
Automated Assistance for Eliciting User Expectations
Orna Raz†, Rebecca Buchheit‡, Mary Shaw†, Philip Koopman∗, Christos Faloutsos†
†School of Computer Science, ‡Civil Engineering Department, ∗ECE Department

Carnegie Mellon University
Pittsburgh PA 15213 USA

E-mail:{orna.raz, rebecca.buchheit, mary.shaw, koopman, christos}@cmu.edu

Abstract
People often use software for mundane tasks and expect

it to be dependable enough for their needs. Unfortunately,
the incomplete and imprecise specifications of such every-
day software inhibit many dependability enhancement tech-
niques because these require a model of proper behavior
for failure detection. We offer a user-centered approach
for creating a model of proper behavior. This approach is
based on satisfying the user expectations—software behav-
ior the user relies on—rather than demanding perfect spec-
ifications. It utilizes data mining through a novel template
mechanism, to help users make their expectations precise.
The resulting precise expectations can then serve as proxies
for missing specifications in detecting unexpected data be-
havior. We concentrate on data feeds: continuous streams
of data, a challenging example of everyday software. Using
our method on a real world data feed, it took just hours to
detect problems that had taken the data providers months
to detect independently. These problems surprised even
our user—a domain expert that had previously analyzed the
same data feed. Systematic analysis further supports the
usefulness of our method.

1. Introduction

If all software had perfect specifications—precise, com-
plete, and correct, increasing the dependability of everyday
software elements would be straightforward: use the speci-
fications as a model of proper behavior and detect a failure
when the software’s behavior is outside the specifications.

Unfortunately, specifications are rarely, if ever, perfect.
Moreover, it is neither cost-effective nor feasible to strive
for perfect specifications for everyday software elements—
elements incorporated in applications that are neither mis-
sion nor safety critical. Yet, the utility of such elements
would greatly increase with increased dependability.

Data feeds are an example of everyday software ele-
ments and the one we use in our work. A data feed is a time
ordered sequence of observations on output. Data feeds
may remain under the control of their providers and may
have many users relying, in different ways, on behavior the
providers did not anticipate. Many challenging, real world
software elements fall under the category of data feeds, in-

cluding Internet services and software elements that process
sensor data or perform monitoring activities. Examples in-
clude quotes for a stock, weather forecasts, and the truck
weigh-in-motion data we use in this paper.

We propose a user-centric approach for coping with in-
complete specifications of data feeds. Our method helps
users make their expectations about data feed behavior pre-
cise. It can then automatically detect semantic anomalies—
data feed behavior that falsifies these expectations. It ap-
plies statistical and machine learning techniques to help dis-
cover meaningful information in the data. These techniques
precisely characterize various aspects of the data. However,
to characterize relevant behavior, our method must elicit the
user expectations as well. It does so via a novel template
mechanism. In essence, templates document the predicates
of the inference techniques.

The template mechanism is the main contribution of this
paper. The case study provides empirical evidence in sup-
port of its usefulness.

Each user relies on a data feed in a certain way and ex-
pects the behavior of the data feed to support this usage.
Therefore, a given user may only care about a subset of the
data feed properties. Moreover, a user may care about be-
havior that is missing from existing specifications or even
unnoticed by the providers. However, users’ expectations
are informal and imprecise, though they are reasonably ac-
curate. For example, a user may expect trucks reported by
an on road scale to be physically feasible but may not be
able to specify all the properties and values that define such
feasibility.

Our approach has the advantages of (1) requiring no
knowledge about inputs or implementation details, includ-
ing source code or binaries and (2) requiring no user data
mining expertise. All it assumes is that (1) it can observe
the data feed over time, as the user uses it, (2) this usage will
tolerate recognition and repair of faults rather than require
prevention, and (3) the user has enough domain knowledge
to select predicates from a list our method automatically
generates. We talk about anomalies rather than failures be-
cause our approach, like any dynamic analysis, is poten-
tially unsound. However, our case study shows it can be
highly useful in practice.

