
Lecture #11

Serial Ports

18-348 Embedded System Engineering
Philip Koopman

Wednesday, 17-February-2016

© Copyright 2006-2016, Philip Koopman, All Rights Reserved

&Electrical Computer
ENGINEERING

2

High Tech Hospital Beds
 Typical features:

• Move from flat bed
to sitting for meals

• In-bed scale
• Massage capability

for bed sores
• Inflatable bladder

for bed sores
• Power+network for

equipment
attached to bed

• Battery backup
for patient transport with equipment attached

 Technology inside the bed:
• Serial data transmission
• Controller Area Network (CAN) via a 16-bit microcontroller
• Link from bed to nurse station (wired; wireless)

[http://www.bedtechs.com/pdf/H.R.TotalCare.pdf]

3

Where Are We Now?
 Where we’ve been:

• Memory bus (back to hardware for a lecture)
• Economics / general optimization

 Where we’re going today:
• Serial ports

 Where we’re going next:
• Exam #1 Wed 24-Feb-2016

– See course web page for material included
– Bring a single two-sided letter size notes sheet in your own handwriting
– NO calculators
– We will provide the HC12 reference guide at the test (the “short version” of

instruction descriptions, XB encoding table, etc.)
» All 32 pages -- please do not mark on it since we re-use from year to year

• Second half of course: timers, interrupts, real time operation, I/O, …

4

Preview
 Sending digital data

• How bits go on a wire
• RS-232 serial communications

 Getting serial devices to talk
• RS-232 signal and control lines
• SCI control and data registers
• Some other serial protocols (RS-485, I2C, SPI, USB)

 Error detection codes
• Data on wires is subject to corruption due to noise
• It is very common for designers to get this stuff wrong, or grossly suboptimal

5

How Do You Send Digital Data?
 Bit Serial Communication

• To send N bits of data, perform N sequential one-bit data transfers
• Alternative is “parallel” – send multiple bits at a time

– Printers used to send 8 bits at a time (“parallel printer port”)…
– …but with USB, even they are bit serial now

 One wire for data bits costs less than multiple wires
• Less cost for materials (copper); thinner; lighter
• Only need one copy of high-speed bit handling electronics, not 8 (or more)
• Minimizes problems with bit skew

– If you have 8 data lines, data value edges arrive at slightly different times
– If you need to leave extra time for edges to settle, it slows things down

6

Bit Serial Communication Used on Different Scales
 Desktop systems – bit serial communication via Ethernet, wireless, etc.

 Multi-processor embedded systems:
• Special real-time communication networks between processors (e.g., CAN bus)
• Extensive look at this in 18-649

 Single-processor embedded systems:
• Communicating with outside world (e.g., “diagnostic” or “service” port)
• Communicating with some peripherals (e.g., LCD, keyboard, mouse, modem)
• Communicating with mass storage (e.g., flash memory)

 We’re going to look at a basic bit serial protocol – RS-232
• RS-232C Standard from 1969 – some desktop PCs still have a serial port today!

– They are prevalent in embedded systems, and won’t go away any time soon
• Gets the job done reliably and at low cost

– Once you understand this, most serial transfer schemes are not all that different
• Fancier stuff can be found in 18-649

7

Serial Communication Terminology (RS-232)
 UART does the serial communication in hardware

• Universal Asynchronous Receiver/Transmitter
– a.k.a. ACIA (Asynch. Communications Interface Adapter)
– a.k.a. SCI (Serial Communications Interface)

 From the days of teletypes & computer “terminals”
• DTE – Data Terminal Equipment (a terminal)
• DCE – Data Communication Equipment (a phone modem)

[Valvano]

[wikipedia]

8

Non-Return to Zero (NRZ) Encoding
 Example: Send a Zero as LO; send One as HI

• Worst case can have all zero or all one in a message – no edges in data
• Simplest solution is to limit data length to perhaps 8 bits

– SYNC and END are opposite values, guaranteeing two edges per message
– This is the technique commonly used on computer serial ports / UARTs

• Bandwidth is one edge per bit

PHYSICAL
BIT

PHYSICAL
BIT

PHYSICAL
BIT

PHYSICAL
BIT

H HL L

SYMBOL SYMBOLSYMBOL SYMBOL

ONE ENDZERO SYNC

Simple NRZ Bit Encoding

L L L L L

SYNC SYNC …

Simple NRZ Encoding Example: 1101 0001

ONE ONE ONE ONE

H H H H H

ZERO ZERO ZERO ZERO ENDEND
SUBSEQUENT
MESSAGE

PREVIOUS
MESSAGE

Guaranteed falling edge
at start of message (high
END to low SYNC)

