Lecture #25

Error Detection

18-348 Embedded System Engineering
Philip Koopman
Monday, 29-April-2013

Carnegie
) Electrical &Com ter g
ﬁ&wnght%ole}zlogp!uDIKoEomean Al !<|Ig>t|s ge;served MEllOn

What About Errors In Digital Data?

& Noise on serial buses is a fact of life

* In embedded systems, can easily be one bit error per 10° (or 109) bits
— Does that matter?

o At 9600 bps x 24 hours
— 86,400 seconds/day; 829,440,000 bits per day =» ~8300 errors per day

e CAN (serial network in cars) might run at 1Mbps =» ~ 1 million errors/day
— Many will be single-bit errors, but many others will be multi-bit errors.

¢ Is parity enough?
« All even numbers of bit errors are undetected by parity
 AND, it costs too much for what you get (~10% bandwidth penalty)

¢ Want a more general approach
* In case a noise burst creates multiple bit errors close together
 In case network has periods of high noise, or otherwise sees many errors

Error Codlng For Poets who know a little discrete math)

¢ The general idea of an error code is to mix all the bits in the data word to
produce a condensed version (the check sequence)

 |deally, every bit in the data word affects many check sequence bits
 Ideally, bit errors in the code word have high probability of being detected
 |deally, a small number of bit errors is detected 100% of the time

« At a hand-wave, similar to desired properties of a pseudo-random number generator
— The Data Word is the seed value, and the Check Sequence is the pseudo-random number

Data Word Check Sequence

¢ The ability to do this will depend upon:
e The size of the data word
— Larger data words are bigger targets for bit errors, and are harder to protect
» The size of the check sequence
— More check sequence bits makes it harder to get unlucky with multiple bit errors
* The mathematical properties of the “mixing” function
— Thorough mixing of data bits lets the check sequence detect simple error patterns
» The type of errors you expect to get (patterns, error probability)

Brute Force Replication

¢ Duplicate values

« Put two copies of every value in memory
— “Mirroring:” store value and also one’s complement of value in two locations

« Send every message twice

« Detects errors, but if two values mismatch how to you know which is correct?

¢ Triplicate values
o Put three copies of every value in memory
e [f two match and the third doesn’t, assume the two that match are correct

¢ How good are these at detecting/preventing corruption?
» A one-bit error in the same place in two copies will go undetected

Example: Parity As An Error Detection Code

¢ Example error detection function: Parity
o XOR all the bits of the data word together to form 1 bit of parity

Check
: O ;
Data Word : Sequence : oneFoagtg
Bit, | Bit,| Bit, Bit, - Bit,,|Parity o1
101=0

Parity = Bit, @ Bit,® Bit, ® Bit, ®...® Bit,, (Thinkofit

_ _ as Boolean
Note: @ is eXclusive OR (XOR)

Parity = O for even number of “1” bits addition .and
Parity = 1 for odd number of “1” bits subtraction.)

¢ How good is this at error detection?

Only costs one bit of extra data; all bits included in mixing

Detects all odd number of bit errors (1, 3, 5, 7, ... bits in error)

Detects NO errors that flip an even number of bits (2, 4, 6, ... bits in error)
Performance: detects up to 1 bit errors; misses all 2-bit errors

Not so great — can we do better?

SECMED

¢ Single Error Correction Multiple Error Detection (HD=4)

« A pattern of XORs across the data word that is carefully designed to
identify the location of any single bit error

— Essentially, a lot of parity bits across different subsets of the data word

— Pattern is tricky and | don’t expect you to know it — (Wikipedia explains it)
 |f you know the location, you can flip the bad bit back =» error correction
» Also detects any odd number of bit errors (includes a classical parity bit)
« May detect many other error patterns depending upon design

— For example, might design to detect 4 bit errors in a single x4 DRAM chip
« Costis ~Log,N bits of error code for an N-bit code word (includes SECMED code size)

¢ Typical uses:
« DRAM memory for servers and high-dependability systems
— |If data is corrupted you need to recover it — this is a classic hardware technique
o Used in very low-end wireless transmission (e.g., remote keyless entry)
— If transmission is garbled don’t want to spend power on a retry
e Usually NOT used for wired data or software RAM techniques
— If you can retry easily, don’t need error correction
— Computationally too expensive for protecting in-RAM data

Example: Longitudinal Redundancy Check (LRC)

¢ LRC is a byte-by-byte parity computation
o XOR all the bytes of the data word together, creating a one-byte result

e (This is sometimes called an “XOR checksum?”
but it isn’t really addition, so it’s not really a sum)

Check
Data Word Seqguence
Byte, Byte, Byte, Byte, - ByteN_JLRC Byte
Example: Bvte
0010 0100 @the"
@©1011 1000 EBBtel
cHUEN HENN @Bytez
00000001 i Y&
01100010 @ Byte, .
Result is parity of |l RC BYTE

each vertical bit slice

How Good Is An LRC?