Our approach is domain independent. Encouragingly, it

1



was able to produce results that were interesting within the
application domain of our case study: monitoring systems
in civil engineering; domain specific details and results are
described in a paper intended for civil engineers [21].

Our case study is a real world truck “weigh-in-motion”
(WIM) system using a standard data feed from the Min-
nesota Department of Transportation. Jackson [13] uses a
similar example to introduce his problem frames. Truck
WIM data is common in the transportation domain, where
civil engineers use it for analyses such as road wear. A
scale located in a traffic lane of a road weighs every axle
that passes over it. It records the weight on the axle, the
time of day, the lane the axle was in, and any error codes.
Software components analyze this data to map axle data to
vehicles, estimate the speed and length of the inferred ve-
hicles, calculate a measure of load on an axle called ESAL
(Equivalent Standard Axle Load), classify the vehicle type,
eliminate passenger cars from the data, and (purportedly)
filter out unreasonable values.

In our case study, a domain expert (the second author) in-
teracted with the template mechanism to create a model of
proper behavior for the WIM data feed from her informal
expectations. These informal expectations can be summa-
rized as: (1) vehicles in the same class should be similar and
(2) vehicles should be physically feasible. Our method suc-
cessfully turned these vague expectations into precise pred-
icates. We used the resulting model for anomaly detection
and compared it to existing documentation of the data feed.
We show that the template mechanism is effective; we mea-
sure effectiveness both by the insights the user gains (the
usefulness of the process) and the detection and misclassi-
fication rates (the usefulness of the resulting model).

2. The template mechanism of our approach

Our approach has three major stages: (1) setting up a
model of proper behavior by eliciting precise user expec-
tations; this stage relies on a novel template mechanism
and is the focus of this paper, (2) using the precise expecta-
tions as a proxy for missing specifications to detect seman-
tic anomalies in the data feed; previous work [22] discussed
this stage, and (3) updating the precise expectations to ac-
count for evolving system behavior or user expectations; we
defer this stage to future work.

These three stages may be viewed as a process governing
the data and control flow among the mechanisms underlying
our approach. These mechanisms are: (1) the technique tool
kit—a collection of existing statistical and machine learn-
ing techniques that we support and adapt; Section 2.2 pro-
vides details, (2) the template mechanism—a mechanism
that guides the human attention required in making expec-
tations precise using templates that document the predicates
a particular technique can output; Sections 2.1–2.2 provide
details , and (3) the anomaly detector—a mechanism that

checks the predicates that are the precise user expectations
and reports as anomalies data feed observations that falsify
predicates. The anomaly detector utilizes the precise expec-
tations as a model of proper behavior.

2.1. Process and premises

We characterize a predicate inference technique by the
types of predicates it can produce. Templates capture the
form of these predicates. For example, an inference tech-
nique may find a probable range for the values of a given
attribute, e.g., the length attribute. The corresponding tem-
plate would be #≤length≤ #, where # is a numeric value.

The template mechanism operates as follows:
1. Select tool-kit techniques appropriate to the data and

problem.

2. Run the selected techniques to infer predicates over
subsets of the data.

3. Ask the user to classify each predicate as either “ac-
cept”, “update”, or “reject”.

4. Use the classification to instantiate templates.

5. Use the instantiated templates to filter the output of the
tool kit techniques.

6. Give the filtered output to the anomaly detector and
present to the user the resulting anomalies and their
templates. Allow the user to change the classification.

7. Goto 2 or terminate when the user is happy with the
classification.

An inferred predicate is a “complete instantiation” of a tem-
plate. The template mechanism uses this complete instan-
tiation for templates of “accept” predicates. Classifying a
predicate as either “reject” or “update” may make the tem-
plate instantiation partial by rendering the instantiation of
all the numeric values in one or more dimensions void. See
Section 2.2 for examples.

The template mechanism treats the predicate inference
techniques as black boxes and uses the instantiated tem-
plates to filter the predicates a technique infers. It constructs
and updates the model of proper behavior from instantiated
templates of “accept” and “update” predicates. It will never
present the user or the anomaly detector with predicates that
match templates of previously rejected predicates. The tem-
plate mechanism eliminates techniques that are not relevant
for this user and data: it will not employ an inference tech-
nique if the user rejects all the predicates that are associated
with this technique.