9

RS-232 Signals
 NRZ bits

• Note: typically +/- 12V, not 5V! – requires level shifting interface chip
– (5V is acceptable within the standard, but is not the default value)

• That’s a main reason why there are 12V outputs on PC-104 bus!
• Mapping to data is a little strange: -12V is “true=1” +12V is “false=0”

 Start – “This is the start of a message”
• Always +12V (“0”)
• Always one bit from either idle or stop
• Rising edge of start bit provides timing point for subsequent bits

[Valvano]

10

RS-232 Signals – Continued

 Stop – End of Message
• Always -12V (“1”)
• One or more “stop bits” to give processing time between bytes

– For mechanical systems, gives time to actually print a character on paper
• No real difference between “idle” and “stop” other than how long they last

– Except that there is a guaranteed minimum number of stop bits after each character sent

 Data – The Actual Bits
• Either high or low depending on value
• Can be 5, 6, 7, 8, or 9 bits

– (5 bits for very old printers that only used capital letters – such as some teletypes)

[Valvano]

11

RS-232 Signals – Continued

 Parity
• Simple error detection
• “Even Parity” – parity bit is 0 if parity of data is 0 (=xor of data bits)
• “Odd Parity” – parity bit is 1 if parity of data is 0 (=inverse of xor of data bits)

 Today, values are almost always:
• 1 start bit
• 8 data bits
• 1 stop bit
• no parity (use CRC on message, not per-byte parity)
• Both sender and receiver usually know the settings in advance

[Valvano]

12

What Wires Are Involved?
 Simplex – One direction of transmission (either input OR output)

 Full Duplex – Simultaneous two-direction transmission
[Valvano]

[Valvano]

13

9-Pin Serial Connector (DB9)
 For pin numbers, always check if the numbering is:

• For male or female
• For front (connector side) or back (solder side)

[Valvano]

[wikipedia]

[Valvano]

14

How Many Bits Per Second
 Often bit time is power of two times 300 bits per second:

• 300 bps (teletype)
• 600 bps
• 1200 bps (first generation “fast” modem)
• … 9600 (common default serial port speed on PCs)
• ... 57,600 … (if you are lucky via a telephone phone modem)
• Set using a frequency divider from the CPU’s crystal oscillator

 These “bits” include start bit, stop bit, parity, etc. => raw data rate
• Actual data rate is slower (e.g., 8 data bits per 10 raw bits)

 Receiver and transmitter have to have the same oscillator speed
• AND have to be set at the same baud rate (e.g., 1200 bps)
• AND have same start, stop, parity bit settings

 Sometimes you hear “56K baud” or “9600 baud” etc.
• Baud is “symbols per second”
• For RS-232, bps and baud happen to be the same number
• For other methods, bits/sec might be faster or slower than symbols/second

15

Bit Timing – Transmit

This image cannot currently be displayed.

 Separate Transmit and Receive clocks determine bit length
• This is “asynchronous” – no clock signal on the communication line!
• Clock runs 16 times faster than bit rate
• Every 16 TxClk cycles, move to the next bit being transmitted

[Valvano]

[Valvano]

16

Bit Timing – Receive
 Receiver doesn’t “know” when the bits start

• There isn’t a clock signal on the lines
• Must recover bit edge information from the bits themselves
• Approach: “Start” of first bit is falling edge of Start Bit
• Measure other bits 8 clocks into their assumed bit time (every 16 clocks)
• Hope that the RxClk doesn’t drift too much compared to TxClk

[Valvano]

17

Control Flow
 How do you know the receiver is ready?

• Simplest option: blast bits full speed and hope nothing gets dropped
• This can (sometimes) work at 300 bps; less reliable at high bit speeds

 Hardware flow control – byte at a time
• “RTS” – I’m ready to send bits. Please let me know when you’re ready to

received
• “CTS” – OK, I’m ready to receive bits – send them!
• CTS stays active as long as the receiver is OK to go…

… or, CTS goes high after every byte, then goes low again for the next byte
• Optionally used to make sure CPU can get byte out of input buffer in time

– Most useful for very fast data being received by very slow device

 Software flow control – message at a time
• “XON” – ($11) OK, I’m ready to receive the next message
• “XOFF” – ($13) Wait; I can’t receive any messages for a while
• Optionally used to make sure CPU empties message buffer in time

18

The Rest Of The Pins
 Remember, this was originally for modems and terminals!