¢ Parity is computed for each bit position (vertical stripes)
* Note that the received copy of check sequence can be corrupted too!
Red bits are transmission or storage errors

Received 00100100 0010 00O0O0 00100100
Data\lOll 1000 11111100 1011 1001
Word 11111111 1101 1011 1011 1110

00000001 00000001 01001000

Received = -rrmreeresessssaosoeea O eemmecmeoneosecoecnne _ BERE BRERE-

Check —> 0110 0010 £40110 0000 =,01101011
= s

Sequence 01100010 oY¥0000110 =v¥01101011

Computed _~7 computed = computed computed
LRC No Errors Detected Error Undected Error!

& Detects all odd numbers of bit errors in a vertical slice
» Falls to detect even number of bit errors in a vertical slice

o Detects all 1-bit errors
» Detects many 2-bit errors, but not all 2-bit errors
— Any 2-bit error in same vertical slice is undetected

Basic Model For Data Corruption

¢ Data corruption is “bit flips” (“bisymmetric inversions”)

» Each bit has some probability of being inverted
o “Weight” of error word is number of bits flipped (number of “1” bits in error)
Original Code Word

Data Word Check Sequence
& Error Bits
Data Word’ Check Sequence’

Corrupted Code Word

¢ Error detection works if the corrupted Code Word is invalid

 In other words, if corrupted Check Sequence doesn’t match the Check
Sequence that would be computed based on the Data Word

 [f corrupted Check Sequence just happens to match the Check Sequence
computed for corrupted data, you have an undetected error

 All things being equal (which they are not!!!) probability of undetected
error is 1 chance in 2% for a k-bit check sequence

Error Code Effectiveness Measures

¢ Metrics that matter depend upon application, but usual suspects:
 Maximum weight of error word that is 100% detected
— Hamming Distance (HD) is lowest weight of any undetectable error
— For example, HD=4 means all 1, 2, 3 bit errors detected
Fraction of errors undetected for a given number of bit flips

— Hamming Weight (HW): how many of all possible m-bit flips are undetected?
» E.g. HW(5)=157,481 undetected out of all possible 5-bit flip Code Word combinations

Fraction of errors undetected at a given random probability of bit flips
— Assumes a Bit Error Ratio (BER), for example 1 bit out of 100,000 flipped
— Small numbers of bit flips are most probable for typical BER values

Special patterns 100% detected, such as adjacent bits
— Burst error detection — e.g., all possible bit errors within an 8 bit span

Performance usually depends upon data word size and code word size

¢ Example for LRC8 (8 bit chunk size LRC)
« HD=2 (all 1 biterrors detected, not all 2 bit errors)
» Detects all 8 bit bursts (only 1 bit per vertical slice)
» Other effectiveness metrics coming up...

10

LRCS8 Error Detection Effectiveness (Pud)

¢ Assume random independent bit flips
For a given BER, can determine Probability of UnDetected error (Pud)

Pud of LRCS8 on 24 Bit Data Word
= 1E-03 =l
=] —
< —— LRC8 Pud -
E 1E-06 H{=— — "Random" Performance e
L — —
= -—
2 -
8 > e - /
K e - /
c —
: —
;‘ 1.E-12 /
E
[1-]
LD
o 1E-15 . .
& / (Preliminary Data)
1E-18

1.E-10

1.E-07 1.E-04
Bit Error Ratio (BER)

€ DOWN ISGOOD

¢ Most networks won’t work at all for BER > 102 so we’re OK, right? WAIT!!