Premises of our template mechanism include (1) it is eas-
ier for a user to choose from a list of inferred predicates than
to create this list, so having a machine synthesize the list is
helpful and (2) it is easier for a user to understand expecta-
tions about data behavior when presented with examples. It
is especially useful to examine examples of anomalous be-
havior, with the predicates that flagged them as anomalous.

2



2.2. Inference techniques and their templates

Our technique tool kit currently consists of five existing
techniques that is supports and adapts: Rectmix (described
below), Percentile (described below), K-means [19] (a clus-
tering algorithm with hard membership), Association Rules
[1] (a technique that produces probabilistic rules in an ’if
then’ form), and Daikon [10] (a program analysis tool that
dynamically discovers likely invariants over program exe-
cutions). We selected these techniques because they expose
different aspects of the data and because their output is easy
for a human to understand.

To select the most promising techniques for the problem,
our method looks at the match between: (1) the data type
and a technique (utilizing measurement scales [11]) and (2)
the user expectations and the vocabulary of a technique. For
the WIM data, this analysis found that the most promis-
ing techniques are Rectmix and Percentile: the predicates
they output match the data types and describe data behavior
relevant to the expert expectations. For this data feed, the
other techniques either describe irrelevant behavior or pro-
duce predicates that are less precise or redundant with re-
spect to the Rectmix and Percentile predicates. Therefore,
we concentrate on the Rectmix and Percentile techniques
and describe their templates. Details about the other tech-
niques can be found in [20].

2.2.1 The Rectmix technique

Rectmix [18] is a clustering algorithm that supports soft
membership (a point can probabilistically belong to multi-
ple clusters). The clusters it finds are hyper-rectangles in
N-space. Rectmix provides a measure of uncertainty called
sigma (an estimate of the standard deviation) for each di-
mension. Anomalies are points that are not within a rectan-
gle. Though clusters rarely have a hyper-rectangle shape in
reality, Rectmix has the significant advantage of producing
output that is easy to understand: a hyper-rectangle is sim-
ply a conjunction of ranges, one for each attribute (see Table
1). Rectmix has two parameters: the number of rectangles
and the number of sigmas of uncertainty to allow.

Rectmix always outputs hyper-rectangles, so it has a sin-
gle template: # ≤ A1 ≤ #∧ ...∧# ≤ An ≤ #, where n is
the number of attributes. The dimensionality of a template
is the number of attributes in the template. Table 1 gives an
example of user classification for predicates that Rectmix
outputs for a subset of the WIM data. The corresponding
templates have numeric values in one dimension—the axle
attribute—because the user chose to void the other attribute
values. For example, the template for the first predicate is
#≤length≤# ∧ #≤ESAL≤# ∧3≤axles≤3 ∧ #≤weight≤#.

2.2.2 The Percentile technique

Percentile outputs a probable range for the values of each
attribute. The x percentile of a distribution is a value in

Class Length ∧ ESAL∧ Axles ∧ Weight
Update 20–42 0–.43 3–3 12–29
Update 23–44 0–1.2 2–3 26–47
Reject 13–100 0–.45 2–7 7–40
Update 23–29 0–6.7 2–4 27–71

Table 1. Example of Rectmix predicates classification

Class Predicate Template
Update 40≤speed≤88 #≤speed≤#
Update 17≤length≤39 #≤length≤#
Reject .06≤ESAL≤.9 #≤ESAL≤#
Update 3≤axles≤3 #≤axles≤#
Update 12≤weight≤49 #≤weight≤#

Table 2. Example of percentile predicates classification
and instantiated templates

the distribution such that x% of the values in the distribu-
tion are equal or below it. Percentile calculates the range
between the x and 100-x percentiles and allows y% uncer-
tainty. Percentile only assumes that the distribution values
are somewhat centered and is insensitive to extreme values.