• “Data terminal” is the embedded computer (the “teletype”)
• “Data Set” is the device you are controlling (the “modem”)
• Usually the only other control signals are “RTS” and “CTS”

– (see next slide)
• Note: 25 pin serial connector is obsolete; 9-pin connector still in wide use

See:
http://en.wikibooks.org/wiki/Serial_Programming:
RS-232_Connections#Wiring_Pins_Explained

19

Cabling
 Connecting two computers

• A Modem (DCE) knows that the “transmit” pin is incoming data
– Similarly, RTS/CTS are backward on the DCE side

• But, both computers think “transmit” is outgoing!

• Solution: “null modem” or use a crossover cable
– Crosses over TD and RD
– Crosses over RTS and CTS
– (These are the four

important signals I
expect you to know!)

 Faking Out RTS/CTS
• Connect RTS to CTS

at the connector
• Hardware at other end had

better be ready!

[wikipedia]

[wikipedia]

20

SCI – Serial Communication Interface
 The SCI has a memory-mapped interface

• Control information
AND

• Actual data being read/written

• Addresses below are offsets from base address (i.e., 0x00C8.. 0x00CF)
– Why this address range (what’s special about addresses with top 8 bits = 0?)

• See chapter 13 of MC9S12 data sheet for details

[Freescale]

0x00C8

0x00C9

0x00CA

0x00CB

0x00CC

0x00CD

0x00CE

0x00CF

[Freescale]

21

Setting Baud Rate
 SBR – Select Baud Rate (13 bit integer value)

• Sets clock divider to change bit rate (divides from module clock)
• Receiver clock is 16x Transmitter Clock

– Receiver clock cycles 16 times per bit – looks at multiple samples per bit
– Transmitter clock cycles 1 time per bit (just need clock at each bit edge)

• example: SBR value of 326 sends at ~4800 Hz
– Caution – table below at 25 MHz. Course module will be running at 8 MHz

» (Note: runs at 2 MHz out of the box, but we’re providing code to increase to 8 MHz)

[Freescale]

22

Other Control & Data Registers
 SCI Control Registers (SCICR1; SCICR2)

• Set start, stop, data bit configuration
• Set parity configuration
• Enable transmit and receive

 SCI Status Registers (SCISR1; SCISR2)
• Has data been received?
• Has an error occurred (e.g., parity error)
• RDRF = “Receive Data Register Full”  A data byte has arrived
• TDRE = “Transmit Data Register Empty”  Ready for the next byte to write

 Data Registers (SCIDRL)
• Read to receive a byte
• Write to send a byte

 Software reads/writes registers as if they were memory locations
• What C keyword is important to make sure optimizer doesn’t omit reads or

writes?

23

Polled (“gadfly”) Data Reading

[Valvano]++

[Valvano]

Get Data Get Data

RDRF RDRF

24

Polled (“gadfly”) Data Writing

[Valvano]++

[Valvano]

READY READY READY

TDRE TDRE TDRE

25

Polled SCI operation
 Simplest way to do serial data communication

• Use a loop to transmit bytes as soon as they can be sent
• Use a loop to receive bytes, waiting for the next one
• Combined loop below:

– Receives a byte if ready…
else transmits a byte if it can…
else goes back to trying
to receive

– Inhibits transmit when XOFF seen

[Valvano]

RDRF = “Receive Data Register Full”  Data byte
arrived
TDRE = “Transmit Data Register Empty”  Done
sending
SCDR = “Serial Comms. Data Register”
XON/XOR Flow Control

Is it easier to understand this flowchart
or statechart on next page?

26

Polled SCI Operation
 Assumes infinite amount of data to be written

• Implements XON/XOFF – State 4 inhibits transmit until XON received
• When in Transceive Idle state, gives priority to reading

RDRF = “Receive Data Register Full”  Data byte arrived
TDRE = “Transmit Data Register Empty”  Done sending
Data read/writes are from/to SCDR = “Serial Comms. Data Register”
XON/XOFF Flow Control

4. Receive
Idle

1. Transceive
Idle

5. Read
Data Byte
(XOFF)

2. Read
Data Byte

3. Write
Data Byte

RDRF ~XON

XON

RDRF TDRE &&
~RDRF

XOFF ~XOFF

27

Framing Messages
 How do you know how many bytes to receive?