¢ Consider at BER of 10° (Pud =4.8 * 10-11)

« 1MBps =>» 8.64 * 10! 32-bit data chunks per day
=» 4 undetected errors/day

11

LRCS8 With 2 Or More Bit Errors

¢ At low BER almost all errors involve 1 bit

* Those 4 failures/day are mostly coming from undetected 2-bit errors

LRCS8 catches all 1 bit errors, so makes things look great

LRC8 is a factor of 25 worse than “random” for 2 bit errors!

Pud of LRC8 on 24 Bit Data Word (2+ Bit Errors Only)

1.E-03

—— LRC8 Pud

1 E-06 — — "Random" Performance

1.E-09

1.E-12

Probability of Undetected Error
(Pud)

1.E15

1E—18 T o T T
1E-10 1.E-07 1.E-04

Bit Error Ratio (BER)

€ DOWN ISGOOD

12

LLRCS8 Error detection Effectiveness (Fraction)

¢ Each data point is # undetected / # total bit error patterns
e Assumes every bit error pattern is equally likely for given HW
o 2-biterrors are especially vulnerable — and they may be quite likely!
o General rule: what happens for small # of bit flips is what matters most

Performance of LRC8 on 24 Bit Data Word

9% _ —— —¢—LRC8 Performance

8% Misses — — — "Random" Performance
9.68%

Of 2-Bit

5%

4%

3%

I A

[\ 2 (Preliminary Data)x / \

Fraction of Errors Undetected

2%

|
|
% \\ Errors!
|
|
|
|

1%

€ DOWN IS GOOD

0%
0 8 16 24

Bits Flipped

Can We Do Better?

¢ YES — A whole lot better!
¢ 8-bit Fletcher Checksum (performance varies based on data)

¢ Optimal 8-bit CRC (detects all 1-, 2-, 3-bit errors at this length)
» Detecting all 3-bit errors dramatically improves Pud

8-Bit Check Sequence, 24 Bit Data Word

0.5%

0.4%

0.3% . A\
/ﬁ/ / (Preliminary Data) Xﬁ\ \
0.2%
—&— CRC 8-Bit (0xCF)
—— Fletcher8 (50% data bits set)
0.1% —— Fletcher8 (all zero data bits)
fj ! — — "Random" Performance ! E
0.0% ~

0 \ 8 16 24 32
(3 bit errors) # Bits Flipped

Fraction of Errors Undetected

€ DOWN ISGOOD

Checksum (review)

¢ Checksums (add up all the bytes) are better than parity (HD=2 or 3)
o XOR checksum is just individual parity for each bit in message
« ADD costs same as XOR, but gives better mixing due to carry bits
unit8 Irc = SEED;
forC int 1 = 0; 1 < length; 1++) { Irc = Ilrc + data[i1]; }
data[length] = Irc;

o Still, in worst case can miss small errors that hit just the wrong way

¢ If you use a checksum, use 1’s complement addition

» Gives better coverage than 2’s complement addition; catches carry-out bits

— 2’s complement misses double-bit errors on top bit position; 1’s complement
doesn’t

— 1’s complement about 12.5% better for 8-bit checksum
* About twice as good as XOR-based checksum

* About the same speed (now that you know the ADC wrap-around trick from the

optimization lectures!)
15

Integer Addition Checksum

¢ Same as LRC, except use integer “+” instead of XOR

» The carries from addition promote bit mixing between adjacent columns
— Can detect errors that make two bitsgo 0 =» 1 or 1 =» 0 (except top-most bits)
— Cannot detect compensating errors (one bit goes 0 =»1 and another 1 =» 0)

« Carry out of the top bit of the sum is discarded
— No pairs of bit errors are detected in top bit position

Example:

00100100 rese. .00 100
+10111000 sitEmos>0 0 101(-j
+11111111 Undgtected 1 110
+0000000 1 D\'f?_Q___Q _________________ 1 ___Q___:I__?ase

Bit Errors
555855100 §C11 100Undetec:ted
Carry propagates oY1 1 1 00
. | 2

along bits of the sum computed
Carry Outlis dropped Detectgd Error

16

One’s Complement Addition Checksum

¢ Same as integer checksum, but add Carry-Out bits back
» Plugs error detection hole of two top bits flipping with the same polarity
» But, doesn’t solve problem of compensating errors
 Hamming Distance 2 (HD=2); some two-bit errors are undetected

