
16
Distributed Embedded

Scheduling
Distributed Embedded Systems

Philip Koopman
October 26, 2015

© Copyright 2000-2015, Philip Koopman

2

Where Are We Now?
 Where we’ve been:

• Distributed systems
• Embedded communications: protocols & performance

 Where we’re going today:
• Real Time Scheduling in distributed systems
• This adds on to what you saw in 18-348/18-349

– There is overlap, especially since grad students may not have seen this material

 Where we’re going next:
• Mid-semester presentations
• Embedded + Internet Security
• Distributed Timekeeping
• How to make sure you build systems right …

… and how you can actually know that you built them right

3

Preview
 Basic real time review

 Scheduling – does it all fit?
• Schedulability
• Scheduling algorithms,

including
– Distributed system

adaptations
– How they degrade

 Complications
• Aperiodic tasks
• Task dependencies

4

Review: Real Time Review
 Reactive: computations occur in response to external events

• Periodic events (e.g., rotating machinery and control loops)
• Aperiodic events (e.g., button closures)
• Real time means that correctness of result depends on both functional

correctness and time that the result is delivered

 Soft real time
• Utility degrades with

distance from deadline
 Hard real time

• System fails if deadline
window is missed

 Firm real time
• Result has no utility

outside deadline window,
but system can withstand
a few missed results

5

Types of Real-Time Scheduling

 Dynamic vs. Static
• Dynamic schedule computed at run-time based on tasks really executing
• Static schedule done at compile time for all possible tasks

 Preemptive permits one task to preempt another one of lower priority
• Also, centralized or distributed implementation?

[Kopetz]

6

Schedulability
 NP-hard if there are any resource dependencies at all

• So, the trick is to put cheaply computed bounds/heuristics in place
– Prove it definitely can’t be scheduled
– Find a schedule if it is easy to do so
– Punt if you’re in the middle somewhere

[Kopetz]

7

Periodic Messages and Tasks
 “Time-triggered” (periodic) tasks are common in embedded systems

• Often via control loops or rotating machinery
 Components to periodic tasks

• Period (e.g, 50 msec)
• Offset past period (e.g., 3 msec offset/50 msec period -> 53, 103, 153, 203)
• Jitter is random “noise” in release time (not oscillator drift)
• Release time is when message submitted to transmit queue
• Release timen= (n*period) + offset + jitter ; assuming perfect time precision

8

Scheduling Parameters
 Set of tasks {Ti}

• Periods pi

• Deadline di
(completion deadline after task is queued)

• Execution time ci
(amount of CPU time to complete)

• Worst case latency to complete execution Wi
– This is something we solve for, it’s not a given

 Handy values:
• Laxity li = di – ci

(amount of slack time before Ti must begin
execution)

• Utilization factor i = ci/pi (portion of
CPU used)

9

Simple Schedulability

 Necessary:
“You can’t use more that 100%
of available CPU power!”

  N
p
c

i

i
i

� Trivially Sufficient:
“One CPU per task always works, if each task fits on a single CPU”

� Of course, the hard part is putting tighter sufficiency bounds on
things…

Ni0 and 1 
i

i
i p

c

10

Distributed Static Schedule
 Co-schedule CPUs and Network:

• Assign specific network transmission time to each message using a spreadsheet
• Assign dedicated CPU time to each CPU to compute/transmit each message
• Assign dedicated CPU time to receive/process applicable incoming messages
• Iterate until the schedule contains no double-booked resources

11

Distributed Static Schedule Tradeoffs
 In a nutshell, this is time-triggered system design taken to extremes

 Pro:
• Relaxes some of the scheduling assumptions discussed in next slide
• If it works once, it will always work

– Assuming that compute time never varies, ignoring message losses, etc.
– Can adapt by putting in slack space for message retries

• You can guarantee it works while using 100% of all resources
– (Assuming that it is statically schedulable)
– This makes it attractive for safety critical design – easy to know it will really work

 Con:
• Might have to reschedule the whole thing for every change!

