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SAFETY ARCHITECTURE FOR
AUTONOMOUS VEHICLES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a § 371 National Stage Application of
PCT/US2017/012321, filed Jan. 5, 2017, which claims the
benefit of priority under 35 U.S.C. § 119(e) to provisional
U.S. Patent Application No. 62/387,804, filed Jan. 5, 2016,
the entire contents of each of which are hereby incorporated
by reference.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH AND
DEVELOPMENT

This invention is made with government support under
the United States Army Grant Number W900KK-11-C-
0025. The government has certain rights in this invention.

BACKGROUND

The complexity of unmanned vehicle software outpaces
software-safety engineering techniques available today.
Software-safety standards define processes to be employed
when creating and validating software. While necessary, the
processes prescribed by current standards may not be suf-
ficient to ensure the safety of autonomous software within
self-driving vehicles. In some cases, methods for advanced
autonomy, such as machine learning, cannot readily be
validated using traditional software testing methods. As a
result, independent runtime invariant monitors have been
used to firewall safety criticality into a small subset of the
architecture, thus focusing resource-intensive software-
safety engineering techniques away from complex
autonomy software and onto much simpler monitoring com-
ponents. But so far, such techniques have been most suc-
cessfully deployed to unmanned vehicles that are remote-
controlled or teleoperated. To date, it has not been clear how
runtime invariant monitors could be most effectively used to
mitigate safety risks posed by autonomous functions such as
planning and control.

SUMMARY

The present disclosure describes an architecture for
autonomous vehicles that incorporates arbitrary autonomy
algorithms into a system that upholds strict safety require-
ments. In this architecture, autonomy components are
allowed to fail arbitrarily, even maliciously, while higher-
integrity (e.g., higher Safety Integrity Level) “safety gate”
components, which might be built without the need for
autonomy techniques, uphold safety requirements. A set of
architectural stages is created based on a reusable architec-
tural pattern for mapping, planning, and executing safe
trajectories. Hach stage includes a primary “doer/checker”
pair, and an optional secondary “doer/checker” pair to
provide a degraded mode of operation in case the primary
pair fails. In this disclosure, “doing” means performing
autonomous control, while “checking” means confirming
that the control signals are safe to execute. If successfully
applied, this doer/checker principle may be a suitable option
for adoption by safety standards for building dependable
systems. In known architectures using the doer/checker
architectural pattern, if the doer misbehaves, the checker
shuts the entire function down (both modules), resulting in
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a fail-silent system (i.e., any failure results in a silent
component, sometimes also known as fail-stop, or fail-safe
in appropriate cases). This may pose a challenge in
autonomy systems where it is common to require fail
operational system behavior (e.g., an aircraft must keep
flying even if there is an autonomy failure). The architecture
described in this disclosure addresses this concern by using
a multi-channel approach to ensuring continued operation
despite one or potentially multiple component failures.

In one aspect, a safety architecture system includes a first
stage comprising: a primary unit that generates primary data
for performing normal system functionality; a secondary
unit that generates secondary data for performing alternative
system functionality; a primary safety gate coupled to the
primary unit, with the primary safety gate providing the
primary data as a primary output responsive to a determi-
nation of validity of the primary data; and a secondary safety
gate coupled to the secondary unit, with the secondary safety
gate providing the secondary data as a secondary output
responsive to a determination of validity of the secondary
data. The system also includes an output selector that is
coupled to both the primary safety gate and the secondary
safety gate of the first stage, with the output selector
providing a system output responsive to the determinations
of the validities of the primary data and the secondary data.

Implementations of the disclosure can include one or
more of the following features. The primary safety gate may
determine validity of the primary data responsive to a
permissive envelope provided by the secondary safety gate.
The system may include one or more additional stages
comprising a second stage, wherein a primary data output of
the second stage provides an input to the primary unit of the
first stage, and a secondary data output of the second stage
provides an input to the secondary unit of the first stage. The
secondary safety gate may determine whether the secondary
data was received within a predefined time window to
determine whether the secondary data is valid. The second-
ary safety gate may include a buffer that stores the secondary
data in response to the determination the validity of the
secondary data. The secondary unit may provide previously
stored secondary data as the secondary output responsive to
a determination of invalidity of the secondary data. The
system output may include control data for operating a
vehicle.

In another aspect, a method includes generating, by one or
more processors, primary data for performing normal sys-
tem functionality; generating, by the one or more processors,
secondary data for performing alternative system function-
ality; providing, by the one or more processors, the primary
data as a primary output of a first stage responsive to
determining validity of the primary data; providing, by the
one or more processors, the secondary data as a secondary
output of the first stage responsive to determining validity of
the secondary data; and providing, by the one or more
processors, a system output responsive to determining the
validities of the primary data and the secondary data.

Implementations of the disclosure can include one or
more of the following features. Determining the validity of
the primary data may be responsive to a permissive enve-
lope. Generating the primary data may include receiving a
primary input via a primary data output of a second stage;
and generating the secondary data may include receiving a
secondary input via a secondary data output of a second
stage. Determining the validity of the secondary data may
include determining that the secondary data was generated
within a predefined time window. The method may include
storing the secondary data in response to determining the
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validity of the secondary data. The method may include
providing previously stored secondary data as the secondary
output of the first stage responsive to determining invalidity
of the secondary data. The system output may include
control data for operating a vehicle.

In yet another aspect, a system includes a primary planner
unit that generates primary path data for moving a device
from a first location to a second location; a safing planner
unit that generates safing path data for moving the device in
presence of one or more adverse conditions during the
moving of the device in accordance with the primary path
data; a primary planner safety gate that receives the primary
path data from the primary planner unit, determines whether
the primary path data provides for the moving of the device
in accordance with the primary path data in a safe manner,
and provides the primary path data as a verified primary path
output in response to a determination that the primary path
data provides for the moving of the device in accordance
with the primary path data in the safe manner; a safing
planner safety gate that receives the safing path data from the
safing planner unit, determines whether the safing path data
provides for the moving of the device so as to avoid the one
or more adverse conditions, and provides the safing path
data as a verified safing path output in response to a
determination that the safing path data provides for the
moving of the device so as to avoid the one or more adverse
conditions; a primary trajectory executor unit that receives
the verified primary path output and generates primary
trajectory data from a current waypoint of the device based
on the verified primary path output; a safing trajectory
executor unit that receives the verified safing path output and
generates safing trajectory data from a current waypoint of
the device based on the verified safing path output; a primary
trajectory safety gate that receives the primary trajectory
data from the primary trajectory executor unit, determines
whether the primary trajectory data is consistent with a
current state of the device, and provides the primary trajec-
tory data as a verified primary trajectory output in response
to a determination that the primary trajectory data is con-
sistent with the current state of the device; a safing trajectory
safety gate that receives the safing trajectory data from the
safing trajectory executor unit, determines whether the saf-
ing trajectory data is consistent with the current state of the
device, and provides the safing trajectory data as a verified
safing trajectory output in response to a determination that
the safing trajectory data is consistent with the current state
of the device; and a priority selector that is coupled to the
primary trajectory safety gate to receive the verified primary
trajectory output, to the safing trajectory safety gate to
receive the verified safing trajectory output, and to a con-
troller to provide control data, the priority selector provides
as the control data one of: the verified primary trajectory
output if the verified primary trajectory output is received,
the verified safing trajectory output if only the verified safing
trajectory output is received, or a default output if neither the
verified primary trajectory output nor the verified safing
trajectory output is received.

