Dependability Benchmarking of Network-Based Applications Viewed as Testing of End-User Quality of Service

Mladen A. Vouk

http://renoir.csc.ncsu.edu/Faculty/Vouk
Mladen A. Vouk
Professor
Department of Computer Science,
Box 8206
North Carolina State University
Raleigh, NC 27695, U.S.A.
Tel: 919-515-7886, FAX: 919-515-6497
vouk@csc.ncsu.edu

Software Engineering Laboratory
Computer-Based Education Laboratory
Multimedia Laboratory
Center for Advanced Computing and Communications
Support

- NSF
- NCSU CACC, and other NCSU sources
- IBM
- Alcatel
- Bell South
End-User: Can I “Depend” on this application, system, net... to support in an appliance-like fashion what I do?
Key Trick

• Eliminate or standardize “non-essential” elements of the environment in which the software operates

• Build a “standard” benchmarking environment.

• Specific example - network-based software applications.
Questions

• **What is an End-User view?**
• **What is a workflow-based view (scenarios)?**
• **What is an appliance-based view?**
• **What is QoS?**
• **What is End-User QoS?**
• **What is an SLA and SLS?**

• Some answers and examples...
End-User Quality Hyper-Surface

- Throughput
- "Ease of Use" Appliance-Like
- Security
- Support
- Availability of Content
- User needs and Fault-Tolerance?
- Availability of System
- Response
- Services, Functions, ...

North Carolina State University
Department of Computer Science
Framework: Benchmark + User Elements

- **End-User Workflows**: E.g., Professor, University, ISP ...
- **SLA/SLS**: E.g., problem solving environment, DB
- **Application**: E.g., CORBA-based
- **Middleware**: E.g., IP
- **OS**: E.g., SONET, ATM, “Light” ..
- **Com Protocols**: E.g., IP
- **“Wire” Infrastructure**: E.g., IP
“Standard” Elements + User’s Elements

- User benchmarks (profile, what constitutes a failure for this user, etc.)
- SLA/SLS benchmarks
- Application benchmarks
- Middleware benchmarks
- OS benchmarks
- Network and Infrastructure benchmarks
Questions

• What is an End-User view?
• What is a workflow-based view (scenarios)?
• What is an appliance-based view?
• What is QoS?
• What is End-User QoS?
• What is an SLA and SLS?

• Some answers and examples.
Network-Based Education

• Modern learning environments are integrated collections of cooperating workflows, programs, tools, clients, and intelligent agents.
• They are distributed.
• User satisfaction is critical.
(Education) Workflows

• A series of (user-level) structured activities and computations that arise in education, training and learning, in general.
Cooperating Workflows

• Education workflows are expected to coexist, cooperate and even meld with other user workflows (e.g., business workflows, scientific workflows, legislative workflows).

• As such they must support compatible interfaces and expectations about quality of the delivered services.
“Horizontal” Workflows

- Quality of Service Needs
- Many Other Issues
- Assessment
- Research
- Legal
- Workflow Integration
- Education

Users

+ Business

+ Legal

Legal

Workflow Integration

Education

Many Other Issues
Operational Profile

System Software Developer
Skill: S/W Expert

Application Package Developer (Author)
Skill: Pedagogical and Content Expert

Package Selector (Instructor)
Needed Skill: Knowledge of User Needs

Naive User
Needed Skill: Can Find Terminal

Advanced User
Needed Skill: Uses SuperComputers

Support and Generation of Information

Feedback and Error Reports

10
10^3
10^5
10^7
Flow Modes

<table>
<thead>
<tr>
<th>Synchronous Capture</th>
<th>Synchronous Delivery</th>
<th>Asynchronous Delivery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Live 1 or 2-way interactions</td>
<td>Live recording, On-demand playback</td>
<td></td>
</tr>
<tr>
<td>“Tapes,” “Live-like” broadcast</td>
<td>“Tapes,” On-demand playback</td>
<td></td>
</tr>
</tbody>
</table>
Major Support Modes

• System Development
• Courseware Development and Management - Author Mode
• Curriculum Development and Management - Instructor Mode
• Auto-Adaptive Teaching
• Centralized Administration and Control
• Local and Remote Storage and Processing
• End-User Quality of Service Engines
• Networking (the “Glue”)

Interaction/Delivery Models

- **TV model**
 - Full motion video (e.g., MPEG2)
 - Possible two-way interaction
 - Usually high overhead

- **Data model**
 - Text, graphics, voice, possibly compressed video
 - Interaction and collaboration
 - Low to medium overhead
When Audio Only?

• In many situations about 80-95% of relevant information is captured through text, voice, and low-bandwidth interactions and animations.

• Full motion video approach may be needed only infrequently, but when it is needed it is essential.
When Video?