– (build a tool to do this)
• Probably have a different schedule for each operating mode

– (build a tool to do this)
• Might need a different set of schedules for each different model of the design

– (build a tool to do this)

12

Major Assumptions
 Five assumptions are the starting point for this area:

1. Tasks {Ti} are periodic, with hard deadlines and no jitter
• Period is Pi

2. Tasks are completely independent
• B=0; Zero blocking time; no use of a mutex; interrupts never masked

3. Deadline = period
• Pi = Di

4. Worst case computation time is known and used for calculations
• Ci worst case is always the same for each execution of the task

5. Context switching is free (zero cost)
• Executive takes zero overhead, and task switching has zero latency

 These assumptions are often not realistic
• But sometimes they are close enough in practice
• We’re going to show you the common special cases that are “easy” to use

– And the starting points for dealing with situations in which the rules are bent

13

EDF: Earliest Deadline First
 Assume a preemptive system with dynamic priorities, and

{ same 5 assumptions}

 Scheduling policy:
• Always execute the task with the nearest deadline

– Priority changes on the fly!
– Results in more complex run-time scheduler logic

 Performance
• Optimal for uniprocessor (supports up to 100% of CPU usage in all situations)

– If it can be scheduled – but no guarantee that can happen!
– Special case where it works is very similar to case where Rate Monotonic can be

used:
» Each task period must equal task deadline
» But, still pay run-time overhead for dynamic priorities

• If you’re overloaded, ensures that a lot of tasks don’t complete
– Gives everyone a chance to fail at the expense of the later tasks

14

Least Laxity
 Assume a preemptive system with dynamic priorities, and

{ same 5 assumptions }

 Scheduling policy:
• Always execute the task with the

smallest laxity li = di – ci

 Performance:
• Optimal for uniprocessor (supports up to 100% of CPU usage in all situations)

– Similar in properties to EDF
– If it can be scheduled – but no guarantee that can happen!

• A little more general than EDF for multiprocessors
– Takes into account that slack time is more meaningful than deadline for tasks of

mixed computing sizes
• Probably more graceful degradations

– Laxity measure permits dumping tasks that are hopeless causes

15

Distributed EDF/Least Laxity
 Requires using deadline information as priority (use CAN as example)

• Each node does EDF CPU scheduling according to an end-to-end deadline
• Each node locally prioritizes outgoing messages according to EDF or laxity
• Each receiving node prioritizes tasks sparked by received messages EDF
• Usually not globally optimal – not every CPU kept busy all the time

Global laxity priority for a network ([Livani98] has a more sophisticated scheme)

16

EDF/Least Laxity Tradeoffs
 Pro:

• If it works, it can get 100% efficiency (on a uniprocessor)
• Does not restrict task periods
• Special case works if, for each task, Period = Deadline

 Con:
• It is not always feasible to prove that it will work in all cases

– And having it work for a while doesn’t mean it will always work
• Requires dynamic prioritization
• EDF has bad behavior for overload situations (LL is better)
• The laxity time hack for global priority has limits

– May take too many bits to achieve fine-grain temporal ordering
– May take too many bits to achieve a long enough time horizon

 Recommendation:
• Avoid EDF/LL if possible

– Because you don’t know if it will really work in the general case!
– And the special case doesn’t buy you much, but comes at expense of dynamic

priorities

17

Rate Monotonic Scheduling
 Problems with previous approaches

• Static scheduling – can be difficult to find a schedule that works
• EDF & LL – run-time overhead of dynamic priorities

• Wanted:
– Easy rule for scheduling
– Static priorities
– Guaranteed schedulability

 Rate Monotonic Scheduling
• { same 5 assumptions }

1. Sort tasks by period (i.e., by “rate”)
2. Highest priority goes to task with shortest period (fastest rate)

– Tie breaking can be done by shortest execution time at same period
3. Use prioritized preemptive scheduler

– Of all ready to run tasks, task with fastest rate gets to run

18

Rate Monotonic Characteristics
 Static priority

• Priorities are assigned to tasks at design time; priorities don’t change at run time

 Preemptive
• When a high priority task becomes ready to run, it preempts lower priority tasks
• This means that ISRs have to be so short and infrequent that they don’t matter

– (If they are non-neglible, see Blocking Time discussion later)

 Guarantees schedulability if you don’t overload CPU (see next slide)
• All you have to do is follow the rules for task prioritization
• (And meet the 5 assumptions)

 Variation: Deadline Monotonic
• Use min(period, deadline) to assign priority rather than just period
• Works the same way, but handles tasks with deadlines shorter than their period

19

Example of a Missed Deadline at 79% CPU Load

 Task 4 misses deadline
• This is the worst case launch time scenario

 Missed deadlines can be difficult to
find in system testing
• 5 time units per task is worst case