Implementations of the disclosure can include one or
more of the following features. The safing trajectory execu-
tor unit may generate a permissive envelope that specifies a
minimum acceleration rate, a maximum acceleration rate, a
minimum deceleration rate, a maximum deceleration rate, a
minimum curvature change rate, and a maximum curvature
change rate; and the primary trajectory safety gate may
determine whether the primary trajectory data is within
values specified by the permissive envelope to determine
whether the primary trajectory data is consistent with a
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current state of the device, and may provide the verified
primary trajectory output in response to a determination that
the primary trajectory data is within the values specified by
the permissive envelope. The safing trajectory safety gate
may determine whether the safing trajectory data was
received within a predefined time window to determine
whether the safing trajectory data is consistent with the
current state of the device. The safing trajectory safety gate
may include a buffer that stores the safing trajectory data in
response to a determination that the safing trajectory data is
consistent with the current state of the device. The safing
trajectory safety gate, in response to a determination that the
safing trajectory data is not consistent with the current state
of'the device, may access previously stored safing trajectory
data, may determine whether the previously stored safing
trajectory data is consistent with the current state of the
device, and may provide the previously stored safing tra-
jectory data as the verified safing trajectory output in
response to a determination that the previously stored safing
trajectory data is consistent with the current state of the
device. The device may include a vehicle and the one or
more adverse conditions may include at least one of a
condition that prohibits the moving of the vehicle in accor-
dance with the primary path data or a failure of a component
of the vehicle that makes the moving of the vehicle in
accordance with the primary path data unachievable.

All or part of the foregoing may be implemented as a
computer program product including instructions that are
stored on one or more non-transitory machine-readable
storage media, and that are executable on one or more
processing devices. All or part of the foregoing may be
implemented as an apparatus, method, or electronic system
that may include one or more processing devices and
memory to store executable instructions to implement the
stated functions.

The subject matter described in this specification may be
implemented to realize one or more of the following poten-
tial advantages. The gap between complex autonomy algo-
rithms and dependable software systems may be bridged by
allowing autonomy components to be integrated into a
high-dependability framework. Such framework may assure
safe system operation even when individual components,
such as autonomy components, fail in an arbitrarily bad
manner (e.g., both accidental faults and maliciously unsafe
behavior by an individual component). Additionally, fail-
operational system-level behavior may be provided even
when individual components fail or must be shut down due
to unsafe component-level behaviors. Heterogeneous func-
tional modules may be provided to reduce the chance of
common mode failures, and degraded mode behavior may
be provided to, for example, perform a safing mission when
primary functionality fails.

The details of one or more implementations are set forth
in the accompanying drawings and the description below.
While specific implementations are described, other imple-
mentations exist that include operations and components
different than those illustrated and described below. Other
features, objects, and advantages will be apparent from the
description, the drawings, and the claims.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 shows a flowchart of a very high-level, multi-stage
description of autonomous capabilities for an autonomous
ground vehicle.
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FIG. 2 shows a block diagram of a system for avoiding the
need for full-functionality autonomy software to be devel-
oped to safety critical standards.

FIG. 3 shows a grid-based binary cost map.

FIG. 4 shows a block diagram of a generalized example
of a two-channel version of the safe autonomy architecture.

FIG. 5 shows a block diagram of an example of a system
instantiation of a safe autonomy architecture.

FIG. 6 shows a diagram of an example of an occupancy
grid for motion planning.

FIG. 7 shows a diagram of an example of an occupancy
grid for motion planning in reaction to a falling tree.

FIG. 8 shows a flowchart of an example of a process
performed by an autonomous device safety architecture
system.

DETAILED DESCRIPTION

The present disclosure describes a general-purpose archi-
tecture that allows autonomy components with arbitrarily
bad failure modes to be integrated into a high-dependability
framework. In this architecture, autonomy components are
allowed to fail while “safety gate” components uphold
safety requirements. While this disclosure describes the
architecture in the context of an autonomous ground vehicle
(AGV), the architecture is general-purpose for application in
any autonomous system including, without limitation, fully
autonomous ground vehicles, semi-autonomous ground
vehicles, air vehicles, and other robotic systems with com-
plete or partial autonomy.

By way of example, FIG. 1 is a flowchart 100 summa-
rizing, at a very high level, the capabilities that should be
reliably implemented in an AGV. At 102, the AGV builds a
model of the surrounding world. The model describes, at
some level, information needed to detect safety hazards,
including leader vehicles, other traffic, pedestrians, objects
on the road, and so on. Models may be built from data from
multiple sensors, and may also use prior maps.

At 104, the AGV plans a trajectory through the world that
satisfies safety requirements. This may be accomplished
using path-planning algorithms. For example, path planners
may search for trajectories that avoid obstacles and maintain
stability. At 106, the AGV executes this trajectory. Each of
these capabilities should be implemented reliably in the
AGV’s software architecture, and should be backed by
claims in its safety case.

This decomposition of autonomous behaviors results in
algorithms that each address one of a plurality of stages
including models that fuse sensor readings into maps, proba-
bilistic roadmap planners that find a path to a goal on those
maps, and path tracking algorithms that execute the path.
Because the architecture involves “simple checks” on con-
trol outputs, checking may be simpler if done within the
limited scope of a single control algorithm. Thus, checking
may be simplified by creating a check for each stage of the
autonomy system.

The present disclosure describes an architectural pattern
that can be instantiated within any autonomy processing
stage to make guarantees about the outputs sent to down-
stream stages. This pattern is suitable across the general
category of autonomy functionality and other similar system
structures and functions and permits substituting different
autonomy algorithms in one stage without disrupting the
operation of other stages. A system according to this archi-
tecture can have one or more stages. As an example of this
pattern, this disclosure describes techniques suitable for the
planning and execution stages. The architectural pattern is
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additionally applicable to non-autonomy applications hav-
ing a mixture of less-trustworthy components (e.g., off-the-
shelf software components) and more trustworthy compo-
nents (e.g., safety critical components),

Applying Reliability Patterns

The techniques involve applying proven reliability pat-
terns to reliably plan and execute safe trajectories. Providing
redundancy by running the same software on two different
computers may be ineffective at mitigating software design
faults because there is an expectation that both copies of the
software will fail at the same time from the same software
defect if such a defect is activated. Such use of diverse
software (also known as multi-version programming)
require each copy of autonomy software to be safety critical,
thus doubling (or more) the cost of developing software
compared to a single copy. For autonomy software, how to
create even one copy of high integrity software with the
requisite functionality may not be known, which may make
such an approach infeasible.

FIG. 2 shows a block diagram of a system 200 for
avoiding the need for full-functionality autonomy software
to be developed to safety critical standards. The system 200
illustrated in FIG. 2 is known as the Simplex architecture.
The Simplex architecture includes two distinct control com-
ponents: the Complex Subsystem 202 and the Safety Sub-
system 204. The Complex Subsystem 202 may be a sophis-
ticated control algorithm that is difficult to develop to a
sufficient level of integrity. The Safety Subsystem 204 can
provide similar, but simplified control features as the Com-
plex Subsystem 202, but does so using a high-integrity
implementation. The high integrity implementation may be
much simpler, and therefore less optimized, than the com-
plex implementation. The Safety Subsystem 204 may be a
dependable fallback capability if the Complex Subsystem
202 experiences a fault. The Simplex architecture may be
used to integrate a high-performance but less-proven tech-
nology in a safe manner. In the Simplex architecture, deci-
sion logic is responsible for disconnecting the Complex
Subsystem 202 from a plant 206 if its outputs could lead to
an unsafe system state. When an unsafe condition is pre-
dicted, the Safety Subsystem 204 is put in control to avoid
an accident.

Correctly implementing the Simplex architecture may
provide both performance and reliability in the same archi-
tecture, which may be quite valuable. Nominal performance
is determined by the complex, high-performance control
subsystem 202, while the worst-case performance is
bounded by the safety subsystem 204. The scope of costly
verification and validation is focused on the safety subsys-
tem 204 and decision logic 208, which, if designed properly,
are relatively simple components. Achieving these benefits,
however, may require careful design analysis and strict
adherence to requirements. In the Simplex architecture there
are two doers (safety subsystem 204, complex subsystem
202) and one checker (decision logic 208).

The Simplex architecture has some utility in reliable
trajectory planning and execution for an AGV. In an AGYV,
the Complex Subsystem 202 could use a traditional robotic
path-planning algorithm. The Safety Subsystem 204 could
be a safe shutdown control subsystem (e.g., bring the vehicle
to a stop in a controlled manner). However, design chal-
lenges remain.

