Driver Assistance vs. Automated Vehicle Safety

August 2021
Overview

- Driver Assistance:
 - Help human drivers be better & safer

- Driver Automation:
 - Vehicle actually drives

- Compare & contrast
 - Safety argument implications
 - Technology challenges

- Start with:
 - Automation modes for non-engineers

https://on.gei.co/2r2rzg
<table>
<thead>
<tr>
<th>Operating Mode</th>
<th>Human Role</th>
<th>Driving</th>
<th>Driving Safety</th>
<th>Other Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSISTIVE</td>
<td>Driving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUPERVISED</td>
<td>Eyes ON the road</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUTOMATED</td>
<td>Eyes OFF the road</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUTONOMOUS</td>
<td>No human driver</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Better execute driver commands
- Anti-lock brakes
- Electronic stability control

Momentarily intervene for safety
- Automated emergency braking

The driver is responsible for safety
- The vehicle obeys driver intent
- Interventions to improve driver performance
- Functional safety covers equipment failures (ISO 26262)
Supervised: Driver Monitors for Safety

- Vehicle (mostly) does the driving
 - Speed control & lane keeping

- Human driver responsible for safety
 - Intervene to handle edge cases

- Driver monitors and intervenes
 - Vehicle must let driver intervene when needed (ISO 26262)
 - Effective driver monitoring required for automation complacency
 - Safety Of The Intended Function (SOTIF) (ISO 21448) helpful
ADAS Safety – Helping the Driver

- Proper functionality helps driver
 - Reduce driver stress, control mistakes

- Active safety can help
 - Helps avoid crashes
 - Tune to avoid false activations

- Arguably, good enough active safety
 - ADAS claims credit for safety; human blamed for crashes
 - BUT: avoid unreasonable demands on human drivers
 - Unaided humans are terrible at monitoring boring automation
Automated: The Car Drives

- Vehicle drives & handles safety
 - Driver need not pay attention to driving
 - Driving problems *not* dumped onto driver

- The vehicle responsible for driving safety
 - By definition:
 collisions are not fault of a human driver

- Tension between safety and permissiveness
 - False non-detections (false negatives) generally hurt safety
 - False detections (false positives) generally hurt permissiveness
Autonomous: No Human Oversight

- Vehicle handles driving & vehicle safety
 - There is no driver; no human supervision
 - Ensures passenger & cargo safety
 - Handles non-driving issues (e.g., post-crash)

- The vehicle is responsible safe operation
 - Human does not help with safety
 - OK for vehicle to get help if it initiates request all on its own

- Adds requirement for non-driving sensing (UL 4600)
 - Passenger safety; cargo safety; vehicle equipment status
 - Beyond scope of Automated Driving System Levels in J3016
Driver Roles Contrasted

- **Assistive & Supervised**
 - Driver attention required
 - Vehicle responds to driver
 - Vehicle blame for unsafe intervention
 - Incentive for vehicle to under-perform

- **Automated & Autonomous**
 - No human attention on driving
 - Vehicle cannot count on human intervention for driving safety
 - Mode changes are requests, not demands by vehicle
 - Human actively confirms responsibility
Driver Mode Transitions

- Mode confusion is a problem
 - Driver positive acknowledgment
 - Request user attention, not “demand”

- Example issues:
 - Supervised changes to Assistive
 - Driver thinks vehicle is still steering
 - Automated changes to Supervised
 - Driver takes extended time to regain situational awareness
 - “Captain of ship” does not have a full driving license
 - Autonomous changes to Automated
 - Attendant rouses then falls back asleep (sleeps through alarm)
Automation Safety Challenges

- **Assistive**
 - More uniform adoption of ISO 26262

- **Supervised**
 - Safety credit if low false positives
 - Effective driver monitoring

- **Automated**
 - SOTIF, scenario completeness & coverage
 - Sensor fusion, perception, prediction
 - Blamed for false negatives

- **Autonomous**
 - UL 4600 coverage: drivers do more than drive
Component Safety Challenges

- Positive Trust Balance:
 - Engineering Rigor, Validation, Feedback, Safety Culture
 - Standards-driven safety

- Safety Performance Indicators (SPIs)
 - Integrators asking for component safety cases
 - Field feedback: development; deployed

- Scalability past pilot vehicles
 - Accurate perception/prediction is still work in progress
 - Transition from brute force data to safety case
 - Key point: avoiding multi-sensor correlated failures
Organizational Safety Challenges

- Significant pressure to deploy
 - Flurry of empty driver seat demos in 2020
 - Can teams take the time needed for safety?

- Industry transparency needed
 - Safety collaboration rather than competition
 - Public trust in face of an adverse news event

- Ensuring robust safety cultures
 - Robotics meets automotive engineering
 - Silicon Valley culture + automotive culture + no human driver

https://youtu.be/nhqyrze30bk
Yandex demo video, Ann Arbor, Aug 2020