A Safety Case + SPI Metric Approach for Autonomous Vehicle Safety

Prof. Philip Koopman

Carnegie Mellon University

@PhilKoopman
Multi-scale metric & feedback loops
- Design hazard analysis
- Operational risk mitigation
- Lifecycle discovery of surprises

Safety Performance Indicators (SPIs)
- Beyond “vehicle acted unsafely”
- Beyond real-time dynamic risk measurement

... It’s all about monitoring safety case validity
Traditional Hazard Analysis

- Risk Analysis (e.g., start with HARA)
 - List all applicable hazards
 - Characterize the resultant risk
 - Mitigate risk as needed
 - Document all risks acceptably mitigated
- Use various techniques to create hazard list
 - Lessons learned (previous projects; industry)
 - Brainstorming & analysis techniques
 - HAZOP, STPA, bring your own favorite approach ...
- Limitation: unknown hazards
 - But, human is responsible for overall system safety
Hazard Analysis for ADAS

- Operating in the open world
 - All hazards aren’t known
 - New hazards will appear

- Safety of the Intended Function (SOTIF)
 - Operate in the real world
 - Observe “triggering events”
 - Mitigate discovered hazards
 - Repeat

- Limitation: unseen triggering events
 - But, human is responsible for system safety
- Driver does dynamic risk mitigation
- Recalls for technical faults
 - Recalls are never supposed to happen
Hazard Analysis for Full Autonomy

- Still an open world with unknowns & changes
 - But ... *no human driver responsible*

- Use Positive Trust Balance
 - Engineering rigor
 - Practicable validation
 - Strong safety culture
 and ...
 - Field feedback to handle surprises

- Good fit to UL 4600 ➔ Safety Cases
Safety Arguments (Safety Case)

- Claim – a property of the system
 - “System avoids pedestrians”
- Argument – why this is true
 - “Detect & maneuver to avoid”
- Evidence – supports argument
 - Tests, analysis, simulations, ...
- Sub-claims/arguments address complexity
 - “Detects pedestrians” // evidence
 - “Maneuvers around detected pedestrians” // evidence
 - “Stops if can’t maneuver” // evidence
Safety Case argues acceptable risk – without driver
- Perhaps Positive Risk Balance (“safer than human”)
- Update in response to incidents and loss events

- But, deployment only yields lagging metrics
SPIs monitor the validity of safety case claims

- Vehicle is Safe
 - Avoids Crashes
 - Detects Objects
 - Sensors Effective
 - Sensor Cleaning
 - Data Fusion Effective
 - SW Quality
 - Test Coverage
Examples of SPIs

- "Acts dangerously" is only one dimension of SPIs
 - Violation rate of pedestrian buffer zones
 - Time spent too close per RSS following distance

- Components meet safety related requirements
 - False negative/positive detection rates
 - Correlated multi-sensor failure rates

- Design & Lifecycle considerations
 - Design process quality defect rates
 - Maintenance & inspection defect rates

- Is it relevant to safety? ➔ Safety Case ➔ SPIs
KPI vs. SPI Contrast

- **Distance to object:**
 - KPI: average and variance of clearance
 - SPI: how often SDC violates safe clearance limit

- **Sensor effectiveness:**
 - KPI: detection rate, SNR per sensor
 - SPI: concurrent multi-sensor detection failure
 - SPI: loss of calibration

- **Pedestrian perception:**
 - KPI: accuracy, precision, recall
 - SPI: false negative more than $<k>$ consecutive frames
 - SPI: systematic under-performance on sub-classes
Responsibility-Sensitive Safety (RSS) Scenario:

- Safety monitor: increase distance if too close in case of panic stop
- KPI: best effort separation given driving conditions
- SPIs: situation more dangerous than expected (e.g., ODD issues)
 - Spent more time in too-dense traffic than expected
 - Lead/own vehicle brake violate expectations
 - Other vehicles panic brake more often than assumed
SPIs and Lifecycle Feedback

- SPI measures validity of a safety case claim
 ➔ a SPI value violation means safety case is invalid

- Root cause analysis might reveal:
 - Design process execution defect
 - Design defect
 - Hazard analysis gap
 - SOTIF analysis gap
 - Training data bias
 - Evidence gap, or defect
 - Assumption error
SPI-Based Feedback Approach

- Safety Case argues acceptable risk
 - SPIs monitor validity of safety case

Diagram:
- Design
- Testing
- Deployment
- Safety Case
- Hazard Analysis
- SPIs
- Triggering Events
- Run-time Safety Monitor
- SPI Data

© 2022 Philip Koopman
- Monitoring incidents is only part of feedback

- Removing human means mitigating surprise
 - Tactical: run-time safety monitoring
 - Strategic: run-time SPI monitoring

- SPIs provide feedback on:
 - Design quality & process maturity
 - Testing coverage
 - Lifecycle procedure execution

- SPIs: you are as safe as you think you are
 - Field feedback is key to SPI success