Automated Vehicle Safety Update for 2021

February 2021
Overview

- Where is the industry in general as of early 2021?

- Beyond the SAE Levels
 - Role of human vs. technology

- Industry trends for 2021
 - Role of standards
 - Technical challenges
 - Organizational challenges

https://on.gei.co/2r2rjzg
Low Speed Shuttles

- Low speed shuttles
 - Up to 15 passengers
 - Fixed route at perhaps 5-10 mph
 - Demonstrations in cities worldwide

- Safety approach
 - Slow speed limits kinetic energy
 - Often a non-driver safety conductor

- Example Mishaps
 - Shuttle hit by backing truck (Las Vegas, 2017)
 - False alarm emergency stop with passenger injury (Ohio 2020)
Parcel Delivery

- Parcels to stores, houses
 - Short range delivery
 - Roads, bike lanes, sidewalks
 - Demonstrations in several cities

- Safety approach
 - Early: trailing vehicle
 - Later: remote human

- Example Incidents
 - Sidewalk bot blocks wheelchair ramp (Pittsburgh, 2019)
 - Tension over use of sidewalk space
Driver-Monitored Automation

- Automated driving of car or truck
 - Continuous driver supervision
 - OEMs in production already

- Safety approach
 - Human driver monitors automation
 - Human driver responsible for safety

- Example Mishaps
 - Multiple fatal Tesla crashes
 - Issue: driver complacency
 - Issue: under 10 seconds from OK to fatal crash
 - Tempe Arizona fatality in testing (Tempe, 2018)
Fully Autonomous Operation

- Fleet vehicles
 - Waymo robotaxis deployed on a limited scale
 - Middle-mile trucks gained interest in 2020
 - Many players pushing hard in this area

- Safety approach
 - Early: Human safety driver
 - Later: Human on-call if car asks for help

- Example incidents
 - California reports indicate minor incidents in testing
Industry Trends

- Consolidation in the “race” to autonomy
 - It takes huge resources to succeed
 - Trend to OEM + ADS supplier teaming
 - Smaller players fail, team, or acquired over time

- Fully autonomous pivot toward freight
 - Low kinetic energy for last mile service
 - Middle mile highways less chaotic than urban

- Shift of “SAE Level 3” vehicles to L3+
 - Strict L3 means human driver supervision
 - OEMs shifting to L3+ with car safe stopping on its own
A User-Centric Classification

<table>
<thead>
<tr>
<th>Operating Mode</th>
<th>Human Role</th>
<th>Driving</th>
<th>Driving Safety</th>
<th>Other Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSISTIVE</td>
<td>Driving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUPERVISED</td>
<td>Eyes ON the road</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUTOMATED</td>
<td>Eyes OFF the road</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUTONOMOUS</td>
<td>No human driver</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Driver Assistance

Automated Driving

Vehicle Automation Modes
Standards-Based Engineering Approach

<table>
<thead>
<tr>
<th>Component</th>
<th>Standard/Specification</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSTEM SAFETY</td>
<td>UL 4600</td>
<td>Safety Beyond Dynamic Driving</td>
</tr>
<tr>
<td>DYNAMIC DRIVING FUNCTION</td>
<td>ISO/PAS 21448</td>
<td>Environment & Edge Cases</td>
</tr>
<tr>
<td>FUNCTIONAL SAFETY</td>
<td>ISO 26262</td>
<td>Equipment Faults</td>
</tr>
<tr>
<td>CYBER-SECURITY</td>
<td>SAE J3061, SAE 21434</td>
<td>Computer Security</td>
</tr>
<tr>
<td>VEHICLE SAFETY</td>
<td>FMVSS, NCAP</td>
<td>Basic Vehicle Functions</td>
</tr>
</tbody>
</table>

© 2021 Philip Koopman
2021 Technical Safety Challenges

- Perception & prediction
 - Safety of machine learning-based functions
 - Need more than object motion tracking

- Safety of Intended Function (SOTIF)
 - Drive/Fix/Drive iteration with lots of testing
 - Waymo: 6M test miles; 65K deployed miles
 - How will safety be argued for larger fleets?
 - Likely will involve UL 4600 concepts and safety cases

- Getting from “works OK” to “safe”
 - You can brute force the first few “nines” ... but not all of them.
 - Field feedback into safety cases

https://bit.ly/3q7VCzv
Still an open world with unknowns & changes

- Want “Positive Risk Balance” (safer than human driver)
- But ... *no human driver responsible*

Use Positive Trust Balance

- Engineering rigor
- Practicable validation
- Strong safety culture
 and ...
- Field feedback
to handle surprises

UL 4600 ties feedback to Safety Case
Safety Arguments (Safety Case)

- **Claim** – a property of the system
 - “System avoids pedestrians”

- **Argument** – why this is true
 - “Detect & maneuver to avoid”

- **Evidence** – supports argument
 - Tests, analysis, simulations, ...

- **Sub-claims/arguments address complexity**
 - “Detects pedestrians” // evidence
 - “Maneuvers around detected pedestrians” // evidence
 - “Stops if can’t maneuver” // evidence
Safety Performance Indicators (SPIs)

SPIs monitor the validity of safety case claims (UL 4600)

- Leading Metrics
 - Sensors Effective
 - Data Fusion Effective
 - Sensor Cleaning
 - SW Quality
 - Test Coverage

- Lagging Metrics
 - Avoids Crashes
 - Detects Objects
 - Vehicle is Safe

CLAIMS-ONLY VIEW OF SAFETY CASE
Examples of SPIs

- “Acts dangerously” is only one dimension of SPIs
 - Violation rate of pedestrian buffer zones
 - Time spent too close per following distance math

- Components meet safety related requirements
 - False negative/positive detection rates
 - Correlated multi-sensor failure rates

- Design & Lifecycle considerations
 - Design process quality defect rates
 - Maintenance & inspection defect rates

- Is it relevant to safety? ➔ Safety Case ➔ SPIs
2021 Safety Themes

- **Positive Trust Balance:**
 - Engineering Rigor, Validation, Feedback, Safety Culture
 - Standards-driven safety
 - Transparency

- **Safety Performance Indicators (SPIs):**
 - Continual improvement & updates
 - Field feedback: development; deployed

- **Scalability past pilot vehicles**
 - Accurate perception/prediction is still work in progress
 - Transition from brute force data to safety case approach
2021 Organizational Safety Challenges

- Significant pressure to deploy
 - Flurry of empty driver seat demos in late 2020
 - Can teams take the time needed for safety?

- Industry transparency needed
 - Safety collaboration rather than competition
 - Public trust in face of an adverse news event

- Ensuring robust safety cultures
 - Silicon Valley culture + automotive culture + no human driver
 - We need to get this right to succeed!

https://youtu.be/nhqyrze30bk
Yandex demo video, Ann Arbor MI, Aug 2020