Percentile has a single template: #≤A≤#. Table 2 gives
an example of user classification and resulting instantiated
templates for predicates that Percentile infers over a subset
of the WIM data. Percentile (x=25, y=25%) works well for
speed, length, axles, and weight, but not for ESAL (ESAL
seems to be exponentially distributed).

Rectmix and Percentile differ: Rectmix finds correla-
tions among common attribute values whereas Percentile
simply finds common values for a single attribute.

3. Case study hypothesis
The case study explores the hypothesis that the template

mechanism is effective in eliciting precise user expecta-
tions and that the resulting precise expectations are a “good
enough” engineering approximation to missing specifica-
tions, for the purpose of semantic anomaly detection.

The case study supports the hypothesis by showing that
(1) The precise expectations are useful in detecting seman-
tic anomalies in the WIM data and (2) The user gains in-
sights about the WIM system through interaction with the
template mechanism and through analysis of anomalies.

4. Data and methodology
In a WIM system multiple algorithms process raw sensor

data, as introduced in Section 1. Unfortunately, processing
and sensors are error prone. Errors may manifest as real
vehicles that are not in their correct class (they are very dif-
ferent from other vehicles in their assigned class) or vehi-
cles that are physically improbable. These are the kind of
anomalies our expert cares about.

The data we use in our experiments is experimental data
the Minnesota Department of Transportation collected by

3



its Mn/ROAD research facilities between January 1998 and
December 2000. The data has over three million observa-
tions for ten vehicle types that characterize commercial ve-
hicles. Vehicle types differ mainly by their number of axles
and whether they consist of a single unit, a single trailer,
or multi trailers. The number of observations the system
collects varies by vehicle type.

We characterize the WIM data feed as a time-stamped
sequence of observations. Each observation has attribute
values for a single truck: date and time (accurate to the
millisecond), vehicle type (one of ten classes), lane (one
of two classes), speed (mph), error code (one of twenty five
classes), length (feet), ESAL (dimensionless), number of
axles, and weight (kips—kilo-pounds).

We first look for clusters and select attributes (details can
be found in [20].). As a result, the template mechanism in-
teracts with the user for each vehicle type (class) separately
and gives the selected attributes to techniques in the tool kit.

For the purpose of validating our template mechanism,
we selected three out of the ten vehicle types the data con-
tained: the most common vehicle type (type 9, about two
million observations) and two additional types (types 4 and
6, about one hundred thousand observations each).

A domain expert set up a model of proper behavior. We
gave the model to the anomaly detector. To simulate the
nature of on-line data, we divided the data into subsets of
two thousand consecutive observations each.

5. Results

We briefly summarize the results of our case study. We
present graphs and tables for one of the three vehicle types
we examined (type 6). The results for the other two types
(types 4 and 9) are rather similar.

The “update” predicates of Tables 1 and 2 are an example
of precise user expectations for vehicle type 6.

The detection rate calculates how many attributes the
model flags as anomalies out of the total number of at-
tributes. It is an objective measure because the results of
using the model for anomaly detection are binary: normal
or anomalous.

Figure 1 shows the detection rate of the Percentile pred-
icates. The analogous figure for Rectmix is similar.

The y-axis in a plot gives the total number of anomalies
in one of the data subsets, according to the criterion the plot
specifies, e.g., length anomalies. Notice that the y-axis scale
differs among plots. The x-axis is the sequential subset in-
dex. The first column in Figure 1 summarizes the number
of anomalies for each attribute. The plots in the second and
third columns summarize the anomalies that are due to at-
tribute values that are lower or higher, respectively, than the
range bounds.