• Similar problem to string handling
– C solves with a null byte termination
– Other languages solve with a count before the string
– Sometimes all strings in system are exactly the same length to make it simple
– Both approaches have strengths and weaknesses

 Usual serial message components
• Header info – what type of message is this?
• [optional] – count of how many bytes to expect
• Payload – the actual data you care about
• Error detection – something beyond parity to detect corrupted bytes

• Each message might also be sandwiched between an XON and XOFF

28

Buffering Messages
 For XON/XOFF to work, you need a message buffer

• Most messages are more than one byte
• Receive entire message, then pass to application software

• General idea:

// receive a message
char ibuf[80]; // input buffer
uint8 rcv_count = 0;
Transmit XON; // Ready to receive a buffer full of data
while (still bytes remaining in message)
{ wait for input byte to be ready;

ibuf[rcv_count++] = input_byte;
…handle case that rcv_count overflows ibuf size;

}
// result is in ibuf, and rcv_count says how many bytes
Transmit XOFF; // Hold off any more incoming data

29

Multi-Drop Serial Connections
 What if you want to connect 3 or more points to form a network?

• Usually don’t want N data wires for N points – want to share a single data cable
• Start with N=2; “half duplex”
• Then add better physical layer (next slide), then combine ideas (coming up

soon)

 Half duplex RS-232: only one side can transmit at a time
• A single data line (reduces wiring cost – 2 wires instead of 3)
• Tristate drivers to avoid conflicts
• Software must keep straight who is the transmitter

[Valvano]

30

RS-422 Differential Data Transmission
 Differential drivers (RS-422 serial channel)

• Transmit both data.H and data.L at same time
• Receiver looks at difference, not absolute voltage
• Gives common mode noise rejection
• Higher bit rates (up to 10 Mbits/sec)
• Typically 5V operation, not 12 V

[Valvano]

31

Differential Drivers Suppress Noise
 Send both Data and

Inverse Data values on a
2-wire bus
• Example:

DATA HI = 5 volts
LO = 0 volts

Inverse DATA
HI = 0 volts
LO = 5 volts

• Receiver subtracts two
voltages

– Eliminates common
mode voltage bias

– Leaves any noise that
affects lines differently

EXAMPLE NOISE

BUS DATA

RECEIVED DIFFERENTIAL VALUE

INVERSE BUS DATA

NOISE-FREE OUTPUT SIGNAL

UNCERTAIN VALUE

GND

GND

GND

DUNCERTAIN VALUE

GND

0 0

1 1

32

Multi-Drop Serial Transmission
 Let’s go back to RS-232 half duplex

• You could hook up as many nodes as you want
• Just make sure only one node transmits at a time

[Valvano]++

3 4

33

RS-485 Is A Common Multi-Master Bus
 Used in industrial control networks (e.g., Modbus; Profibus)

• RS-422 differential drivers; high speed + good range (10 Mb/s @ 12 meters)
• Multi-drop approach like RS-232 on previous slide
• Add terminators to reduce noise
• Make sure that exactly one system has its output enabled at a time!

– How exactly you do this is covered in 18-649
– Often it is “master/slave” – one system tells each other system when its turn comes

Dout Dout Dout

ENABLE ENABLE ENABLE

Din Din Din

System #1 System #2 System #3

Dactive_lo

Dactive_hi

34

I2C Bus – (Inter Integrated Circuit Bus)
 Multi-master serial bus for short distances

• Typically on the same circuit board
– SMBus is a subset of I2C for interoperability

• Often runs 10K bps to 100K bps; 3.3-5V DC
• SDA – Serial Data
• SCL – Serial Clock (gives clock edges for data)

– Simplifies receiver; extra wire is almost “free” on a circuit board

 Each master node can run the bus (one at a time!)
• Master sends data to slave
• Slave potentially sends data back to master

 Master/slave polling:
• Master sends start bit + 7-bit address + read/write
• Slave either listens (write) to data from master or sends (read) to master
• When bus is idle, a different master can take over transmission

– If they collide, they arbitrate on slave address (lowest address gets to send)
– Often high bits of slave address pre-set by device type; low bits via input pins

[Wikipedia]

35

SPI – Serial Peripheral Interface Bus
 Higher speed short range bus

• Higher speed than I2C – 8 MHz+
• Typically connects devices on same

circuit board
• Simple slave hardware interface

 Single Master design
• Four wires: clock, data in, data out,

slave select (slave enable lines)
• Master device initiates reads or writes

to one or more slave devices
• Full duplex (input and output can run concurrently)
• Synchronous bus – separate clock line rather than self-clocking data

[Wikipedia]

36

USB – Universal Serial Bus
 Very high speed medium range bus

• Originally to connect PC peripherals
• Typically 3-10 foot cables, Half-duplex differential signals
• 0V / 3.5V for low speed (1.5 Mbit/s) and full speed (12 Mbit/sec)

– High speed of 480 Mbit/sec for USB 2.0
• Cables can connect via hubs
• Can supply 5V power to peripheral

(500 mA in USB-2  which might not be enough for your proto-board!)

