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What About Errors In Digital Data?
 Noise on serial buses is a fact of life

• In embedded systems, can easily be one bit error per 105 (or 106) bits
– Does that matter?

• At 9600 bps x 24 hours
– 86,400 seconds/day; 829,440,000 bits per day  ~8300 errors per day

• CAN (serial network in cars) might run at 1Mbps ~ 1 million errors/day
– Many will be single-bit errors, but many others will be multi-bit errors.

 Is parity enough?
• All even numbers of bit errors are undetected by parity
• AND, it costs too much for what you get (~10% bandwidth penalty)

 Want a more general approach
• In case a noise burst creates multiple bit errors close together
• In case network has periods of high noise, or otherwise sees many errors
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Error Coding For Poets (who know a little discrete math)

 The general idea of an error code is to mix all the bits in the data word to 
produce a condensed version (the check sequence)
• Ideally, every bit in the data word affects many check sequence bits
• Ideally, bit errors in the code word have high probability of being detected
• Ideally, a small number of bit errors is detected 100% of the time
• At a hand-wave, similar to desired properties of a pseudo-random number generator

– The Data Word is the seed value, and the Check Sequence is the pseudo-random number

 The ability to do this will depend upon:
• The size of the data word

– Larger data words are bigger targets for bit errors, and are harder to protect
• The size of the check sequence

– More check sequence bits makes it harder to get unlucky with multiple bit errors
• The mathematical properties of the “mixing” function

– Thorough mixing of data bits lets the check sequence detect simple error patterns
• The type of errors you expect to get (patterns, error probability)

Data Word Check Sequence
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Brute Force Replication
 Duplicate values

• Put two copies of every value in memory
– “Mirroring:” store value and also one’s complement of value in two locations

• Send every message twice

• Detects errors, but if two values mismatch how to you know which is correct?

 Triplicate values
• Put three copies of every value in memory
• If two match and the third doesn’t, assume the two that match are correct

 How good are these at detecting/preventing corruption?
• A one-bit error in the same place in two copies will go undetected
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Example: Parity As An Error Detection Code
 Example error detection function:   Parity

• XOR all the bits of the data word together to form 1 bit of parity

 How good is this at error detection?
• Only costs one bit of extra data; all bits included in mixing
• Detects all odd number of bit errors (1, 3, 5, 7, … bits in error)
• Detects NO errors that flip an even number of bits (2, 4, 6, … bits in error)
• Performance: detects up to 1 bit errors; misses all 2-bit errors
• Not so great – can we do better?

Data Word
Bit0 Bit1 Bit2 Bit3 BitN-1 Parity

Check
Sequence

. . .

Parity = Bit   Bit  Bit   Bit  ...  Bit0 1 2 3 N-1    
Note:  is eXclusive OR  (XOR)
          Parity = 0 for even number of “1” bits
          Parity = 1 for odd number of “1” bits



XOR Facts:
   0  0 = 0

0  1 = 1
   1  0 = 1
   1  1 = 0
(Think of it
as Boolean
addition and
subtraction.)




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SECMED
 Single Error Correction Multiple Error Detection (HD=4)

• A pattern of XORs across the data word that is carefully designed to
identify the location of any single bit error

– Essentially, a lot of parity bits across different subsets of the data word
– Pattern is tricky and I don’t expect you to know it – (Wikipedia explains it)

• If you know the location, you can flip the bad bit back  error correction
• Also detects any odd number of bit errors (includes a classical parity bit)
• May detect many other error patterns depending upon design

– For example, might design to detect 4 bit errors in a single x4 DRAM chip
• Cost is ~Log2N bits of error code for an N-bit code word (includes SECMED code size)

 Typical uses:
• DRAM memory for servers and high-dependability systems

– If data is corrupted you need to recover it – this is a classic hardware technique
• Used in very low-end wireless transmission (e.g., remote keyless entry)

– If transmission is garbled don’t want to spend power on a retry
• Usually NOT used for wired data or software RAM techniques

– If you can retry easily, don’t need error correction
– Computationally too expensive for protecting in-RAM data
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Example: Longitudinal Redundancy Check (LRC)
 LRC is a byte-by-byte parity computation

• XOR all the bytes of the data word together, creating a one-byte result
• (This is sometimes called an “XOR checksum” 

but it isn’t really addition, so it’s not really a sum)

Data Word
Byte0 Byte1 Byte2 Byte3 ByteN-1LRC Byte

Check
Sequence

...

    Byte  
 Byte
 Byte  
 Byte  
...
 Byte

0

1 

2

3

N-1






LRC BYTE

    Example:
    0 0 1 0  0 1 0 0 

 1 0 1 1  1 0 0 0
 1 1 1 1  1 1 1 1
 0 0 0 0  0 0 0 1






0 1 1 0  0 0 1 0
Result is parity of

each vertical bit slice



8

How Good Is An LRC?
 Parity is computed for each bit position (vertical stripes)

• Note that the received copy of check sequence can be corrupted too!