Carry propagates
along bits of the sum.
Carry Out is dropped

T
Bit Errors
Undetected

computed

Detected Ery

Corrupted bits eliminate
carry-out; detected with lowest bit

17

Advanced Checksums

¢ Fletcher Checksum — use two running one’s complement sums
e HD = 3 for short codewords; HD=2 for long codewords
» This example generates a 16-bit Fletcher Checksum on 8-bit chunks

unit8 a = 0; unit8 b = 0O;
forC iInt 1 = 0; 1 < length; 1++)
{ a = OnesCompAdd(a,data[1]);

b = OnesCompAdd(a,b);

by
data[length] = a; data[length+1] = Db;

¢ Properties
» Better bit mixing — less vulnerable to same bit-position errors
— Detects all 1 and 2-bit errors until the sum a rolls over (at almost 256 bytes)
 Significant improvement comes from the running sum b
— b = data[length-1] + 2*data[length-2] + 3*data[length-3]...
— This allows it to catch byte values that are out of order, which are missed by regular
checksums

* Another similar variant, Adler checksums, aren’t worth the trouble: use Fletchelr8

Can We Do Better Than A Checksum?

¢ Can often get HD=6 (detectall 1, 2, 3, 4, 5-bit errors) with a CRC

¢ Note that this is a different graph that happens to be previously published
» 16 bit Check Sequences; longer code word lengths
¢ For this graph, assume Bit Error Rate (BER) = 10~ flip probability per bit

16-BIit LRC

1.E-04
» _ —
a e k_, 1's Compl Add-16
& 1.E07]
O = L 2s ComplAda-16
@ ;
O 3 {
(D $ 1E10] Adler-16 1| Fletcher-16
=
v > Best 16-Bit Checksum
— | © 1E13.
Z | 2
= | 3 N
O L 1E16 CRC-16 bound Best 16-bit CRC
D a Source:
Maxino, T., & Koopman, P. "The
w 1E-19 - ~ - ~ - - Effectiveness of Checksums for
0 256 512 768 1024 1280 1536 1792 2048 2304 2560 Ermbedded Control Networks" |EEE
i Trans. on Dependable and Secure
Code Word Length (bits) Computing, Jan-Mar 2009, pp. 59-72.

19

CRC - Better Bit Mixing

¢ Error detection is all about mixing together message bits

» Hopefully in a way so that lots of errors have to hit just the wrong way to go
undetected!

¢ CRC - Cyclic Redundancy Code

e Shifts bits into an XOR-based Table 1. Bitwise Left-Shift CRC Algorithm

mixing register for (i=0; i<sizeof (data); i++) |
» Can often guarantee detection of HE imebldatal T}Sbfcfgéiyg{ ;
multiple bit errors } else {
« Slower than checksum, but y T (ere << 1);
still useful data <<= 1;
}
¢ Caution!

e Much of the published lore about CRCs is incorrect
e One size does not fit all (there is no single best feedback polynomial)

» Some published polynomials have bugs in them (incorrect values)
— Even in Numerical Recipes in C 2" Ed. (newest edition fixed based our feedback)
— Even in scholarly journal papers

20

Mathematical Basis of CRCs

¢ Use polynomial division (remember that from high school?)
over Galois Field(2) (this I1s a mathematician thing)

« At a hand-waving level this is division using Boolean Algebra
— “Add” and “Subtract” used by division algorithm both use XOR

11010011101100 000 <--- Data Word left shifted by 3 bits
1011 <-—- 4-bit divisor is 1011 x3 + x + 1
01100011101100 000 <--- result of first conditional subtraction
1011 <--- divisor
00111011101100 000 <--- result of second conditional subtraction
1011 <--- continue shift-and-subtract ...
00010111101100 000
1011
00000001101100 000
1011
00000000110100 000
1011
00000000011000 000
1011
00000000001110 000
1011
00000000000101 000
101 1
————————————————— Remainder i1s the Check Sequence
00000000000000 100 <--- Remainder (3 bits)

[Wikipedia] 21

Classical CRC Overview

¢ Cyclic Redundancy Code operation

POLYNOMIAL: 1011 0100 0001 = OxB41

1

[

e Computes a (non-secure) message digest using shift and XOR
« This is a hardware implementation of polynomial division

0

0xB41 = x2+x10+x%+x7+x+1
= (X+1)(x3 +x2 +1) (X8 +x* +x3 +x2 +1)

o Detected error if received digest doesn’t match CRC Remainder of payload

1
\A\
D

1.0 |1 0

0

O o0 o [1

e 1]1® 1]

_>|

HOH O

MESSAGE SHIFT REGISTER ——

(the “+1” is implicit in the hex value)

MESSAGE PAYLOAD

CRC Remainder

N4
N
A

\Ll/

22

Aren’t CRCs Really Slow?

