Making safe robots
- Doer/Checker safety

Edge cases matter
- Robust perception matters

The heavy tail distribution
- Fixing stuff you see in testing isn’t enough

Perception stress testing
- Finding the weaknesses in perception

UL 4600: autonomy safety standard
98% Solved For 20+ Years

Washington DC to San Diego
- CMU Navlab 5
- Dean Pomerleau
- Todd Jochem
 https://www.cs.cmu.edu/~tjochem/nhaa/nhaa_home_page.html

AHS San Diego demo Aug 1997

TRIP COMPLETE !!!
2797/2849 miles (98.2%)
Before Autonomy Software Safety

- The Big Red Button era
Traditional Validation Vs. Machine Learning

- Use traditional software safety where you can

..BUT..

- Machine Learning (inductive training)
 - No requirements
 - Training data is difficult to validate
 - No design insight
 - Generally inscrutable; prone to gaming and brittleness
APD (Autonomous Platform Demonstrator)

Safety critical speed limit enforcement

TARGET GVW: 8,500 kg
TARGET SPEED: 80 km/hr
Safety Envelope Approach to ML Deployment

- Specify unsafe regions
- Specify safe regions
 - Under-approximate to simplify
- Trigger system safety response upon transition to unsafe region
Architecting A Safety Envelope System

- “Doer” subsystem
 - Implements normal, untrusted functionality

- “Checker” subsystem – Traditional SW
 - Implements failsafes (safety functions)

- Checker entirely responsible for safety
 - Doer can be at low Safety Integrity Level
 - Checker must be at higher SIL

(Also known as a “safety bag” approach)
Perception presents a uniquely difficult assurance challenge

Machine Learning Based Approaches

Randomized & Heuristic Algorithms

Run-Time Safety Envelopes

Doer/Checker Architecture

Control Systems

Control Software Validation

Doer/Checker Architecture

Autonomy Interface To Vehicle

Traditional Software Validation
Validation Via Brute Force Road Testing?

- If 100M miles/critical mishap...
 - Test 3x–10x longer than mishap rate
 → Need 1 Billion miles of testing

- That’s ~25 round trips on every road in the world
 - With fewer than 10 critical mishaps
Good for identifying “easy” cases
- Expensive and potentially *dangerous*

Brute Force AV Validation: Public Road Testing

[Image 1 of a car on the road with the text “Brute Force AV Validation: Public Road Testing”]

[Image 2 of a person inspecting a car with the text “http://bit.ly/2toadfa”]

© 2019 Philip Koopman 12
Closed Course Testing

- Safer, but expensive
 - Not scalable
 - Only tests things you have thought of!
Simulation

- Highly scalable; less expensive
 - Scalable; need to manage fidelity vs. cost
 - Only tests things you have thought of!

Udacity

Apollo

http://bit.ly/2toFdeT
What About Edge Cases?

- You should expect the extreme, weird, unusual
 - Unusual road obstacles
 - Extreme weather
 - Strange behaviors

- Edge Case are surprises
 - You won’t see these in testing
 ➔ Edge cases are the stuff you didn’t think of!
Just A Few Edge Cases

- Unusual road obstacles & obstacles
- Extreme weather
- Strange behaviors

https://dailym.ai/2K7kNS8
https://goo.gl/J3SSyu
https://en.wikipedia.org/wiki/Magic_Roundabout_(Swindon)
Why Edge Cases Matter

Where will you be after 1 Billion miles of validation testing?

Assume 1 Million miles between unsafe “surprises”

- Example #1:
 100 “surprises” @ 100M miles / surprise
 - All surprises seen about 10 times during testing
 - With luck, all bugs are fixed

- Example #2:
 100,000 “surprises” @ 100B miles / surprise
 - Only 1% of surprises seen during 1B mile testing
 - **Bug fixes give no real improvement** (1.01M miles / surprise)

https://goo.gl/3dzguf
Real World: Heavy Tail Distribution (?)

Common Things Seen In Testing

Edge Cases Not Seen In Testing

Random Independent Arrival Rate (exponential)

Power Law Arrival Rate (80/20 rule) (Heavy Tail Distribution)

Many Different, Infrequent Scenarios Total Area is the same!
Need to find “Triggering Events” to inject into sims/testing
Edge Cases Pt. 1: Triggering Event Zoo

Need to collect surprises
- Novel objects
- Novel operational conditions

Corner Cases vs. Edge Cases
- Corner cases: infrequent combinations
 - Not all corner cases are edge cases
- Edge cases: combinations that behave unexpectedly

Issue: novel for person ≠ novel for Machine Learning
- ML can have “edges” in unexpected places
- ML might train on features that seem irrelevant to people
What We’re Learning With Hologram

- A scalable way to test & train on Edge Cases

Your fleet and your data lake

Hologram cluster tests your CNN

Hologram cluster identifies weaknesses & helps retrain your CNN

Your CNN becomes more robust
Malicious Image Attacks Reveal Brittleness:

QuocNet:

- Car
- Not a Car
- Magnified Difference

AlexNet:

- Bus
- Magnified Difference
- Not a Bus

ML Is Brittle To Environment Changes

- Sensor data corruption experiments

Defocus & haze are a significant issue

Defocus: $u_f = 1m, \kappa = 2$
Haze: $u_h = 97.8m$

Synthetic Equipment Faults

- Gaussian blur

Contextual Mutators

Gaussian Blur & Gaussian Noise cause similar failures

Exploring the response of a DNN to environmental perturbations from “Robustness Testing for Perception Systems,” RIOT Project, NREC, DIST-A.
Context-Dependent Perception Failures

- Perception failures are often context-dependent
 - False positives and false negatives are both a problem

Will this pass a “vision test” for bicyclists?
Example Triggering Events via Hologram

- Mask-R CNN: examples of systemic problems we found

Notes: These are baseline, un-augmented images.
(Your mileage may vary on your own trained neural network.)
UL 4600 – An Autonomy Safety Standard

- Centered on a Safety Case
 - Credit for existing safety standards
 - Mix & match cross-standards techniques
 - Discourages questionable practices

- “Unknowns” are first class citizens
 - Balance between analysis & field experience
 - Field monitoring required to feed back to argumentation
 - Assessment findings & field data used to update standard

- Plan: public standard by end of 2019
 - Standards Technical Panel forming Spring 2019 to review draft
Credible Autonomy Safety Argumentation

SSS 2019, Phil Koopman, Aaron Kane, Jen Black

Autonomy safety arguments pitfalls we’ve seen
- Conformance to an existing standard
- Proven in Use
- Field Testing
- Vehicle simulation
- Formal proof of correctness
- Other issues (e.g., unwarranted independence assumptions)

Also, SafeAI Paper on taxonomy of ODD/OEDR
Ways To Improve AV Safety

- More safety transparency
 - Independent safety assessments
 - Industry collaboration on safety

- Minimum performance standards
 - Share data on scenarios and obstacles
 - Safety for on-road testing (driver & vehicle)

- Autonomy software safety standards
 - Traditional software safety ... PLUS ...
 - Dealing with surprises and brittleness
 - UL 4600 Autonomous Vehicle Safety Standard

Thanks!