A remaining design challenge includes determining
whether a “safety planner” that meets the requirements of
the Safety Subsystem 204 can be feasibly implemented. One
example for a leader/follower convoying planner includes a
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planning system that uses an emergency maneuver library to
guarantee that a safe trajectory is always available.

Another remaining design challenge includes designing
logic that can determine when to enable the Safety Subsys-
tem 204 (e.g., the Decision Logic 208). This may be
challenging because it requires the ability to evaluate the
safety of trajectories generated by the Complex Subsystem
202. Moreover, the Decision Logic 208 should be a high-
integrity component, since it has the ability to enable/disable
the Safety Subsystem’s control of the vehicle.

The Decision Logic 208 includes a “trajectory evaluation”
component that evaluates the trajectories produced by the
Complex Subsystem 202. If the component determines that
a trajectory is unsafe, it inhibits the output of the Complex
Subsystem 202. The component wraps the Complex Sub-
system 202 within a safety gate architecture to make it fail
silently upon such determination. The feasibility of imple-
menting such a component involves whether a trajectory-
evaluation algorithm can be implemented in a way that is
feasible to verify. To do this, the concept that evaluation is
simpler than planning can be leveraged. Path planning is a
search problem over the vehicle’s control space, which may
be so large that complex and randomized algorithms should
be employed to find practical solutions. By comparison,
evaluating the safety of an individual path through this
control space is a relatively simple exercise of (i) aligning
the commanded trajectory over a grid-based binary cost map
(shown as map 300 in FIG. 3), (ii) simulating the traversing
of the path (e.g., path 302) through cost map cells, and (iii)
if a cell is non-traversable (e.g., intersects the dark cells 304
of the map 300 in FIG. 3), then rejecting the path, and
otherwise, accepting it.

For this discussion, the world model is assumed to contain
sufficient information to represent all obstacles. An example
of' a model representation includes a cost map, which is a
regular grid encoding the “cost” of traversing a given
discrete unit of space in front of the vehicle. A simple cost
metric may be the height of objects in a cell above the
nominal ground plane, which may be relevant to on-road
navigation because the generally flat road surface makes
object height an intuitive component of traversability. When
traveling over very complex surfaces, such as aggressive
off-road navigation, the notion of a “nominal ground plane”
can become less helpful, and forward simulation of vehicle
motion may be used to evaluate seemingly straightforward
traversability characteristics such as effective slope. How-
ever, even in benign on-road conditions, sources of error
such as sensor calibration can confound simple traversability
analysis.

If the Complex Subsystem 202 fails silently (via the
decision logic 208 disconnecting the Complex Subsystem
202 when it generates unsafe trajectories), then requirements
on the Decision Logic 208 are simplified in that the Safety
Subsystem 204 is put in control of the vehicle if a command
is not received from the Complex Subsystem 202 within a
specified time window. Forcing safety-planner trajectories to
terminate in a safe and stopped state can ensure that the
trajectories are generated within a limited planning horizon.
By limiting the planning horizon, safe trajectory generation
can be computationally feasible and can exist entirely within
the known configuration space (CSPACE) region local to the
vehicle, thus eliminating the possibility of encountering an
obstacle beyond sensor range while executing the emer-
gency trajectory controls. Terminating a safety-planner tra-
jectory with a stopped state may be necessary to avoid
circumstances where after executing a safety maneuver the
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vehicle ends in an inevitable collision state—a state where
no matter what control action is taken in the future, a
collision will occur.

For example, suppose a safety maneuver is generated to
swerve past a tree whereby at the end of the maneuver the
vehicle has returned to its original velocity. Although the
safety maneuver may have successfully avoided the tree, the
end state of the maneuver may cause the vehicle to be unable
to stop in time to avoid a boulder that was outside the local
sensor radius of the vehicle when the maneuver began. A
trajectory that does not end in zero velocity may result in the
vehicle colliding with the previously unknown boulder.

In the Simplex architecture, the Decision Logic 208 has at
least one fail operational component because the complex
subsystem 202 provides optimized behavior but is untrusted.
The decision logic 208 is ready at any time to switch
operation to the safety subsystem 204. Because the decision
logic 208 may not detect if the safety subsystem 204 is
unsafe, the safety subsystem 204 (which is a “doer” and not
a “checker”) is high-integrity fail-operational, and the deci-
sion logic 208 is also high-integrity. The decision logic 208
can either be fail-operational or fail-safe with “safe” behav-
ior resulting in a switch to the safety subsystem 204. In
contrast, the architecture described in this disclosure does
not require any of the doers to be fail operational, nor does
it require any of the doers to be high integrity.

Architecture Overview

The safety architecture described in this disclosure
includes a reusable design pattern which can serve as a basis
for the safe control of any robotic or other autonomous or
semi-autonomous system, as well as any system that must be
built as a composition of high dependability and low
dependability components. That pattern provides, among
other things, fail-operational system level behavior without
requiring any fail operational component blocks, and with-
out requiring any high-integrity doer autonomy blocks. By
defining the relationships between classes of objects in a
control system, the general problem of safe vehicle naviga-
tion and the information requirements and dependencies
necessary to implement these concepts in the context of a
larger, general autonomy system can be understood. This
formalized structure not only facilitates a greater under-
standing of the problem at hand, but also provides benefits
such as unambiguous communication of requirements and
improved maintainability through modularization.

FIG. 4 is a block diagram showing a generalized example
of a two-channel version of the safe autonomy architecture
400. The left portion of the architecture 400 includes a
primary unit 402, a primary safety gate 404, a safing unit
406, and a safing safety gate and buffer 408. The left portion
of the architecture 400 may be repeated one or more times
in a pipeline fashion. The right portion of the architecture
400 includes an optional priority selector 410 for final
actuation resolution approach.

The architecture 400 includes “primary” and “safing”
channels that are chained together through layers of a
system, until at some point a single command output, such
as a motor-control command, is provided. The priority
selector 410 arbitrates between the channels. If outputs are
available from the primary and safing channels, the priority
selector 410 transmits the primary channel output. If only a
safing channel output is available, the priority selector 410
transmits the safing channel output. In any other case, the
priority selector 410 transmits a motion stop (“MSTOP”)
command, which is a low-level backup means of bringing
the vehicle to a stop, such as hitting the brakes and cutting
throttle, or deploying a parachute for an aircraft.
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A benefit of the architecture 400 stems from the fact that
units 402, 406 used to generate outputs in both channels (i.e.,
the doers) may have low integrity levels, and in fact may
each fail arbitrarily. If an unhandled fault occurs in either the
Primary Unit 402 or the Safing Unit 406, a properly-
instantiated architecture will remain operational and will
still meet safety requirements. If both primary and secondary
units fail, the system will still remain safe, but downstream
stages will be tasked with performing a system recover (e.g.,
by executing an MSTOP). This obviates the need to certify
or completely assure safety from the doer units. In other
words, neither the Primary Unit 402 nor the Safing Unit 406
are safety critical, because safety is assured by the corre-
sponding checkers. However, it’s important to note that if
the Primary or Safing Units are unreliable, the vehicle could
suffer availability problems—the architecture 400 will bring
the vehicle to a stop or degrade performance by switching to
the safing channel more frequently than may be desired.

The two “safety gate” components 404, 408 in the archi-
tecture 400 are responsible for checking the outputs of the
Primary and Safing Units 402, 406 and failing silently if
these outputs are unsafe. These are high integrity compo-
nents, but may fail silent. The instantiation of safety gates
for a particular application may require careful design work;
however, in most anticipated cases, this will take far fewer
resources (particularly in terms of verification and valida-
tion) than developing the Primary and Safing Units 402, 406
to a high level of rigor and integrity. Thus, this approach
relaxes the integrity requirements on the doers, and permits
the use of fail-stop checkers while still providing a fail-
operational overall architecture.