Table 3 summarizes the average detection rate over the
subsets of each vehicle type. It gives the detection rate over

0 50 100
0

500

1000

sp
ee

d 
: t

ot
al

0 50 100
0

500

1000

sp
ee

d 
<

40
.0

0

0 50 100
0

1

2

sp
ee

d 
>

88
.0

0

0 50 100
0

500

1000

1500

le
ng

th
: t

ot
al

0 50 100
0

200

400

600

le
ng

th
<

17
.0

0

0 50 100
0

500

1000

le
ng

th
>

39
.0

0

0 50 100
0

500

1000

ax
le

s 
: t

ot
al

0 50 100
0

200

400

600

ax
le

s 
<

3.
00

0 50 100
0

200

400

600

ax
le

s 
>

3.
00

0 50 100
0

200

400

600

w
ei

gh
t: 

to
ta

l

Subset index
0 50 100

0

100

200

300

w
ei

gh
t<

12
.0

0

Subset index
0 50 100

0

200

400

w
ei

gh
t>

49
.0

0

Subset index

Figure 1. Counts of anomalies detected using Percentile
predicates for vehicle type 6

Vehicle Average detection rate (%)
Rectmix type Total Length ESAL Speed Axles Weight

4 15.5 42.5 7.7 4.4 7.4
6 10.9 37.7 0.4 0.6 4.8
9 2.3 5.0 3.4 0.0 0.9

Percentile 4 8.4 8.1 0.8 10.2 14.6
6 20.2 30.5 22.2 17.0 11.3
9 0.8 1.0 0.3 0.0 1.9

Table 3. Average detection rate

all attributes and a break-down by attribute.
Small differences in the ranges for length and weight re-

sult in large differences in the detection rate, indicating that
the values for these attributes are closely concentrated. The
exact cut-off point between normal and anomalous is, there-
fore, not clear from the data.

The overall misclassification rate is defined as
FP+FN

Nor+Ab
= Ab+FP−TP

Nor+Ab
[23], where True Positives

(TP) are correctly detected anomalous data, False Positives
(FP) are normal data falsely detected as anomalous, False
Negatives (FN) are undetected anomalous data, Normal
(Nor=TN+FP) is data that is actually anomaly-free, and
Abnormal (Ab=TP+FN) is data with actual anomalies.

Determining the above measures is subjective even
though WIM documentation exists. This is because, on the
one hand, the documentation is sometimes incomplete and
imprecise, and on the other hand, it sometimes describes
behavior that neither Rectmix nor Percentile can express.

To determine Ab, FP, and TP, our expert set constraints
based on analyzing both the anomalies flagged by the
anomaly detector and the differences between the inferred
and documented models. Table 4 summarizes the result-
ing misclassification rate, averaged over the data subsets of

4



Vehicle type Average misclassification rate (%)
Rectmix Percentile

4 8.5 3
6 2.3 2.3
9 1 .8

Table 4. Average overall misclassification rate

each vehicle type. The rates are reasonable for a human to
handle.

6. Analysis

The user gained insights by interacting with the tem-
plate mechanism and by analyzing the resulting anomalies.
This is an especially encouraging result because not only is
our user a domain expert, but she also previously analyzed
this data (though for a different purpose) [5]. In addition,
the techniques inferred predicates that confirmed the expert
knowledge about the system. This raised our confidence in
the results and contributed to better understanding how the
system works.

We first enumerate data behavior that surprised our ex-
pert. We then present her suggestions for explaining this
behavior and enumerate the insights she gained by becom-
ing aware of this behavior.

When looking at the anomalies detected by using her
precise expectations as a model of proper behavior, the ex-
pert found the following data behavior surprising. This be-
havior is depicted in Figure 1. The data shows
• A large number of axle anomalies. In particular, the

data shows a surprisingly large number of one axle ve-
hicles. However, trucks should have at least two axles
and the WIM system software should have detected
such anomalies.

• A large number of slow vehicles.

• A large number of over-length vehicles. In particular,
for type 6 vehicles, a large number of anomalies have
the value of a system built-in length limit.

• A correlation between slow and over-length vehicles.

• A substantial decrease in the above anomalies starting
with data subset number 54 (observed at Nov. 1999).

• An exception to all of the above for the most common
truck type (type 9): the exceedingly large number of
anomalies does not apply to it.