– Average case is often a bit lighter load

• Tasks only launch all at same time once
every 224,808 time units

LCM(19,24,29,34) = 224,808
(LCM = Least Common Multiple)

20

Harmonic RMS or DMS
 For arbitrary periods, only works for ~70% CPU loading

– Most systems don’t want to pay 30% tribute to the gods of schedulability… so…

 Make all periods “harmonic”
• Pi is evenly divisible by all shorter Pj

• This period set is harmonic: {5, 10, 50, 100}
– 10 = 5*2; 50 = 10*5; 100 = 50*2; 100 = 10*5*2

• This period set is not harmonic: {3, 5, 7, 11, 13}
– 5 = 3 * 1.67 (non-integer), etc.

 If all periods are harmonic, works for CPU load of 100%
• Harmonic periods can’t drift in and out of phase – avoids worst case situation

 }p dividesevenly {p ; 1 kjp kj p
i i

i

p
c

 

    %3.69lim;12
1





 

n

n

i

n

i

i n
P
C

21

Example Deadline Monotonic Schedule

Task # Period
(Pi)

Deadline
(Di)

Compute
(Ci)

T1 5 15 1

T2 16 23 2

T3 30 6 2

T4 60 60 3

T5 60 30 4

Task # Priority 

T1 1 1/5 = 0.200

T3 2 2/6 = 0.333

T2 3 2/16 = 0.125

T5 4 4/30 = 0.133

T4 5 3/60 = .05

TOTAL 0.841

743.0)(841.0

5 N ;)12(



 

not

N
p
c N

i

i




Not Schedulable!
(Might be OK with exact schedulability math…

… but then you have to use fancy math!)

22

Example Harmonic Deadline Monotonic Schedule

Task # Period
(Pi)

Deadline
(Di)

Compute
(Ci)

T1 5 15 1

T2 15 23 2

T3 30 5 2

T4 60 60 3

T5 60 30 4

Task # Priority 

T1 1 1/5 = 0.200

T3 2 2/5 = 0.400

T2 3 2/15 = 0.133

T5 4 4/30 = 0.133

T4 5 3/60 = .05

TOTAL 0.916

1916.0

60} 30, 15, {5, periods armonic ; 1



 



 H
p
c

i

i

Schedulable, even though
usage is higher!

23

Distributed Rate/Deadline Monotonic
 Schedule network using Deadline Monotonic assignment

• Implement by assigning CAN priorities according to period length
– This is what is done in CAN most of the time anyway

• Network is non-preemptable, but assume it’s close enough because each
message (=task) is short compared to deadlines

– Add longest message as blocking time
– Look up the blocking time math in an RMS/DMS paper (it’s a bit complex)

 Schedule each node using Deadline Monotonic assignment
• Static priorities and pre-emptive prioritized scheduler

 Is that enough?
• Should work for piecewise compute+transmit+compute deadlines
• But for each “hop” you might lose out on one local period extra latency

24

Dealing With Background Tasks
 “Other” tasks need to be executed

without deadlines

 Several possible approaches:
• Dedicate a fixed number of CPUs to routine

tasks
• Assign all routine tasks lowest priority, and

execute round-robin
– Effectively equivalent to an “other task server” but also uses any leftover time from

other tasks that run short, are blocked, or aren’t in execution
• Assign an “other task server” for routine tasks

– Each “other task” is executed from the server’s budget
– Has the advantage of giving consistent CPU proportion for system validation

 Distributed version: do the same thing with network bandwidth

25

But Wait, There’s More
 WHAT IF:

1. Tasks {Ti} are NOT periodic
– Use Sporadic techniques (stay tuned)

2. Tasks are NOT completely independent
– Worry about dependencies (stay tuned)

3. Deadline NOT = period
– Use Deadline monotonic

4. Computation time ci isn’t known and constant
– Use worst case computation time (WCET), if known
– Can be tricky to compute – for example what if number of times through a loop

is data dependent? (stay tuned)

5. Context switching is free (zero cost)
– If it isn’t free add this to blocking time (see assumption 2 above)

26

Aperiodic Tasks
 Asynchronous tasks

• External events with no limits on inter-arrival rates
• Often Poisson processes (exponential inter-arrival times)

 How can we schedule these?
• Mean inter-arrival rate? (only useful over long time periods)
• Minimum inter-arrival time with “filtering” (limit rate to equal deadline)