 Detects all odd numbers of bit errors in a vertical slice
• Fails to detect even number of bit errors in a vertical slice
• Detects all 1-bit errors
• Detects many 2-bit errors, but not all 2-bit errors

– Any 2-bit error in same vertical slice is undetected

    0 0 1 0  0 1 0 0 
 1 0 1 1  1 0 0 0

    1 1 1 1  1 1 1 1
   0 0 0 0  0 0 0 1

0 1 1 0  0 0 1 0

0 1 1 0  0 0 1 0
computed
No Errors

    0 0 1 0  0  0 0 
    1  1 1  1  0 0
    1 1  1  1  1 1
    0 0 0 0  0 0 0 1

0
1 1

0 0

0 1 1 0  0 0  00

0 0 0 0  0 1 1 0
computed

Detected Error

    0 0 1 0  0 1 0 0 
    1 0 1 1  1 0 0 

 1  1 1  1 1 1 
    0  0 0   0 0 

1
0 0
1 1 0

0 1 1 0   0 1 1 1

0 1 1 0  1 0 1 1
computed

Undected Error!

Red bits are transmission or storage errors

N
o 

M
at

ch

M
at

ch
!!Received

Check
Sequence

Received
Data
Word

Computed
LRC
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Basic Model For Data Corruption
 Data corruption is “bit flips” (“bisymmetric inversions”)

• Each bit has some probability of being inverted
• “Weight” of error word is number of bits flipped (number of “1” bits in error)

 Error detection works if the corrupted Code Word is invalid
• In other words, if corrupted Check Sequence doesn’t match the Check 

Sequence that would be computed based on the Data Word
• If corrupted Check Sequence just happens to match the Check Sequence 

computed for corrupted data, you have an undetected error
• All things being equal (which they are not!!!) probability of undetected

error is 1 chance in 2k for a k-bit check sequence

Data Word

Data Word’

Check Sequence

Check Sequence’

Error Bits

Corrupted Code Word

Original Code Word
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Error Code Effectiveness Measures
 Metrics that matter depend upon application, but usual suspects:

• Maximum weight of error word that is 100% detected
– Hamming Distance (HD) is lowest weight of any undetectable error
– For example, HD=4 means all 1, 2, 3 bit errors detected 

• Fraction of errors undetected for a given number of bit flips
– Hamming Weight (HW): how many of all possible m-bit flips are undetected?

» E.g. HW(5)=157,481 undetected out of all possible 5-bit flip Code Word combinations
• Fraction of errors undetected at a given random probability of bit flips

– Assumes a Bit Error Ratio (BER), for example 1 bit out of 100,000 flipped
– Small numbers of bit flips are most probable for typical BER values

• Special patterns 100% detected, such as adjacent bits
– Burst error detection – e.g., all possible bit errors within an 8 bit span

• Performance usually depends upon data word size and code word size

 Example for LRC8   (8 bit chunk size LRC)
• HD=2    (all 1 bit errors detected, not all 2 bit errors)
• Detects all 8 bit bursts (only 1 bit per vertical slice)
• Other effectiveness metrics coming up…
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LRC8 Error Detection Effectiveness (Pud)
 Assume random independent bit flips

• For a given BER, can determine Probability of UnDetected error (Pud) 

 Most networks won’t work at all for BER > 10-2 so we’re OK, right?   WAIT!!!
 Consider at BER of 10-6 (Pud = 4.8 * 10-11)

• 1MBps  8.64  * 1010  32-bit data chunks per day  
 4 undetected errors/day


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LRC8 With 2 Or More Bit Errors
 At low BER almost all errors involve 1 bit

• LRC8 catches all 1 bit errors, so makes things look great
• Those 4 failures/day are mostly coming from undetected 2-bit errors
• LRC8 is a factor of 25 worse than “random” for 2 bit errors!


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13

LRC8 Error detection Effectiveness (Fraction)
 Each data point is # undetected / # total bit error patterns

• Assumes every bit error pattern is equally likely for given HW
• 2-bit errors are especially vulnerable – and they may be quite likely!
• General rule: what happens for small # of bit flips is what matters most

Performance of LRC8 on 24 Bit Data Word
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Can We Do Better?
 YES – A whole lot better!
 8-bit Fletcher Checksum   (performance varies based on data)
 Optimal 8-bit CRC (detects all 1-, 2-, 3-bit errors at this length)

• Detecting all 3-bit errors dramatically improves Pud
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(Preliminary Data)

(3 bit errors)
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Checksum (review)
 Checksums (add up all the bytes) are better than parity (HD=2 or 3)