 Single Master design
• Data in packets with PID (Packet Identifier) to determine type of packet
• Versions 1 & 2 were master/slave polling
• Much more complex protocol than others described…

… so complicated that Wikipedia doesn’t have a simple picture for it!
… so complicated that to implement it you pretty much dedicated a small CPU

• Example: SMSC USB3300-EZK USB 2.0 controller
– $1.28 apiece in 500 quantity from Digi-Key as of 2012

37

Many Other More Complex Protocols
 CAN – Control Area Network

• Main high speed data bus on cars and many other systems
• Optimized for short real-time control messages (8-byte payload)
• Up to 1 Mbps on truck-size vehicles
• We’ll talk about that in a later lecture

 FlexRay
• Next-generation automotive network
• Optimized for safety-critical high speed control
• Up to 10 Mbps on vehicles
• Fault tolerant and guaranteed real-time features

 “Fieldbus” networks
• This is a generic term for embedded networks of many different types
• Often not based on Ethernet due to cost and real time concerns
• Much more in 18-649

38

What About Error Coding?
 Noise on serial buses is a fact of life

• In embedded systems, can easily be one bit error per 105 (or 106) bits
– Does that matter?

• At 9600 bps x 24 hours
– 86,400 seconds/day; 829,440,000 bits per day  ~8300 errors per day

• CAN (serial network in cars) might run at 1Mbps ~ 1 million errors/day
– Many will be single-bit errors, but many others will be multi-bit errors.

 Is parity enough?
• Detects all odd number of bit errors
• Parity on 8 bits is good at catching single bit upsets…
• BUT, it costs too much (~10% bandwidth penalty)
• AND, it is only a 50/50 shot to catch multi-bit upsets and bursts of noise

 Want a more general approach
• In case a noise burst creates multiple bit errors close together
• In case network has periods of high noise, or otherwise sees many errors
• For example …. checksums (remember that?)

– But can do even better using more sophisticated error detection codes .. CRCs

39

Review
 Sending digital data

• How do bits go on a wire?
– NRZ, start, stop, parity, idle, receive clock

 Getting serial devices to talk
• RS-232 serial communications

– Data pins, types of control flow, RTS/CTS, why a crossover cable
– BUT NOT memorizing pin numbers; not obscure control pins

• From lab:
– SCI control and data registers, by general name
– “What does RDRF do?” BUT NOT “What does bit 3 of SCISR1 do?”

• General understanding of other multi-master buses discussed
– E.g., differences among RS-232, RS-422, RS-485

40

Lab Skills
 Get a serial port to operated

• Send data to a test program on a PC
• Received data from a test program on a PC

	Lecture #11�Serial Ports
	High Tech Hospital Beds
	Where Are We Now?
	Preview
	How Do You Send Digital Data?
	Bit Serial Communication Used on Different Scales
	Serial Communication Terminology (RS-232)
	Non-Return to Zero (NRZ) Encoding
	RS-232 Signals
	RS-232 Signals – Continued
	RS-232 Signals – Continued
	What Wires Are Involved?
	9-Pin Serial Connector (DB9)
	How Many Bits Per Second
	Bit Timing – Transmit
	Bit Timing – Receive
	Control Flow
	The Rest Of The Pins
	Cabling
	SCI – Serial Communication Interface
	Setting Baud Rate
	Other Control & Data Registers
	Polled (“gadfly”) Data Reading
	Polled (“gadfly”) Data Writing
	Polled SCI operation
	Polled SCI Operation
	Framing Messages
	Buffering Messages
	Multi-Drop Serial Connections
	RS-422 Differential Data Transmission
	Differential Drivers Suppress Noise
	Multi-Drop Serial Transmission
	RS-485 Is A Common Multi-Master Bus
	I2C Bus – (Inter Integrated Circuit Bus)
	SPI – Serial Peripheral Interface Bus
	USB – Universal Serial Bus
	Many Other More Complex Protocols
	What About Error Coding?
	Review
	Lab Skills