The expert suggested causes for this surprising behav-
ior: The large number of anomalies may be due to (1) in-
accurate physical sensing, (2) unintended interaction effects
among the various software components. E.g., the compo-
nent that should eliminate infeasible values— the filtering
algorithm—may not properly clean the output of the com-
ponent that should identify the vehicle type—the classifica-
tion algorithm, and (3) boundary problems in the classifica-
tion algorithm.

The decrease in the number of anomalies may be due to
a software update in the classification or filtering algorithms
or a re-calibration of the WIM scale. The similar behavior
of multiple attributes and vehicle types suggests this change
or update was system wide. The exception for the common
vehicle type suggests that the system is tuned for this type.

The correlation between slow and over-length vehicles
corroborates the expert knowledge.

The major insights our expert gained from the above
analysis are as follows:
• The data behavior strongly suggests that there was

a system-wide change in the WIM system starting
November 1999.

• The system (both hardware and software) seems to be
calibrated for the most common type of trucks. This, in
turn, seems to adversely affect the accuracy of vehicle
identification and classification of other types.

• The interaction of the various software components
seems to occasionally have undesirable effects.

The data providers confirmed the expert insights and
cause analysis, including the system wide change in Nov.
1999. They were unaware of the behavior that surprised our
expert until recently. It turns out that the WIM scale has
two different modes for weighing an axle. The various al-
gorithms made inconsistent assumptions about the weigh
mode. As a result, they occasionally assigned values to
the wrong attribute. The next algorithms in the chain did
not recognize the problem and made calculations based on
the incorrect data. Type 9 vehicles are cleaner because one
of the many software providers recognized a problem and
made an undocumented correction for type 9. In addition,
the system is physically calibrated for this type.

The above strengthens our belief in the usefulness of our
method and demonstrates the benefits of automated elicita-
tion support. To set up the model, the expert invested less
than 10 hours. The anomaly detection was fully automated
and quick (a few minutes). In comparison, it had taken the
data providers several months to independently notice the
same problems.

7. Related work
The main contribution of this paper is the template

mechanism— a means of specifying user expectation and
consequently checking these expectations to detect anoma-
lies. Work most closely related includes approaches that
either have a similar emphasis on users and their intent
[16, 24, 15, 17] or perform various dynamic analysis based
on observable behavior [10, 9, 2, 8, 14, 12]. However, that
work often requires source code, binaries, or cooperation
from the software providers and has a different domain.

We use existing unsupervised learning techniques. Co-
training [4] tries to reduce the effort that labeling data for
supervised learning requires. Active learning [7] tries to

5



select good training data for a technique. We ask the user to
classify the output of a technique, rather than its input.

Many people have been analyzing WIM data. How-
ever, most are concerned with transportation issues, not data
quality. [6, 5] did domain specific quality analysis.

8. Conclusions
We introduced a promising means for eliciting user ex-

pectations about data behavior: the template mechanism.
Our case study provides empirical evidence in support of
the effectiveness of the template mechanism: (1) The model
was useful for anomaly detection. It enabled detecting ac-
tual anomalies that the expert cared about: classification
problems and unlikely vehicles. In addition, the misclas-
sification rate was reasonable for a human to handle. (2)
The expert gained insights about the WIM system. The data
providers confirmed the expert insights.

Moreover, the case study results corroborate the bene-
fits of interacting with the template mechanism to make ex-
pectations precise and of analyzing the resulting anomalies.
Our method: (1) detected hardware and software problems
from observed data only. It detected, for example, prob-
lems that were caused by mis-calibration, software modifi-
cations, or state changes, (2) promptly detected these prob-
lems, and (3) increased the understanding of existing doc-
umentation. For example, the exact cut-off point between
normal and anomalous was not clear from the data though it
was clear (for upper bounds) from the documentation, sug-
gesting the documentation bounds may be too strict.

9. Acknowledgments
We thank the Auton Lab [3] for making their dataset

processing and analysis software (SPRAT) available to us,
the Minnesota Department of Transportation for their WIM
data, and Dan Pelleg for allowing us to use his Rectmix
code and for his comments. This research is supported by
NSF under Grant ITR-0086003, by the Sloan Software In-
dustry Center at Carnegie Mellon University, by the NASA
High Dependability Computing Program under cooperative
agreement NCC-2-1298, and by the General Motors Col-
laborative Research Laboratory at Carnegie Mellon. This
material is based in part upon work supported by the Na-
tional Science Foundation under Grant Number 9987871.