• XOR checksum is just individual parity for each bit in message
• ADD costs same as XOR, but gives better mixing due to carry bits

unit8 lrc = SEED;
for( int i = 0; i < length; i++) { lrc = lrc + data[i]; }
data[length] = lrc;

• Still, in worst case can miss small errors that hit just the wrong way

 If you use a checksum, use 1’s complement addition
• Gives better coverage than 2’s complement addition; catches carry-out bits

– 2’s complement misses double-bit errors on top bit position; 1’s complement 
doesn’t

– 1’s complement about 12.5% better for 8-bit checksum
• About twice as good as XOR-based checksum
• About the same speed (now that you know the ADC wrap-around trick from the 

optimization lectures!)
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Integer Addition Checksum
 Same as LRC, except use integer “+” instead of XOR

• The carries from addition promote bit mixing between adjacent columns
– Can detect errors that make two bits go 0  1  or 1  0  (except top-most bits)
– Cannot detect compensating errors  (one bit goes 0 1 and another 1  0)

• Carry out of the top bit of the sum is discarded
– No pairs of bit errors are detected in top bit position
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One’s Complement Addition Checksum
 Same as integer checksum, but add Carry-Out bits back

• Plugs error detection hole of two top bits flipping with the same polarity
• But, doesn’t solve problem of compensating errors
• Hamming Distance 2 (HD=2); some two-bit errors are undetected
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Advanced Checksums
 Fletcher Checksum – use two running one’s complement sums

• HD = 3 for short codewords; HD=2 for long codewords
• This example generates a 16-bit Fletcher Checksum on 8-bit chunks

unit8 a = 0; unit8 b = 0;
for( int i = 0; i < length; i++)
{ a = OnesCompAdd(a,data[i]);
b = OnesCompAdd(a,b);

} 
data[length] = a; data[length+1] = b;

 Properties
• Better bit mixing – less vulnerable to same bit-position errors

– Detects all 1 and 2-bit errors until the sum a rolls over (at almost 256 bytes)
• Significant improvement comes from the running sum b

– b = data[length-1] + 2*data[length-2] + 3*data[length-3]…
– This allows it to catch byte values that are out of order, which are missed by regular 

checksums
• Another similar variant, Adler checksums, aren’t worth the trouble; use Fletcher
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Can We Do Better Than A Checksum?
 Can often get HD=6  (detect all 1, 2, 3, 4, 5-bit errors) with a CRC
 Note that this is a different graph that happens to be previously published

• 16 bit Check Sequences; longer code word lengths
 For this graph, assume Bit Error Rate (BER) = 10-5 flip probability per bit

Source:
Maxino, T., & Koopman, P. "The 
Effectiveness of Checksums for 
Embedded Control Networks," IEEE 
Trans. on Dependable and Secure 
Computing, Jan-Mar 2009, pp. 59-72.
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16-Bit LRC

Best 16-Bit Checksum

Best 16-bit CRC
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CRC – Better Bit Mixing
 Error detection is all about mixing together message bits

• Hopefully in a way so that lots of errors have to hit just the wrong way to go 
undetected!

 CRC – Cyclic Redundancy Code
• Shifts bits into an XOR-based

mixing register
• Can often guarantee detection of

multiple bit errors
• Slower than checksum, but

still useful

 Caution!
• Much of the published lore about CRCs is incorrect
• One size does not fit all (there is no single best feedback polynomial)
• Some published polynomials have bugs in them (incorrect values)

– Even in Numerical Recipes in C 2nd Ed.  (newest edition fixed based our feedback)
– Even in scholarly journal papers
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Mathematical Basis of CRCs
 Use polynomial division (remember that from high school?)

over Galois Field(2) (this is a mathematician thing)
• At a hand-waving level this is division using Boolean Algebra

– “Add” and “Subtract” used by division algorithm both use XOR

11010011101100 000 <--- Data Word left shifted by 3 bits
1011               <--- 4-bit divisor is 1011  x3 + x + 1
01100011101100 000 <--- result of first conditional subtraction
1011              <--- divisor
00111011101100 000 <--- result of second conditional subtraction
1011             <--- continue shift-and-subtract ...

00010111101100 000
1011

00000001101100 000
1011

00000000110100 000
1011

00000000011000 000
1011

00000000001110 000
1011

00000000000101 000 
101 1

----------------- Remainder is the Check Sequence
00000000000000 100 <--- Remainder (3 bits)

[Wikipedia]
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Classical CRC Overview
 Cyclic Redundancy Code operation

• Computes a (non-secure) message digest using shift and XOR
• This is a hardware implementation of polynomial division

0xB41 = x12+x10+x9+x7+x+1     (the “+1” is implicit in the hex value)

= (x+1)(x3 +x2 +1) (x8 +x4 +x3 +x2 +1)

• Detected error if received digest doesn’t match CRC Remainder of payload

MESSAGE PAYLOAD CRC Remainder
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Aren’t CRCs Really Slow?
 Speedup techniques have been known for years

• Important to compare best implementations, not slow ones

 256-word lookup table provides about 4x CRC speedup
• Careful polynomial selection gives 256-byte table and ~8x speedup
• Intermediate space/speedup approaches can also be used
• Ray, J., & Koopman, P. "Efficient High Hamming Distance CRCs for 

Embedded Applications," DSN06, June 2006.