¢ Speedup techniques have been known for years
e [mportant to compare best implementations, not slow ones

¢ 256-word lookup table provides about 4x CRC speedup
o Careful polynomial selection gives 256-byte table and ~8x speedup
* Intermediate space/speedup approaches can also be used

* Ray, J., & Koopman, P. "Efficient High Hamming Distance CRCs for
Embedded Applications,” DSNO06, June 2006.

¢ In asystem with cache memory, CRCs are probably not a lot
more expensive than a checksum

« Biggest part of execution time will be getting data bytes into cache
* We are working on a more definitive speed tradeoff study

23

Is Using A CRC Worth It?

¢ Checksums can be faster (although this is usually overstated)

« But give far worse error performance

— Most checksum folklore is based on comparing to a bad CRC or with non-
representative fault types

1.E-08

1.E-12

1.E-15

Probability of Undetected Errors

e ~ Small CRCs can beat Fletcher-16.
8 < HD=5 12-bit CRC is better up to 2Kbits
' with fewer check sequence bits.
eqfD=6__ 000000000
0 256 512 768 1024 1280 1536 1792 2048

Code Word Length (bits)

Fig. 12. Probability of undetected errors for Fletcher-16 and CRC bounds
for different CRC widths at a BER of 10°. Data values for Fletcher-16 are

the mean of

10 trials using random data.

Source:

Maxino, T., & Koopman, P.
"The Effectiveness of
Checksums for Embedded
Control Networks," |EEE
Trans. on Dependable and
Secure Computing, Jan-Mar
20009, pp. 59-72.

24

What Happens When You Get The CRC Wrong?

¢ DARC (Data Radio Channel), ETSI, October 2002
 DARC-8 polynomial is optimal for 8-bit payloads
« BUT, DARC uses 16-48 bit payloads, and misses some 2-bit errors
e Could have detected all 2-bit and 3-bit errors with same size CRC!

le-12 -
ooc DARC-8
le-15 “ DARC :a‘“' HD:2
- PAYLOAD LENGTH i
le-18 - | 16-48 BITS '
| ot Source;
Jleat i HD=3 Koopman, P. &
o’ | ; Chakravarty, T., "Cyclic
le24 7 | : Redundancy Code (CRC)
I— mmemmmmem i Polynomial Selection for
le27 7 |+ HD=4 0x9C DARC-8 Embedded Networks,"
: DSNO04, June 2004
1e-30 | |
‘i' -=== Bound
-'HD=5 BER = 10"
1e-33 T T T T T T T]
8 16 32 64 128 256 512 1024 2048

Data Word Length (bits)
25

Baicheva’s Polynomial C2

¢ [Baicheva98] proposed polynomial C2, 0x97

e Recommended as good polynomial to length 119
e Dominates OXEA which is the “standard” 8-bit CRC (better P, at every length)

le-12
oxec
) | OXEA."-‘__“_IIMI.I"_M“ s
le-15 | | @_ : e
| | i
s \i\
“ >Baicheva C-2
le21 4 | i
§e) |
S | ,
D_ |
le-24 - |
| :
- “:‘ Hb=4 0x9C DARC-8
“.' OXEA CRC_S
w0 g 0x97 C2
- L: -=-== Bound
—_ -6
-+HD=5 ey
e | ‘ ‘ T T T T]
8 16 32 64 128 256 512 1024 2048

Data Word Length (bits)

But What If You Want the HD=3 Region?