The architecture 400 places stricter requirements on the
Priority Selector 410. The Priority Selector 410 must con-
tinue to operate in the presence of failures to deliver either
a primary or safing command. The Priority Selector 410 may
fail silent so long as that failure triggers an MSTOP. This
component is simpler than the safety gates, and a great deal
of effort can be spent on its verification to achieve the
required high level of integrity.

In some implementations, the architecture 400 is time
triggered. In a time-triggered architecture, failures are
detected through timeouts. Downstream components are not
allowed to use “stale” values past some multiple of the
message period (to be robust to transient failures). The
exception is the Safing Safety Gate & Buffer 408 which may
buffer a safing plan, but re-checks the buffered safing plan to
see that it is acceptable at every time step. An event triggered
approach is also possible, including but not limited to an
event-triggered approach that emulates a time-triggered
approach via periodic generation of events.

An optional third channel of the architecture 400, called
an overlay including the overlay unit 412, allows other
equipment to be incorporated into the safety architecture
400. This may include temporary “ground truth” compo-
nents that, for example, report the position of personnel at a
test site so that the architecture 400 can stop the vehicle if
they get too close. These components may include appro-
priate sensors such as a radio beacon sensor. It may also
include other equipment (perhaps temporary) that transmits
MSTOP commands wirelessly.

FIG. 5 is a block diagram showing an example of an AGV
system instantiation 500 of the safe autonomy architecture.
The architecture has been instantiated for two stages of
control: the Planning Stage 504 and the Trajectory Execu-
tion Stage 506. Each of these two stages includes primary
and safing channels. At the Vehicle Control Stage 508, a
Priority Selector 530 is responsible for switching between
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these channels. The architecture may optionally include an
overlay channel that allows other equipment such as Planner
Overlay 534 and Trajectory Overlay 536 to be incorporated
into the architecture. The architecture may also include
dependability concepts to the Perception Stage 502, which
generates the maps on which the Planning Stage 504 oper-
ates. In some AGV-relevant implementations, communica-
tion between the components is accomplished using the
Robot Operating System (ROS) as described in Quigley,
Morgan, et al., “ROS: an open-source Robot Operating
System,” ICRA workshop on open source software, Vol. 3,
No. 3.2, 2009, the entire contents of which are hereby
incorporated by reference. Other communication networks,
including Controller Area Networks (ISO 11898), Time
Triggered Ethernet (SAE AS6802), or FlexRay (ISO 17458)
may be used to integrate the architecture with application
specifics.

The Primary Planner

The Primary Planner 512 plans the primary trajectory that
the ground vehicle follows under normal operating condi-
tions. Each trajectory produced is collision-free and within
the kinematic bounds of the vehicle. This representation is
extensible to various realistic limitations on steering, accel-
eration, braking, and curvature so that the presented frame-
work can be evaluated in the future with additional dynamic
complexity. Some AGV-relevant implementations of this
architecture uses the Open Motion Planning Library
(OMPL) which uses the Robot Operating System (ROS).
OMPL is described in Sucan et al., “The Open Motion
Planning Library” (PDF), IEEE Robotics & Automation
Magazine (December 2011), the entire contents of which are
hereby incorporated by reference. Within OMPL, RRT* is
used as the planning algorithm. RRT* is described in
LaValle, Steven M., “Rapidly-exploring random trees: A
new tool for path planning,” Technical Report (Computer
Science Depai invent, Iowa State University) (TR 98-11)
(October 1998), the entire contents of which are hereby
incorporated by reference. The Primary Planner 512
receives an occupancy grid from the Perception Stage 502,
and plans routes through this grid map. OMPL motion
planning is also operable for unmanned aerial vehicle appli-
cations.

Handling Arbitrary Failures in the Primary Planner

The output of the Primary Planner 512, which in some
AGV-relevant implementations is a trajectory consisting of
a sequence of waypoints, is checked by the Primary Planner
Safety Gate (PPSG) 514. The PPSG 514 checks whether the
Primary Planner’s 512 output is valid using an application-
specific check, and further checks that the output is within
the permissive envelope (PE) provided by the Safing Planner
Safety Gate (SPSG) 518. If the Primary Planner’s 512 output
fails either of these checks, the PPSG 514 simply inhibits the
output. Based on the architecture definition, later stages
respond by inhibiting their primary channel outputs, and
eventually the Priority Selector 530 switches control to the
safing channel.

The Primary Planner in AGV Implementations

While start and goal destinations in an operational sce-
nario are defined by a mission description, some AGV-
relevant implementation configurations define goals in the
SE2 state-space which represents each possible vehicle state
according to its (X,y) location in the 2D world (specified by
the occupancy grid) as well as its heading (0). The Primary
Planner 512 in the AGV-relevant implementations generates
a kinematically feasible path between two points such that
the path can actually be followed realistically by a car-like
ground vehicle.
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The kinematic feasibility of any generated path may be
crucial, because the final output from the Vehicle Control
532 is not a geometric path or trajectory, but a sequence of
controls that can be applied to an actual ground vehicle to
cause it to follow the solution trajectory. In order to solve
this problem the system 500 splits the problem into two
separate phases: trajectory generation (producing the path
that will be followed by the vehicle) and control generation
(generating the sequence of controls that will cause the
vehicle to follow the generated trajectory).

During the trajectory generation phase, the paths pro-
duced are able to transition a vehicle from start to goal
without violating the collision constraints (imposed by the
occupancy grid) or kinematic constraints (as imposed by the
vehicle model). By considering these constraints during the
generation phase, controls are generated for the vehicle such
that it is able to follow the solution trajectory. To generate
the controls, a state-space implementation called “Dubin’s
car” is used which is a simple kinematic model of a car or
truck only allowing the vehicle to move in ways possible for
an on-road vehicle. This model limits the vehicle’s move-
ment to only three possible ways: turn right arc, turn left arc,
and go straight. By constructing trajectories using sequences
of these motion primitives, controls to follow the trajectory
are generated during the control generation phase given a
path that satisfies these constraints (assuming the turning
radius matches the physical vehicle). By instantiating
OMPL with the Occupancy Grid based validity checker and
the Dubins motion constraint, trajectories may be generated
that are both feasible and collision-free.

FIG. 6 is a diagram showing an example of an occupancy
grid 600 for motion planning with a Dubin’s car kinetic
model using OMPL. In FIG. 6, a vehicle 602 attempts to
achieve a desired goal state 604 from its current location
606. The vehicle 602 is to achieve the desired goal state 604
while avoiding an obstacle 608. The presence of the obstacle
608 causes the relevant squares of the occupancy grid 600 to
be marked as “occupied” thus preventing the vehicle 602
from traveling through these squares. As shown in FIG. 6,
the vehicle 602 turns left at the obstacle 608 instead of right,
even though the goal location 604 is closer to the right side
of'the obstacle 608. If the vehicle 602 were to turn right then
left, it would be facing the wrong direction and thus would
not satisfy the desired heading described by the goal. Since
turning around after going right at the obstacle 608 is more
costly than going left initially, the vehicle 602 plans the
trajectory 610 to the left. The solution trajectory 610 cannot
cut closely along the occupied squares of the obstacle 608
because the turning radius limitations on the vehicle 602
prevent the construction of arcs that are too tight. Since this
turning radius is a configurable parameter, the underlying
trajectory generation method may be tested with varying
vehicle types. As discussed previously, the OMPL planning
library may be used to produce motion plans. OMPL
includes a Dubin’s state space representation which may be
used to initialize the OMPL Planner class along with a
custom “Validity Checker”.

The Safing Planner

Referring again to FIG. 5, given the existing world and
vehicle state, the Safing Planner 516 in AGV-relevant imple-
mentations produces feasible trajectories designed to enable
the vehicle to stop quickly and safely when problems occur.
The Safing Planner 516 provides an emergency option for
the vehicle and continually reevaluates the plans as the
vehicle moves through the world and as a dynamic or static
obstacle is encountered.