References
[1] R. Agrawal, T. Imielinski, and A. Swami. Mining association

rules between sets of items in large databases. In SIGMOD
93, 1993.

[2] G. Ammons, R. Bodik, and J. Larus. Mining specifications.
In POPL, 2002.

[3] Auton Lab. URL: http://www.autonlab.org. Ac-
cessed April 2003.

[4] A. Blum and T. Mitchell. Combining labeled and unlabeled
data with co-training. In COLT: Workshop on Computational
Learning Theory, 1998.

[5] R. Buchheit. Vacuum: Automated Procedures for Assess-
ing and Cleansing Civil Infrastructure Data. PhD thesis,
Carnegie Mellon University, Civil Engineering Dept., 2002.

[6] R. Buchheit, J. Garrett Jr., S. McNeil, and M. Chalkline. Au-
tomated procedures for improving the accuracy of sensor-
based monitoring data. In AATT, 2002.

[7] D. Cohn, Z. Ghahramani, and M. Jordan. Active learning
with statistical models. Journal of Artificial Intelligence Re-
search, 4:129–145, 1996.

[8] W. Dickinson, D. Leon, and A. Podgurski. Finding failures
by cluster analysis of execution profiles. In ICSE, 2001.

[9] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf.
Bugs as deviant behavior: A general approach to inferring
errors in systems code. In 18th ACM Symposium on Operat-
ing Systems Principles, 2001.

[10] M. Ernst, J. Cockrell, W. Griswold, and D. Notkin. Dynam-
ically discovering likely program invariants to support pro-
gram evolution. In TSE, 2000.

[11] N. E. Fenton and S. L. Pfleeger. Software Metrics, chapter 2.
PWS Publishing Company, 2nd edition, 1997.

[12] S. Hofmeyr and S. Forrest. Architecture for an artificial im-
mune system. In Evolutionary Computation Journal, 2000.

[13] M. Jackson. Problem Frames: Analysing and Structur-
ing Software Development Problems, chapter 4.3.3, 5.4.
Addison-Wesley, 2001.

[14] T. Lane and C. E. Brodley. Approaches to online learning
and concept drift for user identification in computer security.
In KDD, 1998.

[15] P. Langley. The computational support of scientific discov-
ery. International Journal of Human-Computer Studies, 53,
2000.

[16] S. McCamant and M. Ernst. Predicting problems caused by
component upgrades. In ESEC/FSE, 2003.

[17] R. C. Miller and B. A. Myers. Outlier finding: Focusing user
attention on possible errors. In UIST, 2001.

[18] D. Pelleg and A. Moore. Mixtures of rectangles: Inter-
pretable soft clustering. In ICML, 2001.

[19] P. H. R. Duda and D. Stork. Pattern Classification,. John
Wiley and Sons, 2nd edition, 2000.

[20] O. Raz, R. Buchheit, M. Shaw, P. Koopman, and C. Falout-
sos. Eliciting user expectations for data behavior via invari-
ant templates. Technical report, CMU-CS-03-105, 2003.

[21] O. Raz, R. Buchheit, M. Shaw, P. Koopman, and C. Falout-
sos. Detecting semantic anomalies in truck weigh-in-motion
traffic data using data mining. Journal of Computing in Civil
Engineering (JCCE), 2004. Accepted.

[22] O. Raz, P. Koopman, and M. Shaw. Semantic anomaly de-
tection in online data sources. In ICSE, 2002.

[23] P. Runeson, M. Ohlsson, and C. Wohlin. A classification
scheme for studies on fault-prone components. In Product
focused software process improvement, 2001.

[24] J. Sousa and D. Garlan. Aura: An architectural framework
for user mobility in ubiquitous computing environments. In
IEEE/IFIP Conference on Software Architecture, 2002.

6