– Artificial limit on inter-arrival rate to avoid swamping system
– May miss arrivals if multiple arrivals occur within the filtering window length

27

Dealing With Sporadic Tasks
• “Sporadic” means there is a limit on maximum repetition time
• “Aperiodic” means all bets are off – none of the theories handle this case

 Approach #1: pretend sporadic tasks are periodic
• Schedule time for a sporadic task at maximum possible needed execution rate
• Simplest approach if you have capacity
• But, this can be wasteful, because reserves CPU for tasks that seldom arrive

 Approach #2: Use a sporadic server (this is a simplified description)
• Schedule a periodic task that is itself a scheduler for sporadic tasks

– For example, might serve sporadic tasks in FIFO or round robin order
– But, sporadic server limits itself to a maximum Ci and runs once every Pi
– This might look like a preemptive mini-tasker living as a single RTOS task

• Use sporadic server time for any sporadic task that is available
• Decouples timing analysis for sporadic server from other tasks
• Can also handle aperiodic tasks without disrupting other main tasks

– But, no magic – still can’t make guarantees for those aperiodic tasks
– Need some specialty math to manage and size the sporadic server task

28

Special Case For Mixed Safety/Non-Safety Systems
 Two-phase schedule to ensure safety critical task service times

1. Critical: Round robin schedule with maximum times per task
• Non-preemptive tasking with deterministic timing and fixed ordering

2. Non-Critical: Prioritized task segment with maximum total time
• Basically a sporadic server, for example first-in/first-out ordering within time slice
• Terminates or suspends tasks at end of its designated slice

 For example, the FlexRay automotive network protocol does this
• Except it applies it to scheduling network messages, not CPU tasks

29

Blocking Time: Mutex + Priorities Leads To Problems
 Scenario: Higher priority task waits for release of shared resource

• Task L (low prio) acquires resource X via mutex
• Task H (high prio) wants mutex for resource X and waits for it

 Simplistic outcome with no remedies to problems (don’t do this!)
• Task H hogs CPU in an infinite test-and-set loop waiting for resource X
• Task L never gets CPU time, and never releases resource X

• Strictly speaking, this is “starvation” rather than “deadlock”

[Renwick04] modified

Waits for Mutex Forever

30

Bounded Priority Inversion
 An possible approach (BUT, this has problems…)

• Task H returns to scheduler every time mutex for resource X is busy
• Somehow, scheduler knows to run Task L instead

– If it is a round-robin preemptive scheduler, this will help
– In prioritized scheduler, task H will have to reschedule itself for later

» Can get fancy with mutex release re-activating waiting tasks, whatever ….

• Priority inversion is bounded – Task L will eventually release Mutex
– And, if we keep critical regions short, this blocking time B won’t be too bad

[Renwick04]

31

Unbounded Priority Inversion
 But, simply having Task H relinquish the CPU isn’t enough

• Task L acquires mutex X
• Task H sees mutex X is busy, and goes to sleep for a while; Task L resumes
• Task M preempts task L, and runs for a long time
• Now task H is waiting for task M  Priority Inversion

– Task H is effectively running at the priority of task L because of this inversion

[Renwick04]

32

Solution: Priority Inheritance
 When task H finds a lock occupied:

• It elevates task L to at least as high a priority as task H
• Task L runs until it releases the lock, but with priority of at least H
• Task L is demoted back to its normal priority
• Task H gets its lock as fast as possible; lock release by L ran at prio H

 Idea: since mutex is delaying task H, free mutex as fast as you can
• Without suspending tasks having higher priority than H!
• For previous slide picture, L would execute with higher prio than M

[Renwick04]

33

Priority Inheritance Pro/Con
 Pro: it avoids many deadlocks and starvation scenarios!

• Only elevates priority when needed (only when high prio task wants mutex)
• (An alternative is “priority ceiling” which is a similar idea)

 Run-time scheduling cost is perhaps neutral
• Task H burns up extra CPU time to run Task L at its priority
• Blocking time B costs per the scheduling math are:

– L runs at prio H, which effectively increases H’s CPU usage
– But, H would be “charged” with blocking time B regardless, so no big loss

 Con: complexity can be high
• Almost-static priorities, not fully static

– But, only changes when mutex encountered, not on every scheduling cycle
• Nested priority elevations can be tricky to unwind as tasks complete
• Multi-resource implementations are even trickier

 If you can avoid need for a mutex, that helps a lot
• But sometimes you need a mutex; then you need priority inheritance too!