10

15

20

25

30

35

40

45

50

55

60

65

12

Handling Arbitrary Failures in the Safing Planner

Although the above requirements are desired for the
Safing Planner 516, the system does not depend on the
Safing Planner 516 to guarantee vehicle safety. The Safing
Planner 516 is marked as a “fail arbitrary™ block, just like the
Primary Planner 512. The system achieves this with the
following features:

1. The outputs of the Safing Planner 516 are evaluated by
the Safing Planner Safety Gate 518, which, for
example, inhibits its output if the safing plan would
collide with an obstacle.

2. The Safing Planner 516 also produces a Permissive
Envelope (PE) against which the Primary Planner’s 512
outputs are checked (described in more detail below).
The Safing Planner Safety Gate 514 also evaluates
whether this envelope is itself appropriate.

3. After the Primary Planner 512 fails, the Safing Planner
516 is put in control; however, the Safing Planner
Safety Gate 518 gives the Safing Planner 516 a limited
time window in which to bring the vehicle to a stop.
After that time window expires, the Safing Planner
Safety Gate 518 inhibits its outputs. In response to a
lack of outputs from either Primary or Safing Channels,
the Priority Selector 530 triggers an MSTOP.

The Safing Planner in AGV Implementations

As mentioned above with respect to the Primary Planner
512, there may be some adverse circumstances or conditions
where a ground vehicle may be unable to achieve its desired
planned path. This could be due to an invalid mission
specification, a hardware failure making the planned path
unachievable, or various other dynamic circumstances such
as an obstacle, a traffic delay, and a construction delay not
considered in the original plan. To provide safe vehicle
operation during these events, the system includes a separate
path-planning component (e.g., the Safing Planner 516) for
producing paths that direct the vehicle from its current state
to a safe goal state where the vehicle is stopped. By forcing
the vehicle to come to a stop, the failed vehicle remains in
its goal state safely for an indefinite period of time. An
analogous operation for an aircraft would be a diversion to
closest landing area. Since the goal of the Safing Planner 516
is to come to a stop safely, the Safing Planner 516 considers
multiple different goal configurations to find a safe stopping
path. The Safing Planner 516 finds a safe stopping path as
follows:

1. Plan a trajectory to apply maximum braking, bringing

the vehicle to a stop at the side of the road.

2. If the vehicle cannot stop along the side of the road,
attempt to achieve a safe goal state with the minimum
amount of deviation from the original trajectory.

3. If the the vehicle still cannot achieve a safe trajectory,
increment the allowable amount of heading deviation
and attempt to replan.

4. Repeat until the maximum steering angle is reached, or
a safe trajectory has been generated.

Since the Safing Planner 516 should always be prepared
for a potential failure, each time the map or vehicle state
information is updated, the Safing Planner 516 initiates a
new search for a safe stopping trajectory. In some AGV
implementations, the Safing Planner 516 performs this
search over a fixed set of trajectories, again accomplished
with the Robot Operating System (ROS). The Safing Planner
516 receives an occupancy grid from the Perception Stage
502, and plans routes through this grid map. If the Safing
Planner 516 cannot generate a new safe plan, it signals the
system to initiate the last generated safe trajectory because
traveling without an emergency option is inherently unsafe.



US 10,962,972 B2

13

FIG. 7 is a diagram showing an example of an occupancy
grid 700 for motion planning in reaction to a falling tree.
Suppose that the obstacle 608 in FIG. 6 is a large tree. After
creating the trajectory 610 as shown in FIG. 6, the tree falls
in the intended path. This change updates the state of the
map as indicated in grid 700 of FIG. 7, and therefore triggers
the Safing Planner 516 (in FIG. 5) to generate three emer-
gency trajectories (10, t1 and t2). Since the safe stopping
trajectory t0 does not collide with the obstacle 708, trajec-
tory t0 is selected and immediately applied. However, if the
vehicle 702 is too large to stop in the time calculated for
trajectory t0, trajectory t2 is invalidated by the obstacle 708
and is therefore not considered. In this situation, the vehicle
702 selects the safe alternative trajectory tl instead. Because
the vehicle 702 was already beginning its left turn, it may be
able to construct a sharper turn away from the obstacle 708
to the left rather than to the right. Thus, consideration of the
state of the ground vehicle 702 may be crucial in the
generation of these safing paths.

Permissive Envelopes

Referring again to FIG. 5, a permissive envelope PE1 is
used to confirm that the output of the Safing Planner 516 will
still be achievable if the vehicle begins executing the outputs
of the Primary Planner 512. This is important because if a
fault were to occur, the system 500 would switch from
Primary to Safing outputs. PE1 is generated by the Safing
Planner 516 along with the safing plan. The safety of PE1 is
checked by the Safing Planner Safety Gate 518. If PE1
passes this check, it is passed on to the Primary Planner
Safety Gate 514. The Primary Planner Safety Gate 514 uses
PE1 as part of the criteria for accepting or rejecting the
Primary Planner’s 512 output. Permissive envelopes, both in
general and in the specific context of an example of an AGV
trajectory-execution stage, are further described below.

The Primary Safety Gate

Referring to FIG. 4, the purpose of the Primary Safety
Gate (PSG) 404 is to inhibit unsafe inputs from the Primary
Unit 402. As described below, the output of the Primary Unit
402 is checked for inherent safety (e.g., in the context of the
AGYV Planning Stage 504 of FIG. 5, whether the plan
collides with obstacles or violates dynamics constraints),
and then also checked for compatibility with the permissive
envelope generated by the Safing Unit 406. If the PSG 404
inhibits the outputs of the Primary Unit 402, the time-
triggered Priority Selector 410 switches to sending outputs
from the Safing Unit 406 to vehicle actuators.

Referring to FIG. 5 in the context of the AGV Planning
Stage 504, the Primary Planner Safety Gate 514 is imple-
mented as a node in the Robot Operating System, which
receives an occupancy grid from the Perception Stage 502 as
well as the output of the Primary Planner 512 and a
permissive envelope. The Primary Planner Safety Gate 514
iterates through the waypoints specified in the Primary
Planner’s 512 output and determines whether the output
would cause the vehicle to collide with any obstacles in the
grid, or whether it would violate the permissive envelope.

The Safing Safety Gate

Referring to FIG. 4, the Safing Safety Gate (SSG) 408
performs similar checks on the outputs of the Safing Unit
406, which is allowed to fail arbitrarily. If the output of the
Safing Unit 406 collides with an obstacle or violates dynam-
ics constraints, then that output is inhibited. The SSG 408
maintains a buffer holding the last output of the Safing Unit
406 that passes these checks. When an incoming plan is safe,
the SSG 408 writes the incoming plan into the buffer. But if
the incoming plan is not safe, the SSG 408 discards the
incoming plan and continues executing the buffered plan.
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The SSG 408 inhibits its outputs within a time window,
unless a new, safe plan is received from the Safing Unit 406.
If the SSG 408 inhibits its outputs, the time-triggered
Priority Selector 410 triggers an MSTOP.

Referring to FIG. 5 in the context of the AGV Planning
Stage 504, the Safing Planner Safety Gate 518 is imple-
mented as a node in the Robot Operating System, which
receives an occupancy grid from the Perception Stage 502 as
well as the output of the Safing Planner 516. The Safing
Planner Safety Gate 518 iterates through the waypoints
specified in the Safing Planner’s 516 output and determines
whether the output would cause the vehicle to collide with
any obstacles in the grid.

The Priority Selector

Referring to FIG. 4, a Priority Selector 410 sclects
between the Primary and Safing Outputs, typically at the
final stage of the architecture. For example, the Priority
Selector 410 may decide which trajectory commands to send
to the vehicle actuators. The logic of the Priority Selector
410 is such that if the Primary Output is inhibited, then the
Safing Output is transmitted. If the Safing Output is inhib-
ited, then an MSTOP is triggered. The Priority Selector 410
assumes that the safety gates 404, 408 fail silently.

