedback term comprises less than two “0”
bits or “1” bits.

16. The method for generating a multiplicity of random
numbers of claim 14, further comprising the steps of:

selecting a second group of bytes from the random digital

data stream. said second group of bytes having a second
numerical value; and

looking up a second maximal length LFSR feedback term

from a list in response to said second numerical value

15

20

35

45

50

55

65

14

such that said secret identification number is formed
from said first and second maximal length LFSR feed-
back terma. said cyclic redundancy code feedback
term. and a fourth group of bytes from said random
digital data stream.

17. The method for generating a multiplicity of random
numbers of claim 16, further comprising the steps of:

repeating the steps of randomly selecting a first and a

second group of bytes, looking up a first maximal
length LFSR feedback term. looking up a second
maximal length LFSR feedback term. generating a
cyclic redudancy code feedback term, N times to create
N secret identification numbers;

one way encrypting each of said N secret identification

numbers;

computing a secure digest of each one way encrypted

secret identification number of said N secret identifi-
cation numbers;

comparing each one way encrypted secret identification

number of said N secret identification numbers within
said digest; and

discarding each one way encrypted secret identification

number of said multiplicity within said digest when two
identical compressed one way encrypted secret identi-
fication number are discovered.

18. A process for generating a multipicity of secure
random numbers. the process comprising:

generating chaotic noise from turbulent air flow;

sampling said chaotic noise such that a plurality of

samples are created;

converting said plurality of samples into a random digital

data stream;

shuffling said plurality of converted samples to obscure

correlations between the multiplicity of random num-
bers;

compressing said shuffled plurality of converted samples

such that each random number of the mulitplicity has
an equal probability of being generated; and

one way encrypting said compressed plurality of shuffled

and converted samples such that the plurality of secure
random numbers are created.

19. The process for generating a multiplicity of secure
random numbers of claim 18, wherein said step of shuffling
said digital data set comprises the step of:

positioning each converted sample of said plurality into a

data array using a stride to reduce sampling correlations
resulting from said sampling of said chaotic noise.

20. The process for generating a multiplicity of secure
random numbers of claim 19, wherein said array comprises
a width, said stride comprises a size, said width and said size
being a prime number.

21. The process for generating a multiplicity of secure
random numbers of claim 18. wherein said step of com-
pressing said shuffled plurality of converted samples com-
prises the step of:

Huffman encoding said shuffled plurality of converted

samples; or

PKZIP compressing said shuffled plurality of converted

samples; or

UNIX compressing said shuffled plurality of converted

samples.

22. The process for generating a multiplicity of secure
random numbers of claim 18, wherein said step of one way
encrypting said compressed plurality of shuffled and con-
verted samples comprises the step of:

5.757.923

15

MD-2 encrypting said compressed plurality of shuffled
and converted samples; or

MD-4 encrypting said compressed plurality of shuffled
and converted samples; or

MD-5 encrypting said compressed plurality of shuffled
and converted samples; or

SHA encrypting said compressed plurality of shuffled and
converted samples; or

SNEFRU encrypting said compressed plurality of
shuffled and converted samples.

23. The process for generating a multiplicity of secure

random numbers of claim 18, further comprising the step of:

examining each encrypted sample of said plurality for a
duplicate encrypted sample; and
discarding said duplicate encrypted sample to insure the
uniqueness of each random number of the plurality.
24. The process for generating a multiplicity of secure
random numbers of claim 18. further comprising the step of:

exclusively ORing an independent perspective marker
with said compressed plurality of shuffled and con-
verted samples to insure the randomness of the multi-
plicity of random numbers.

25. The process for generating a multiplicity of secure
random numbers of claim 24. wherein said independent
perspective marker comprises a time of day stamp.

26. The process for generating a multiplicity of secure
random numbers of claim 18. wherein said step of generat-
ing chaotic noise from turbulent air flow comprises the step
of:

operating a fan for generating said turbulent air flow.
27. The process for generating a multiplicity of secure
random numbsers of claim 24, wherein said step of sampling
is performed at a lower frequency than said fan operates.
28. The process for generating a multiplicity of secure
random numbers of claim 18, further comprising the steps
of:
randomly selecting a first and a second group of bytes
from said random digital data stream, said first and
second groups of bytes having a first and a second
numerical value, respectively;
looking up a first maximal length LFSR feedback term
from a list according to said first numerical value;

10

15

20

25

30

35

16

looking up a second maximal length LFSR feedback term
from said list according to said second numerical value;

generating a cyclic redudancy code feedback term in
response to executing a cyclic redudancy code check on
a third group of bytes selected from said random digital
data stream; and

forming a secret identification number from said first and

second maximal length LFSR feedback terms, said
cyclic redudancy code feedback term. and a fourth
group of bytes from said random digital data stream.
29. The process for generating a multiplicity of secure
random numbers of claim 28. wherein said step of generat-
ing a cyclic redudancy code feedback term comprises the
steps of:
examing whether said cyclic redundancy code feedback
term comprises less than two “0” bits or “1” bits; and

generating a replacement feedback term for said cyclic
redundancy code feedback term if said cyclic redun-
dancy code feedback term comprises less than two “0”
bits or “1” bits.

30. The process for generating a multiplicity of secure
random numbers of claim 28, further comprising the steps
of:

repeating the steps of randomly selecting a first and a

second group of bytes, looking up a first maximal
length LFSR feedback term. looking up a second
maximal length LFSR feedback term. generating a
cyclic redudancy code feedback term. N times to create
N secret identification numbers;

one way encrypting each of said N secret identification

numbers;

computing a secure digest of each one way encrypted

secret identification number of said N secret identifi-
cation numbers;

comparing each one way encrypted secret identification

number of said N secret identification numbers within
said digest; and

discarding each one way encrypted secret identification

number of said multiplicity within said digest when two
identical compressed one way encrypted secret identi-
fication number are discovered.

* ¥ ¥ ¥ x