34

Mars Pathfinder Incident (Sojourner Rover)
 July 4, 1997 – Pathfinder lands on Mars

• First US Mars landing since Vikings in 1976
• First rover to land (in one piece) on Mars
• Uses VxWorks RTOS

 But, a few days later…
• Multiple system resets occur

– Watchdog timer saves the day!
– System reset to safe state instead of unrecoverable crash

• Reproduced on ground; patch uploaded to fix it
– Developers didn’t have Priority Inheritance turned on!
– Scenario pretty much identical to H/M/L picture a couple slides back
– Rough cause: “The data bus task executes very frequently and is time-critical -- we

shouldn't spend the extra time in it to perform priority inheritance” [Jones07]

35

Applied Deadline Monotonic Analysis With Blocking
 Blocking time Bi is worst case time that Task i can be blocked

• Combination of blocking from semaphores, bounded length priority inversion, etc.

 For each task,
ensure that
task plus its
blocking time
uses less than
100% of CPU:

 Pessimistic bound – penalize all tasks with worst case blocking time:

periods harmonicfor ; 1;

1

1

1

3

3

3

3

2

2

1

1
3

2

2

2

2

1

1
2

1

1

1

1
1





































































 k

k

ki i

i

ki
ik p

B
p
ck

p
B

p
c

p
c

p
c

p
B

p
c

p
c

p
B

p
c









 periods harmonicfor ; 1
)max(









 

j

j

i i

i

p
B

p
c

36

Determinacy & Predictability (the “C” term)
 Determinacy = same performance every time

• Low determinacy can cause control loop instabilities
– If it’s non-deterministic, how do you know you certified/tested the worst case?

• System-level mechanisms can cause non-determinism:
– Cache memory; speculative execution; virtual memory; disk drive seek times
– Context switching overhead; interrupts
– Prioritized network/task interactions (depends on situation; this is controversial)

• Determinacy can be improved
– Insert waits to ensure results are always delivered with worst case delay
– Avoid/turn off non-deterministic hardware & software features
– Ensure conditional paths through software are the same length
– Use only static iteration counts for loops
– Extreme case – end-to-end cyclic static schedule for everything

 Predictability = designer can readily predict performance
• High end processors are nearly impossible to understand clock-by-clock

– Some have ways to make things predictable & deterministic (e.g. Power PC 603e)

37

How Hard Is It To Predict Performance?
 Computing worst-case “C” is difficult for high performance CPUs

• Data from an 80486 (cache, but no speculative execution)

903CLOCK CYCLES

38

Watch Out For Network Problems!
 Corrupted network messages

• Do you re-transmit?
– Introduces jitter for that message
– Delays all subsequent messages
– Need to reserve extra space to avoid later messages missing deadlines

• Do you ignore?
– Use stale data or introduce large jitter for one variable

 Network blackout
• What if entire network is disrupted for 100+ msec?

– (What if the cable gets cut?)

 Alternate strategies for dealing with network noise
• Maintain freshness counters for all network data
• Send every message twice

– Or, run control loops faster than necessary (including message traffic)
• Forward error correction codes (but won’t help with blackout)

39

Review
 Scheduling – does it all fit?

• Schedulability – necessary vs. sufficient
• Scheduling algorithms – static, EDF, LL, RM

– Distributed versions as well as single-CPU versions

 Complications
• Aperiodic tasks
• Inter-task dependencies
• Worst case execution time

 Assumptions… (next slide)

40

Review – Assumptions
 Assume non-preemptive system with 5 Restrictions:

1. Tasks {Ti} are periodic & predictable, with hard deadlines and no jitter
• Various hacks to make things look periodic
• Various hacks to increase determinacy

2. Tasks are completely independent
• Pretend a string of tasks is really one task for scheduling

3. Deadline = period pi = di
• Use worse case of deadline or period for scheduling

4. Worst case computation time ci is known and used for calculations
• For a pessimistic approximation, turn off caches to take measurements

5. Context switching is free (zero cost) INCLUDING network messages to
send context to another CPU(!)
• It’s not free, but as CPUs gets faster it gets cheaper compared to real time

• Don’t forget that the theory does not account for dropped messages!