Referring to FIG. 5 in the context of AGV system
implementations, the Priority Selector 530 is instantiated at
the output of the Trajectory Execution Stage 506. The
Priority Selector 530 is implemented as a node in the Robot
Operating System (ROS) and receives the outputs of both
the Primary Trajectory Executor Safety Gate 524 and the
Safing Trajectory Executor Safety Gate 528 within the
Trajectory Execution Stage 506. The outputs of the Priority
Selector 530 includes vehicle velocity and curvature com-
mands, which are translated by another ROS node, known as
the Vehicle Controller 532, into commands to the vehicle’s
braking, steering, and throttle actuators.

The Trajectory Execution Stage

A waypoint P, is a two-dimensional position with a
heading, ie., {X, v, theta}. A trajectory {V,, C,} is a
speed-curvature pair with an implicit duration based on the
time-triggered period. The current system state (e.g., vehicle
pose, etc.) is S;. For the Trajectory Execution Stage 506, the
permissive envelope PE2 is a range limit for the acceleration
and yaw with the safing trajectory. PE2 is provided as a list
of minimum and maximum accelerations and yaw rates
AV AV S ACT L ACT Y

The Primary Trajectory Executor 522 and Safing Trajec-
tory Executor 526 are the nodes which run the primary
trajectory algorithms (Algorithm 1) pta and the safing tra-
jectory algorithms (Algorithm 2) sta, respectively. They both
take a waypoint P, and the current vehicle state S, and output
a trajectory from the current position of the waypoint.

Algorithm 1: Primary Trajectory Executor

Input: A waypoint PW; : (x,,y,,0;)
The system state S;
Output: A trajectory {V,C;}
1 {ViCi} < pta(PW,,S) ;

Algorithm 2: Safing Trajectory Executor

Input: A waypoint SW, : (X,,y,,0,)
The system state S;
Output: A trajectory {V;%,C/}

The safing envelope {AV;™" AV AC;™" AC;"*}



US 10,962,972 B2

15

-continued

Algorithm 2: Safing Trajectory Executor

{ViACS} < sta(SW,.S)) ;
AV =V, @ 4 AV,
AV =V, + AV,
AC"M «— C,7 + AC,™
AC/™™ «= C,% + AC,"™

I N

The Primary Trajectory Executor Safety Gate 524 runs
Algorithm 3, which checks the primary trajectory against the
current state and PE2 created by the Safing Trajectory
Executor Safety Gate 528. If the trajectory is consistent with
the current state and within PE2’s limits, the primary tra-
jectory is passed through the Primary Trajectory Executor
Safety Gate 524.

Algorithm 3: Primary Safety Gate

Input: The primary trajectory {V,,C;}

The system state S,

The safing envelope {AV/™™ AV AC;/"" AC™™}
Output: The primary trajectory {V,,C;}

—

pte_ok < psg_check(V,C,S,) ;
2 if pte__ok and AV;"™" <=V, < AV;"* and
AC/™" < C,; = AC/"™ then

| pass {V,,C;}

w

4 end

The Safing Trajectory Executor Safety Gate 528 is a node
that runs Algorithm 4 to check the trajectory from the Safing
Trajectory Executor 526 and passes either the new incoming
safing trajectory or an old buffered safing trajectory. The
Safing Trajectory Executor Safety Gate 528 also creates PE2
which the Primary Trajectory Executor Safety Gate 524 uses
to ensure that the primary trajectory is consistent with the
current safety trajectory. PE2 is generated by creating an
“envelope” of allowable accelerations and curvature
changes based on the current safing trajectory values and a
set of constant recoverability limits {AV™” AV™*
AC™ . AC™ ).

&l

Algorithm 4: Safing Safety Gate

Input: The safing trajectory {V,%,C}

The system state S;

The safing envelope {AV,™" AV AC;™" AC;"*}
Output: The safing trajectory {V,%,C}

The safing envelope {AV/™"™ AV, AC;/"" AC;"**}

1 if ssg check(V,%,CS7,S,) then
2 | Vo= VA
3 | CFf < Cf;
4 | &, < {AV,/" AV AC™ AC™ ) ;
5 end
6  if ssg_ check(V,?%,C,2,S;) then
7 | pass {V,5,C,7} ;
8 | passe,;
9 end
Generalized Algorithms

Algorithms 1 through 4 are expressed below in a gener-
alized fashion rather than in the context of trajectory execu-
tion. The Primary Algorithm (Algorithm 5) produces some
output O,, the details of which are layer-specific. No require-
ments are placed on the correctness of the Primary Algo-
rithm; it may fail in arbitrary ways.

16

Algorithm 5: Primary Algorithm

Input: An Input I;
The system state S;
Output: An Output O;

1 O, < primAlg(L, S, ;

The Safing Algorithm (Algorithm 6) is responsible for its

, OB output O°, along with a permissive envelope E,.
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Algorithm 6: Safing Algorithm

Input: An Input I
The system state S;
Output: An Output O ;
The safing envelope ¢;
1 O < safeAlg(L%,S) ;
2 g; < genEnv(0;)

The Primary Safety Gate (Algorithm 7) is responsible for
two types of checks. First, it runs an application-specific
function psg_check, which ensures that the output of the
Primary Algorithm is acceptable given the current system
state S;. The PSG is also responsible for ensuring that the
output of the Primary Algorithm lies within the permissive
envelope.

Algorithm 7: Primary Safety Gate

Input: The primary Output O;

The system state S;

The safing envelope €,
Output: The primary Output O;

pte__ok < psg_ check(0O,,S;) ;
if pte__ok and O; € ¢, then
| pass O,

Bowro o~

end

The Safing Safety Gate is shown in Algorithm 8, which
defines the buffering logic described earlier in the “Safing
Safety Gate” section. Note that the ssg_check( . . . ) function
also checks the age of the safing trajectory and permissive
envelope; if either of these is older than a specified timeout
period, then ssg_check( . . . ) returns false.

Algorithm 8: Safing Safety Gate

Input: The safing trajectory O
The safing envelope €;
The system state S;
Output: The safing trajectory O,%

The safing envelope ¢;

1 if ssg_ check(O7,¢e;,S;) then
2 | 0, < 0

3 | €, &

4 end

5 if ssg_check(O,%,¢;,S;) then
6 I pass O,7 ;

7 | send €, ;

8 end

The safety case of an AGV implementation rests on Safety
Gates that evaluate vehicle trajectories for collisions against
an obstacle map. Given a map and a trajectory, a Safety Gate
reports whether the given trajectory is safe or unsafe on the
given map. The Safety Gate checks a moderately high-
dimensionality trajectory against a moderately high-dimen-
sionality map using continuous, transcendental dynamics. A
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trajectory is translated into a path (series of positions) based
on a set of dynamics equations, and these positions are
checked against the map to decide if the trajectory is safe or
not. The definition of a safe trajectory for purposes of the
present disclosure is one that does not intersect with an
obstacle on the map using kinematics equations. A Safety
Gate calculates positions to a certain accuracy and resolution
based on the trajectories and reports a safety problem when
one of these positions overlaps an obstacle.

18

the planning stage is informed. Additionally, although the
described safety architecture includes different stages appro-
priate for such architecture, many robotics architectures
segregate “sensing”, “thinking”, and “acting” into stages,
and the safety architecture take a similar approach.

The following chart lists examples of conditions and

behaviors of the system which may satisfy the requirement
that the vehicle not collide with obstacles.

Condition

Behavior

1 No processes crash

The vehicle properly avoids simulated obstacles.
Planning Stage

2 Primary Planner

malfunctions

3 Safing Planner

malfunctions

4 Primary Planner

The vehicle starts executing safing plans, coming to a stop at the
side of the road.

The vehicle executes the last good safing plan received by the
Safing Planner Safety Gate, coming to a stop at the side of the
road.

Same behavior as Condition 2.

Safety Gate (PPSG)

crashes

5 Safing Planner
Safety Gate (SPSG)

crashes

Killing the SPSG inhibits both primary and safing plans. The
trajectory stage gets no inputs, and thus sends no outputs, which
causes the Trajectory Execution Stage to execute a safing
trajectory.