 In a system with cache memory, CRCs are probably not a lot 
more expensive than a checksum
• Biggest part of execution time will be getting data bytes into cache
• We are working on a more definitive speed tradeoff study
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Is Using A CRC Worth It?
 Checksums can be faster (although this is usually overstated)

• But give far worse error performance
– Most checksum folklore is based on comparing to a bad CRC or with non-

representative fault types

Source:
Maxino, T., & Koopman, P. 
"The Effectiveness of 
Checksums for Embedded 
Control Networks," IEEE 
Trans. on Dependable and 
Secure Computing, Jan-Mar 
2009, pp. 59-72.

Small CRCs can beat Fletcher-16.
12-bit CRC is better up to 2Kbits
with fewer check sequence bits.

HD=2

HD=4

HD=3

HD=5

HD=6
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What Happens When You Get The CRC Wrong?
 DARC (Data Radio Channel), ETSI, October 2002

• DARC-8 polynomial is optimal for 8-bit payloads
• BUT, DARC uses 16-48 bit payloads, and misses some 2-bit errors
• Could have detected all 2-bit and 3-bit errors with same size CRC!

Data Word Length (bits)

8 16 32 64 128 256 512 1024 2048

P ud

1e-12

1e-15

1e-18

1e-21

1e-24

1e-27

1e-30

1e-33

0x9C DARC-8

Bound 

HD=2

HD=3

HD=4

HD=5

0x9C

BER = 10-6

}
DARC

PAYLOAD LENGTH
16-48 BITS

DARC-8

Source:
Koopman, P. & 
Chakravarty, T., "Cyclic 
Redundancy Code (CRC) 
Polynomial Selection for 
Embedded Networks,“
DSN04, June 2004



26

Baicheva’s Polynomial C2
 [Baicheva98] proposed polynomial C2, 0x97

• Recommended as good polynomial to length 119
• Dominates 0xEA which is the “standard” 8-bit CRC (better Pud at every length)

Data Word Length (bits)

8 16 32 64 128 256 512 1024 2048

P ud

1e-12

1e-15

1e-18

1e-21

1e-24

1e-27

1e-30

1e-33

0x9C DARC-8
0xEA CRC-8
0x97  C2
Bound 

HD=2

HD=3

HD=4

HD=5

0x9C

0xEA
0x97

BER = 10-6

Baicheva C-2
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But What If You Want the HD=3 Region?
 We found that 0xA6 has good performance

• Better than C2 and near optimal at all lengths of 120 and above

HD=2

HD=3

HD=4

HD=5

0xA6

Data Word Length (bits)

8 16 32 64 128 256 512 1024 2048

P ud

1e-12

1e-15

1e-18

1e-21

1e-24

1e-27

1e-30

1e-33

0xA6
Bound

New Recommended
Polynomial

0x97 Baicheva C2

0x97

Source:
Koopman, P. & 
Chakravarty, T., "Cyclic 
Redundancy Code (CRC) 
Polynomial Selection for 
Embedded Networks,“
DSN04, June 2004
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How To Pick A Good CRC Polynomial
• HD “Hamming Distance” – polynomial is guaranteed to detect all errors with 

fewer than HD bits flipped  (so, it misses some with HD bits flipped)
• CRC size – number of bits in CRC field
• Length – number of bits in data payload (excluding CRC)
• Polynomial – hex value of feedback “poly” for bit mixing

[Koopman04]
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Good Polynomial Examples:
 What is the best HD you can get for:

• 112 bit data word length
• 15-bit CRC
• (what polynomial should you use?)

 What is the smallest CRC size you need to attain:
• 2015 bit data word length
• HD=4
• (what polynomial should you use?)

 Given polynomial 0x167
• What is the longest data word for HD=1?
• What is the longest data word for HD=2?
• What is the longest data word for HD=3?

 Resource under construction: http://checksumcrc.blogspot.com/
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Where Are We Now?
 Where we’ve been:

• Various flavors of I/O

 Where we’re going today:
• Error detection codes
• Therac 25 – a case study of why you need to get actuator settings right

 Where we’re going next:
• Bluetooth & CAN embedded networks
• System resets & robustness
• Test #2 on Wed April 25
• Lab 11 final demos on or before Wed May 9
• Lab 11 write-ups due Friday May 11 by 9:00 PM. 
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