¢ We found that 0xA6 has good performance
» Better than C2 and near optimal at all lengths of 120 and above

I:)ud

le-12

le-15 ~

le-18

le-21 -

le-24

/f

‘HD=3

le-27 -

1e-30

-

HD=4

0x97

==== Bound

1le-33

32 64 128 256
Data Word Length (bits)

512

1024

2048

Source:

Koopman, P. &
Chakravarty, T., "Cyclic
Redundancy Code (CRC)
Polynomial Selection for
Embedded Networks,*
DSNO04, June 2004

27

How To Pick A Good CRC Polynomial

HD “Hamming Distance” — polynomial is guaranteed to detect all errors with
fewer than HD bits flipped (so, it misses some with HD bits flipped)

CRC size — number of bits in CRC field
Length — number of bits in data payload (excluding CRC)

Polynomial — hex value of feedback “poly” for bit mixing

Table 3. “Best” polynomials for HD at given CRC size and data word length.
Underlined polynomials have been previously published as “good” polynomials. [Koopman04]

Max length at HD CRC Size (bits)
Polynomial 3 4 5 6 7 8 9 10 11 12 13 14 15 16
. 2048+ | 2048+ | 2048+ | 2048+ | 2048+ | 2048+ | 2048+ | 2048+ | 2048+
- 0x5 | 0x9 | Ox12 | Ox21 | 0x48 | OxA6 | Ox167 | 0x327 | Ox64D | ~ B - - B
Dm M | 26 | 57 | 120 | 247 | 502 | 1013 | 2036 | 2048))))
- 0x9 | 0x12 | 0x21 | 0x48 | OxA6 | Ox167 | Ox327 | 0x64D | OxB75
i 10 | 25 | 56 | 119 | 246 | 501 | 1012 | 2035 | 2048 | 2048 | 2048 | 2048
HD=4 0x15 | 0x2C | Ox5B | 0x97 | Ox14B | 0x319 | 0x583 | OxCO7 | Ox102A| 0x21E8 | 0x4976 |0XBAAD
. 9 13 21 25 53 | .| 13 136 | 241
- 0x9C | 0x185 | 0x2B9 | 0x5D7 | Ox8F8 0x212D | 0x6A8D |OXAC9A
Ds 8 12 22 27 52 57 14 | 135
= Ox13C | Ox28E | 0x532 | OxB41 | 0x1909 | 0x372B | 0x573A |0xC86C
. 12 12 13 16 19
HD=7 0x571 | "M | 0x12A5 | 0x28A9 | 0x5BD5 | 0x968B
De 11 11 11 12 15
= OXA4F | 0x10B7 | 0x2371 | 0x630B |Ox8FDB | og

Good Polynomial Examples:

¢ What is the best HD you can get for:
o 112 bit data word length
o 15-bit CRC
e (what polynomial should you use?)

¢ What is the smallest CRC size you need to attain:
o 2015 bit data word length
e HD=4
e (what polynomial should you use?)

¢ Given polynomial 0x167
* What is the longest data word for HD=17?
* What is the longest data word for HD=2?
* What is the longest data word for HD=3?

¢ Resource under construction: http://checksumcrc.blogspot.com/

29

Where Are We Now?

& Where we’ve been:
e Various flavors of 1/0

¢ \Where we’re going today:
* Error detection codes
» Therac 25 — a case study of why you need to get actuator settings right

¢ Where we’re going next:
e Bluetooth & CAN embedded networks
o System resets & robustness
o Test#2 on Wed April 25
o Lab 11 final demos on or before Wed May 9
o Lab 11 write-ups due Friday May 11 by 9:00 PM.

	Lecture #25�Error Detection
	What About Errors In Digital Data?
	Error Coding For Poets (who know a little discrete math)
	Brute Force Replication
	Example: Parity As An Error Detection Code
	SECMED
	Example: Longitudinal Redundancy Check (LRC)
	How Good Is An LRC?
	Basic Model For Data Corruption
	Error Code Effectiveness Measures
	LRC8 Error Detection Effectiveness (Pud)
	LRC8 With 2 Or More Bit Errors
	LRC8 Error detection Effectiveness (Fraction)
	Can We Do Better?
	Checksum (review)
	Integer Addition Checksum
	One’s Complement Addition Checksum
	Advanced Checksums
	Can We Do Better Than A Checksum?
	CRC – Better Bit Mixing
	Mathematical Basis of CRCs
	Classical CRC Overview
	Aren’t CRCs Really Slow?
	Is Using A CRC Worth It?
	What Happens When You Get The CRC Wrong?
	Baicheva’s Polynomial C2
	But What If You Want the HD=3 Region?
	How To Pick A Good CRC Polynomial
	Good Polynomial Examples:
	Where Are We Now?