Trajectory Execution Stage

6 Primary Trajectory

Executor

malfunctions

7 Safing Trajectory

Executor

malfunctions

8 Primary Trajectory
Safety Gate (PTSG)

crashes

9 Safing Trajectory
Safety Gate (STSG)

crashes

The vehicle starts executing plans from the Safing Planner. In this
example implementation, the Safing Planner is not notified of the
failure in the trajectory stage, so it continues submitting plans. At
the end of a timeout period, the Safing Trajectory Safety Gate
stops transmitting commands. At this point neither the primary nor
the safing channels in the trajectory stage transmit commands. In
response the Priority Selector executes a MSTOP command for the
vehicle. While this meets safety requirements, execution of the
MSTOP command would not have been necessary with an
alternate embodiment in which the Safing Planner is notified of a
Primary Trajectory Executor malfunction so that the Safing
channel can bring the vehicle to a controlled stop.

The trajectory layer does not deal with long-duration commands;
instead it calculates vehicle actuator commands based on the
longer plan. So when the Safing Trajectory Executor fails, the
Safing Trajectory Safety Gate executes the last valid safing
trajectory in the buffer. If no valid safing trajectory is available,
the Safing Trajectory Safety Gate times out, causing both primary
and safing channels to go silent. This, in turn, causes the Priority
Selector to execute a MSTOP command.

When the PTSG crashes, the STSG also inhibits outputs. In
response the Priority Selector executes a MSTOP command for the
vehicle. While this meets safety requirements, the MSTOP
command is not necessary because the safing channel is still valid.
The STSG causes the Priority Selector to execute a MSTOP
command for the vehicle after some timeout period, during which
the safing channels in the planning and trajectory stages brings the
vehicle to a stop.

Crashing the STSG inhibits both outputs, with causes the Priority
Selector to execute a MSTOP command.

The system described in this disclosure includes a hybrid
model of the entire architecture which avoids collisions. The
hybrid system follows the primary provider’s trajectories or
a safing trajectory, and provides a safe execution. The safety
gate “checker” portions of the architecture may be created as
high integrity components by following software safety
standards known in the art, such as ISO 26262, IEC 61508,
MIL-STD 882E, and other relevant standards. A timeout
mechanism may be used to check that the safing plan brings
the vehicle to a stop within the required period of time,
because the Safing Unit could fail arbitrarily.

The architecture may further include one or more par-
ticular stages in the invention that need feedback from lower
stages. For example, if a trajectory-execution function fails,
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FIG. 8 is a flowchart of an example of a process 800
performed by an autonomous device safety architecture
system. The process 800 may be performed by a system of
one or more computers. The process 800 may include details
that have been discussed above.

The system receives primary data for moving a device on
a planned path (802). The system may include a primary
safety gate that receives the primary data from a primary
unit. The system also receives secondary data for moving the
device in presence of one or more adverse conditions during
the moving of the device on the planned path (804). The
system may include a secondary safety gate that receives the
secondary data from a secondary unit.
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The system validates the primary data (806) by determin-
ing whether the primary data provides for the moving of the
device on the planned path in a safe manner. The primary
safety gate may execute an algorithm that makes this deter-
mination. The system also validates the secondary data (808)
by determining whether the secondary data provides for the
moving of the device so as to avoid the one or more adverse
conditions. The secondary safety gate may execute an algo-
rithm that makes this determination. If the system deter-
mines that the secondary data does not provide for the
moving of the device so as to avoid the one or more adverse
conditions, the system accesses previously stored data for
the moving of the device in presence of the one or more
adverse conditions (810) and validates the previously stored
data by determining whether the previously stored data
provides for the moving of the device so as to avoid the one
or more adverse conditions (812).

The system selects the primary data, the secondary data,
the previously stored data, or default data (814) based on
evaluating logic data. The system may include a priority
selector that evaluates the logic data to make a selection. The
logic data specifies rules that define that which data is
selected under specific conditions. The primary data is
selected after determining that the primary data provides for
the moving of the device on the planned path in the safe
manner. The secondary data is selected after determining
that (i) the primary data does not provide for the moving of
the device on the planned path in the safe manner and (ii) the
secondary data provides for the moving of the device so as
to avoid the one or more adverse conditions. The previously
stored data is selected after determining that (i) the primary
data does not provide for the moving of the device on the
planned path in the safe manner, (ii) the secondary data does
not provide for the moving of the device so as to avoid the
one or more adverse conditions, and (ii) the previously
stored data provides for the moving of the device so as to
avoid the one or more adverse conditions. The default data
specifies a default action to be performed by the device. The
default data is selected after determining that (i) the primary
data does not provide for the moving of the device on the
planned path in the safe manner, (ii) the secondary data does
not provide for the moving of the device so as to avoid the
one or more adverse conditions, (iii) and the previously
stored data does not provide for the moving of the device so
as to avoid the one or more adverse conditions.

The system provides the selected primary, secondary,
previously stored, or default data to a controller that controls
the movement of the device (816).

Use of this architecture may simplify and make achiev-
able the implementation of a fail-operational autonomy
system. Instead of requiring one or more versions of high-
integrity autonomy algorithms, low integrity autonomy
algorithms may be used (e.g., the “doer” modules do not
have to work perfectly to achieve safety). Safety gate
“checker” modules are used to ensure fail-silent behavior of
each doer/checker pair. The safety gates do have to be
developed to high integrity, but are in general simpler and
minimize or eliminate difficult-to-validate advanced
autonomy algorithms, making them easier to validate. Addi-
tionally, the checkers themselves can be fail silent. Fail
operational system behavior is achieved by having two (or
more) diverse sets of fail-silent doer/checker paired func-
tional blocks in each architectural stage. No single compo-
nent needs to be fail-operational, and only the checkers need
to be high integrity.

Embodiments can be implemented in digital electronic
circuitry, or in computer hardware, firmware, software, or in

10

15

20

25

30

35

40

45

50

55

60

65

20

combinations thereof. An apparatus can be implemented in
a computer program product tangibly embodied or stored in
a machine-readable storage device for execution by a pro-
grammable processor; and method actions can be performed
by a programmable processor executing a program of
instructions to perform functions by operating on input data
and generating output. The embodiments described herein,
and other embodiments of the invention, can be imple-
mented advantageously in one or more computer programs
that are executable on a programmable system including at
least one programmable processor coupled to receive data
and instructions from, and to transmit data and instructions
to, a data storage system, at least one input device, and at
least one output device. Each computer program can be
implemented in a high-level procedural or object oriented
programming language, or in assembly or machine language
if desired; and in any case, the language can be a compiled
or interpreted language.

Processors suitable for the execution of a computer pro-
gram include, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor will
receive instructions and data from a read-only memory or a
random-access memory or both. The essential elements of a
computer are a processor for executing instructions and one
or more memory devices for storing instructions and data.
Generally, a computer will also include, or be operatively
coupled to receive data from or transfer data to, or both, one
or more mass storage devices for storing data, e.g., mag-
netic, magneto optical disks, or optical disks. Computer
readable media for embodying computer program instruc-
tions and data include all forms of non-volatile memory,
including by way of example semiconductor memory
devices, e.g., EPROM, EEPROM, and flash memory
devices; magnetic disks, e.g., internal hard disks or remov-
able disks; magneto optical disks; and CD ROM and DVD-
ROM disks. The processor and the memory can be supple-
mented by, or incorporated in special purpose logic circuitry.
Any of the foregoing can be supplemented by, or incorpo-
rated in, ASICs (application-specific integrated circuits).

To provide for interaction with a user, embodiments can
be implemented on a computer having a display device, e.g.,
a LCD (liquid crystal display) monitor, for displaying data
to the user and a keyboard and a pointing device, e.g., a
mouse or a trackball, by which the user can provide input to
the computer. Other kinds of devices can be used to provide
for interaction with a user as well; for example, feedback
provided to the user can be any form of sensory feedback,
e.g., visual feedback, auditory feedback, or tactile feedback;
and input from the user can be received in any form,
including acoustic, speech, or tactile input.

