PHILIP KOOPMAN

HOW SAFE IS SAFE ENOUGH?

Measuring and Predicting Autonomous Vehicle Safety

PHILIP KOOPMAN

The UL 4600 Guidebook

What to Include in an Autonomous Vehicle Safety Case

AUTONOMOUS OPERATION

A Safety Framework for Shared **Human/Computer** Driving **Responsibility**

Prof. Philip Koopman

June 30, 2023

www.Koopman.us

Carnegie Mellon University

Overview

"Computer Driver" as a concept

- Same duty of care as a human driver
- Perform as a "reasonable driver"

What about shared responsibility?

- Effective driver monitoring
- Reasonable responsibility transfer process

State liability laws play a key role

- Buys time to sort out equipment regulation
- Can work with a non-statistical definition of "safe enough"

Key Approach: Computer Driver

- Need more than statistical approach when computer drives
 - Challenges to predicting initial safety outcomes
 - Defective behaviors masked by net safety improvements
 - Risk redistribution to vulnerable populations
- Computer Driver should have a duty of care
 - Obligation to be a "reasonable driver"
 - Same criterion as for human driver negligence
- Comparison is "reasonable human driver" not "average human driver"
 - Manufacturer is responsible party for negligent computer driving

Three "Pure" Operational Modes

Conventional: Human Driver steers

• Human Driver responsible

Fully Autonomous: Computer Driver steers
Manufacturer is responsible for Computer Driver

Testing: Development, Beta, Pre-production Manufacturer is responsible for safe test plan, qualification and performance of test drivers

The Awkward Middle: Supervisory Mode

- Human Supervises automated Control of steering
 - Computer Driver has sustained control of steering
 - Prone to Human Driver automation complacency
- This mode includes:
 - Driver told secondary tasks forbidden/acceptable
 - Hands on/off wheel
 - Eyes on/off road

Unify SAE Levels 2-3 into single, flexible regulatory approach

Need Rules To Avoid Moral Crumple Zone

Moral Crumple Zone: [Elish 2019]

- Blaming nearest convenient human for an automation failure
- Ineffective ways to improve safety:
 - Blaming humans for exhibiting human error
 - Blaming victims
 - Liability immunity for manufacturers

Backup Driver Of Autonomous Uber SUV Charged With Negligent Homicide In Arizona

2020 -- http://bit.ly/3Mwp1BG

Tesla driver charged with manslaughter in deadly Autopilot crash raises new legal questions about automated driving tech

A Tesla Model S driver accused of crashing his car while Autopilot was activated had run a red light and slammed into a Honda Civic, killing its occupants.

Rule #1: Driver Monitoring Rule

- Manufacturer responsible for distracted Human Driver crash <u>unless:</u>
 - Effective distracted driver alert activated, AND
 - Alert lasts at least 10 seconds before crash, AND
 - Computer Driver ensures safety for those at least 10 seconds.
- Exception:
 - Malicious defeat of driver monitor

Carnegie

Mellon University

Rule #2: Driver Intervention Rule

- Manufacturer responsible for Human Driver failure to intervene <u>unless:</u>
 - Undue risk of mishap readily apparent with enforced level of attentiveness, AND
 - Human Driver has adequate opportunity to intervene
 - Safe harbor for first 10 seconds

https://bit.ly/33L0Bk7

Computer Driver can demand that Human Driver intervene – but must follow this rule Carnegie

University

Implications: "Readily Apparent"

- Must be obvious deviation from safe driving
 - Computer Driver deviates from its customary behavior
 - Conventional driver would recognize a danger
 - Given only amount of attention that is enforced
- Alarms can make issues readily apparent:
 - ODD departures
 - Equipment failures
- Operational concept affects this
 - Eyes-on-road makes road hazards more apparent
 - Eyes-off-road concepts make hazards less apparent

"Adequate Opportunity To Intervene"

- Human driver readiness
 - Attention and tasking status both matter
- Time to react
 - Enough time appropriate to circumstances
 - Time to recognize Computer Driver acting unsafely
 - Time to switch tasks
 - » What if watching a movie?
 - » What if hands full?
 - Complexity of road situation, severity of failure, etc.
 - Competent (not expert) driver can reasonably intervene successfully
 - Computer Driver ensures safety during reaction time

Summary: Driving Safety Responsibility

Autonomous mode

Manufacturer – not owner, not the computer itself

Testing mode

Test driver might contribute, but not a scapegoat

Supervisory mode

- Manufacturer <u>except:</u>
 - Rule 1: Human Driver ignores effective driver monitor
 - Rule 2: Human Driver had a fair chance to intervene
- Manufacturer must respect inherent human limits

What Happens Next?

- Sets a well-defined playing field for liability
- Based on "reasonable" driver behavior
 - Uses same legal rules applied to human drivers
 - Source code analysis not required

Technical implications

- Indirectly regulates driver monitoring effectiveness
 - Can only take credit for driver attention that can be monitored
 - Monitoring sophistication higher for aggressive operational modes
- Indirectly affects viable concepts of operation
 - Disincentivizes some moral crumple zone strategies

Carnegie Mellon University

- Liability-based proposal for AV regulation & podcast
 - <u>https://safeautonomy.blogspot.com/2023/05/a-liability-approach-for-automated.html</u>
- Video lecture series on autonomous vehicle safety:
 - Keynote AV Safety overview video : <u>https://youtu.be/oE_2rBxNrfc</u>
 - Mini-course: <u>https://users.ece.cmu.edu/~koopman/lectures/index.html#av</u>
- "Safe Enough" book & talk video:
 - <u>https://safeautonomy.blogspot.com/2022/09/book-how-safe-is-safe-enough-measuring.html</u>
- UL 4600 book & talk video:
 - https://safeautonomy.blogspot.com/2022/11/blog-post.html