Overview

- Autonomous Vehicle safety standards
 - ISO 26262 & ISO 21448
 - ANSI/UL 4600
 - SAE J3018

- The hard bits beyond that are:
 - Fail operational architecture
 - Building an accurate, predictive world model
 - Safety beyond the driving task
 - How safe is safe enough?
Core AV Design Standards

- **ISO 26262 – Functional Safety**
 - Covers run-time faults & design defects
 - Assume requirements are complete

- **ISO 21448 – SOTIF**
 - SOTIF: “Safety Of The Intended Function”
 - Iteratively discover & mitigate unknowns

- **ANSI/UL 4600: #DidYouThinkofThat?**
 - A technically substantive safety argument
 - Evidence of coverage initially + feedback from surprises
 - Aggressive field feedback based on lessons learned

https://bit.ly/3NNwLO1
Standards-Based Engineering Approach

<table>
<thead>
<tr>
<th>System Safety</th>
<th>ANSI/UL 4600</th>
<th>Safety Beyond Dynamic Driving</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic Driving Function</td>
<td>ISO 21448, SaFAD/ISO TR 4804</td>
<td>Environment & Edge Cases</td>
</tr>
<tr>
<td>Functional Safety</td>
<td>ISO 26262</td>
<td>Equipment Faults</td>
</tr>
<tr>
<td>Cyber-Security</td>
<td>SAE J3061, SAE 21434</td>
<td>Computer Security</td>
</tr>
<tr>
<td>Vehicle Safety</td>
<td>FMVSS, NCAP</td>
<td>Basic Vehicle Functions</td>
</tr>
</tbody>
</table>
“Fail Safe” (fail stop) is not enough
- Detect failure
- Switch over to a redundant capability
 - E.g., gracefully terminate mission

Safety architecture challenges
- “Redundancy” is not necessarily enough
- Safety limited by common mode failures across the redundancy
 - “Diversity” is difficult to measure in all dimensions
- If two computations disagree, which do you believe?
 - Disagreement is likely for nondeterministic algorithms

https://bit.ly/3VcFzRs
Perception Limits To Safety

THE REAL WORLD

- **VIDEO**
- **LIDAR**
- **RADAR**

PERCEPTION

COMPUTER’S WORLD MODEL: “Child chasing ball into street 10 meters ahead”

Path Planning & Motion Control

Perception & prediction present a uniquely difficult assurance challenge
Safety Requires an Accurate World Model

- Good prediction based on the world model
 - Classification accuracy affects prediction
 - Probability cloud for object motion
- Safety limited by heavy tail scenarios (rare, important)
 - Probabilities might be context dependent
 - Rare cases tend to dominate safety
Field Engineering Feedback

- Architectures will need to support lifecycle field feedback
 - Safety Performance Indicators (SPI) data linked to safety case
 - Transition from safety recall model to continuous improvement
SPIs and Lifecycle Feedback

- SPI: direct measurement of safety case claim failure
 - Independent of reasoning ("claim is X ... yet here is ~X")

- A falsified safety case claim:
 - Safety case has some defect

- Root cause analysis might reveal:
 - Product or process defect
 - Invalid safety argument
 - Issue with supporting evidence
 - Assumption error

- Continual Safety case improvement
Role of Humans

- There is no “captain of the ship”
 - Autonomy must assume responsibility

- Interacting with people
 - Occupants, cargo loading
 - Pedestrians & mobility device users
 - Potential abuse, misuse

- Role of humans as drivers?
 - Remote operators and wireless data have their limits
 - Avoid “Moral Crumple Zone” operational concept

- Safety culture for all stakeholders

Is it safe to drive now?

https://bit.ly/2GvDkUN
Safe Behavior & Safe Enough

- Contextual safety for safe vehicle shutdown
 - Is in-lane stop in fast moving highway “safe”?
 - What if stopped AV blocks an emergency vehicle?

- Where is the “safe enough” bar set?
 - Better than human, but...
 - Prediction uncertainty
 - Equity & risk redistribution issues
 - Safety engineering reduces uncertainty
 - Field feedback of SPIs manages uncertainty

- Governance model: who decides to deploy?
 - What basis is used for decision?
Summary

- Follow safety standards for a foundation
 - Identify & mitigate hazards
 - Within vehicle
 - Presented by operational environment
 - At system level, beyond driving task
 - Safety engineering beyond just road testing

- Be prepared to wrestle with these parts:
 - Fail operational architecture
 - Accuracy of building a world model
 - Safety beyond the driving task
 - How safe is safe enough?