Other embodiments are within the scope and spirit of the
description claims. Additionally, due to the nature of soft-
ware, functions described above can be implemented using
software, hardware, firmware, hardwiring, or combinations
of any of these. Features implementing functions may also
be physically located at various positions, including being
distributed such that portions of functions are implemented
at different physical locations. The use of the term “a” herein
and throughout the application is not used in a limiting
manner and therefore is not meant to exclude a multiple
meaning or a “one or more” meaning for the term “a.”
Additionally, to the extent priority is claimed to a provi-
sional patent application, it should be understood that the
provisional patent application is not limiting but includes
examples of how the techniques described herein may be
implemented.
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A number of exemplary embodiments of the invention
have been described. Nevertheless, it will be understood by
one of ordinary skill in the art that various modifications
may be made without departing from the spirit and scope of
the invention.

What is claimed is:
1. A safety architecture system for autonomous vehicles
comprising:
a first stage comprising:
one or more data processing apparatus; and
a non-transitory computer readable storage medium
encoded with a computer program, the program
comprising instructions that when executed by the
one or more data processing apparatus cause the one
or more data processing apparatus to perform opera-
tions comprising:
generate primary data for performing normal system
functionality for output by a primary planner;

generate secondary data for performing alternative
system functionality for output by a secondary
planner;

a primary safety gate coupled to the primary planner,
with the primary safety gate providing the primary
data as a primary output responsive to a determina-
tion of validity of the primary data; and

a secondary safety gate coupled to the secondary plan-
ner, with the secondary safety gate providing the
secondary data as a secondary output responsive to a
determination of validity of the secondary data; and

an output selector that is coupled to both the primary

safety gate and the secondary safety gate of the first
stage, with the output selector providing a system
output responsive to the determinations of the validities
of the primary data and the secondary data.

2. The system of claim 1, wherein the primary safety gate
determines validity of the primary data responsive to a
permissive envelope provided by the secondary safety gate.

3. The system of claim 1, further comprising:

one or more additional stages comprising a second stage,

wherein a primary data output of the second stage
provides an input to the primary planner of the first
stage, and a secondary data output of the second stage
provides an input to the secondary planner of the first
stage.

4. The system of claim 1, wherein the secondary safety
gate determines whether the secondary data was received
within a predefined time window to determine whether the
secondary data is valid.

5. The system of claim 1, wherein the secondary safety
gate comprises a buffer that stores the secondary data in
response to the determination the validity of the secondary
data.

6. The system of claim 1, wherein the secondary safety
gate provides previously stored secondary data as the sec-
ondary output responsive to a determination of invalidity of
the secondary data.

7. The system of claim 1, wherein the system output
comprises control data for operating a vehicle.

8. A computer-implemented method for upholding strict
safety requirements in a safety architecture for autonomous
vehicles, the method being executed by one or more pro-
cessors and comprising:

generating primary data for performing normal system

functionality;

generating secondary data for performing alternative sys-

tem functionality;
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providing the primary data as a primary output of a first
stage responsive to determining validity of the primary
data;

providing the secondary data as a secondary output of the
first stage responsive to determining validity of the
secondary data; and

providing, by the one or more processors, a system output
responsive to determining the validities of the primary
data and the secondary data, wherein the system output
is provided by an output selector that is coupled to both
aprimary safety gate that provides the primary data and
a secondary safety gate that provides the secondary
data, wherein the primary safety gate and the secondary
safety gate are of the first stage.

9. The method of claim 8, wherein determining the
validity of the primary data is responsive to a permissive
envelope.

10. The method of claim 8, wherein:

generating the primary data comprises receiving a pri-
mary input via a primary data output of a second stage;
and

generating the secondary data comprises receiving a sec-
ondary input via a secondary data output of a second
stage.

11. The method of claim 8, wherein determining the
validity of the secondary data comprises determining that
the secondary data was generated within a predefined time
window.

12. The method of claim 8, further comprising storing the
secondary data in response to determining the validity of the
secondary data.

13. The method of claim 8, further comprising:

providing previously stored secondary data as the sec-
ondary output of the first stage responsive to determin-
ing invalidity of the secondary data.

14. The method of claim 8, wherein the system output
comprises control data for operating a vehicle.

15. A system comprising:

a primary planner unit that generates primary path data for
moving a device from a first location to a second
location;

a safing planner unit that generates safing path data for
moving the device in presence of one or more adverse
conditions during the moving of the device in accor-
dance with the primary path data;

a primary planner safety gate that receives the primary
path data from the primary planner unit, determines
whether the primary path data provides for the moving
of the device in accordance with the primary path data
in a safe manner, and provides the primary path data as
a verified primary path output in response to a deter-
mination that the primary path data provides for the
moving of the device in accordance with the primary
path data in the safe manner;

a safing planner safety gate that receives the safing path
data from the safing planner unit, determines whether
the safing path data provides for the moving of the
device so as to avoid the one or more adverse condi-
tions, and provides the safing path data as a verified
safing path output in response to a determination that
the safing path data provides for the moving of the
device so as to avoid the one or more adverse condi-
tions;

a primary trajectory executor unit that receives the veri-
fied primary path output and generates primary trajec-
tory data from a current waypoint of the device based
on the verified primary path output;
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a safing trajectory executor unit that receives the verified
safing path output and generates safing trajectory data
from a current waypoint of the device based on the
verified safing path output;

a primary trajectory safety gate that receives the primary
trajectory data from the primary trajectory executor
unit, determines whether the primary trajectory data is
consistent with a current state of the device, and
provides the primary trajectory data as a verified pri-

5

mary trajectory output in response to a determination 10

that the primary trajectory data is consistent with the
current state of the device;

a safing trajectory safety gate that receives the safing
trajectory data from the safing trajectory executor unit,
determines whether the safing trajectory data is con-
sistent with the current state of the device, and provides
the safing trajectory data as a verified safing trajectory
output in response to a determination that the safing
trajectory data is consistent with the current state of the
device; and

a priority selector that is coupled to the primary trajectory
safety gate to receive the verified primary trajectory
output, to the safing trajectory safety gate to receive the
verified safing trajectory output, and to a controller to
provide control data, the priority selector provides as
the control data one of: the verified primary trajectory
output if the verified primary trajectory output is
received, the verified safing trajectory output if only the
verified safing trajectory output is received, or a default
output if neither the verified primary trajectory output
nor the verified safing trajectory output is received.

16. The system of claim 15, wherein:

the safing trajectory executor unit generates a permissive
envelope that specifies a minimum acceleration rate, a
maximum acceleration rate, a minimum deceleration
rate, a maximum deceleration rate, a minimum curva-
ture change rate, and a maximum curvature change
rate; and
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the primary trajectory safety gate determines whether the
primary trajectory data is within values specified by the
permissive envelope to determine whether the primary
trajectory data is consistent with a current state of the
device, and provides the verified primary trajectory
output in response to a determination that the primary
trajectory data is within the values specified by the
permissive envelope.

17. The system of claim 15, wherein the safing trajectory
safety gate determines whether the safing trajectory data was
received within a predefined time window to determine
whether the safing trajectory data is consistent with the
current state of the device.

18. The system of claim 15, wherein the safing trajectory
safety gate comprises a buffer that stores the safing trajectory
data in response to a determination that the safing trajectory
data is consistent with the current state of the device.

19. The system of claim 15, wherein:

the safing trajectory safety gate, in response to a deter-

mination that the safing trajectory data is not consistent
with the current state of the device, accesses previously
stored safing trajectory data, determines whether the
previously stored safing trajectory data is consistent
with the current state of the device, and provides the
previously stored safing trajectory data as the verified
safing trajectory output in response to a determination
that the previously stored safing trajectory data is
consistent with the current state of the device.

20. The system of claim 15, wherein the device comprises
a vehicle and the one or more adverse conditions comprises
at least one of a condition that prohibits the moving of the
vehicle in accordance with the primary path data or a failure
of'a component of the vehicle that makes the moving of the
vehicle in accordance with the primary path data unachiev-
able.