• Interactions dependent on interpretation of facial expressions, body language, color, ...
• Very complex moves, demos, ...
• Exploratory data analysis and model building
• Lack of knowledge of exact learning model
• Art
• “Social” interactions
• …
Constraints

• User Needs
• Human capabilities
• Technology
• Financial limitations
• Timely delivery
• Social
• Other ...
Matching

• **Student and system capabilities must be explicitly matched.**

• **In the future education workflows will need to at least match that of other workflows with which they interact.**

• **We use existing information about other workflows to estimate user-acceptable bounds for ET-Workflow support systems (e.g., end-user QoS models).**
Human Capacity

• User interaction and ability to absorb knowledge is a strong function of computer-human interface (CHI), e.g. user cannot extract new information (learn and remember) faster than about 20 bits/second (i.e., differentiate among ~1,000,000 "symbols" each second).

• Effective information transfer rates may require different sets of "symbols" and presentation rates (from several thousand bits per second to many megabits per second).
Questions

• What is an End-User view?
• What is a workflow-based view (scenarios)?
• What is an appliance-based view?
• What is QoS?
• What is End-User QoS?
• What is an SLA and SLS?

• Some answers and examples ...
Appliance-Like

• Should not impact existing workflows in terms of attention and additional operational workload - aid not distract (e.g., as easy to use a whiteboard or a blackboard)

• Seamless integration of user-workflows and technology - business model, effort-model, end-user fault-tolerance
Questions

• What is an End-User view?
• What is a workflow-based view (scenarios)?
• What is an appliance-based view?
• What is QoS?
• What is End-User QoS?
• What is an SLA and SLS?

• Some answers and examples ...
Quality of Service (QoS)

• “Classical” (network-based)
 - Throughput, delay, loss, jitter

• Extended (user-based)
 - Reliability & Availability
 - End-User Response Time
 - Scalability
 - Usability
 - Functionality, Interoperability
 - SLA support, Security...
 - Other ...
End-User QoS Hyper-Surface

- Throughput
- Jitter
- Reliability + Downtime
- Response
Reliability and Availability

• Once a user starts a ONE HOUR session, the probability getting through that session without any problems must be above 0.95

• Criterion is based on the NovaNET experiences.
UnAvailability

System Usage (Months)

System UnAvailability

Average

Instantaneous

Model
Response Times

- End-to-end response delay can be a big problem in an education environment.

- Synchronous end-to-end interaction (round-trip) delays that consistently exceed about 250 ms are often unacceptable when the interaction is conducted in the key-stroke mode.
Network Delays (Summer ‘95)

<table>
<thead>
<tr>
<th>Network</th>
<th>Traffic Load</th>
<th>Probability that Response Time is</th>
<th>Good</th>
<th>Acceptable</th>
<th>Poor*</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCSU</td>
<td>Low</td>
<td>0.9963</td>
<td>0.0020</td>
<td>0.0017</td>
<td></td>
</tr>
<tr>
<td>Campus</td>
<td>Medium</td>
<td>0.9889</td>
<td>0.0054</td>
<td>0.0057</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>0.9566</td>
<td>0.0356</td>
<td>0.0078</td>
<td></td>
</tr>
<tr>
<td>Internet</td>
<td>Low</td>
<td>0.9682</td>
<td>0.0176</td>
<td>0.0142</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>0.9502</td>
<td>0.0130</td>
<td>0.0368</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>0.7187</td>
<td>0.0458</td>
<td>0.2355</td>
<td></td>
</tr>
</tbody>
</table>

(*) Includes lost packets.
Throughput

• Principal driver is the problem solving workflow.

• Usually takes one of the two forms
 • TV Model
 • Data Model
Questions

• What is an End-User view?
• What is a workflow-based view (scenarios)?
• What is an appliance-based view?
• What is QoS?
• What is End-User QoS?
• What is an SLA and SLS?

• Some answers and examples...
Service Level Agreement/Specs
(How do we fulfill the following scenario?)

<table>
<thead>
<tr>
<th>Actual customer input</th>
<th>Network reaction</th>
<th>Contraced SLA</th>
<th>Contracted Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 kbps</td>
<td>600 kbps</td>
<td>2 Mbps</td>
<td>Super (EF)</td>
</tr>
<tr>
<td></td>
<td>800 kbps from silver</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>600 kbps from economy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.8 Mbps</td>
<td>3 Mbps</td>
<td>3 Mbps</td>
<td>Silver (AF)</td>
</tr>
<tr>
<td>8 Mbps</td>
<td>1 Mbps</td>
<td>1 Mbps</td>
<td>Economy (BE)</td>
</tr>
</tbody>
</table>
Service Level Agreement (2)

<table>
<thead>
<tr>
<th>Actual customer input</th>
<th>Network reaction</th>
<th>Contracted SLA</th>
<th>Contracted Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 kbps</td>
<td>600 kbps</td>
<td>2 Mbps</td>
<td>Super (EF)</td>
</tr>
<tr>
<td></td>
<td>1.4 Mbps from silver</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.8 Mbps</td>
<td>2.4 Mbps from silver</td>
<td>3 Mpbs</td>
<td>Silver (AF)</td>
</tr>
<tr>
<td></td>
<td>600 kbps from economy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Mbps</td>
<td>1 Mbps</td>
<td>1 Mbps</td>
<td>Economy (BE)</td>
</tr>
</tbody>
</table>
Service Level Specs - How to implement?
Do I need to/Can I Bid/Auction for Resources?

Example: **WLS+MPEG2+HDTV** (needs many “thin guaranteed streams with dynamically allocated 3 to 10 Mbps streams”) + RSVP?
+ COPS-based policy services +
+ DiffServ edges (Replace the WRR scheduler at node 2 with HOL scheduler & study its effect?).
+ MPLS “cloud” (what about change traffic?)
Issues

MPLS-capable

1. PDP
2. A
3. PDP
4. B

GPDP

PEP
Another Scenario

• An ISP has Points of Presence (POPs) at 40 cities in the country and a backbone presence at 5 cities. Due to the high growth rate, it has been decided to have a 4 node LAN backbone at each POP through which there is also access to the ISP backbone. Each POP hosts servers, provides dial-in access to users, and is connected to routes/access nodes from several towns. The ISP would like to have an RSVP/COPS/DiffServ/MPLS solution at the access nodes and the core nodes. Some of the requirements are that no edge node or link should be loaded to more than 75% of its capacity, failure of a single node in the network should not disrupt any user. Also, to provide a highly reliable backbone, two switches are to be installed at each backbone site. The ISP plans to lease two OC3 links from a POP to the associated backbone site and one OC12 link between the backbone sites.

• What is the recommended topology to maximize network capacity and revenue?
More on the Scenario

• The ISP estimates that 5% of the user traffic traverses outside the local POP. To provide competitive Quality of Service, the ISP projects that each ISP and POP backbone node should support 20% of change traffic.

• How does it influence the projected capacity? Do I need to bid for just-in-time resources? Can I auction some of mine?
Hierarchical Model

Edge nodes

Level-N nodes

Core
NC State Test-Bed for End-User Oriented Benchmarking of QoS for Network-Based I2 Applications
NCState.Net

- **World-class campus production network**
 - Fault-Tolerant (redundant, managed)
 - 4 Gbps backbone (plans to go to 10 Gbps)
 - 2 Gbps routing drops (fiber)
 - 1 Gbps building drops (fiber)
 - 100 Mbps floor drops (fiber)
 - 10/100 desktop (copper)
 - Nomadic computing + wireless
 - Being hardened to provide 6 to 7 9’s availability in order to support critical end-users application (e.g., VoIP)
Current NC State Production Backbone

Internet Internet2 NCNI NCREN

Remote Access Off Campus Facilities

OC48/OC3

Fault-Tolerant Nomadic Net

4 X Gigabit Enet

HLB North Campus 24 Interfaces

POE East Campus 32 Interfaces

SMDF South Campus 38 Interfaces

CMDF Cent. Campus 14 Interfaces

1 Gig

1 Gig

T1/ISDN

NCNI

NCREN

Remote Access Off Campus Facilities
Includes DiffServ and Policy-Based Routing
NC State - Alcatel Link

Video
Voice
Data

Alcatel

I2

NC State

Video
Voice
Data
• Current: multi-location distributed facility
• Future: Large centralized + distributed labs
Televator
Real-Time Stereo Projection over ATM
High Resolution Stereo and Stereo Projection
NC State WLS-Assisted Video-Access-Node Classroom

Instructor

ATM (Internet II)
MPEG-2
+ Web
+QoS

Internet

RealAudio (Video), Web

Web Lecture System

Phone Modem

Wireless

MPEG-1 or RealVideo
RealAudio

Web Lecture System

Web Lecture System
End-User QoS Probes

- Standardized EU-QoS probes in all key elements of NCState network.
- Constant/dynamic QoS reports (wrt. Benchmark metrics) transmitted to Network-Operations Center
- Matching of EU-QoS probe results with end-user SLAs and SLSs
- Corrective actions
Current NC State Production Backbone

- Internet Internet2 NCNI NCREN
- Remote Access Off Campus Facilities
- OC48/OC3
- T1/ISDN
- 4 X Gigabit Enet
- Fault-Tolerant Nomadic Net

- HLB North Campus 24 Interfaces
- POE East Campus 32 Interfaces
- SMDF South Campus 38 Interfaces
- CMDF Cent. Campus 14 Interfaces

NCSU Department of Computer Science - 59
Benchmark Probes

- **End-User Workflows**
 - E.g., Professor, University, ISP ...
 - Being constructed

- **SLA/SLS**
 - Currently Open

- **Application**

- **Middleware**

- **OS**
 - Linux, W2000, CiscoR OS

- **Com Protocols**
 - IP, TCP, UDP

- **“Wire” Infrastructure**
 - Ethernet, ATM, “light”, DiffServ