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ABSTRACT 

This study compares a stack machine, the Harris RTX 2000, a RISC machine, the Sun 4 /SPARC, and a 
CISC machine, the Sun3/M68020. An attempt is made to compare the generic features of each machine 
which are characteristic of their architectural classes as opposed to being characteristic of the individual · 
machine only. Performance is compared based on execution of the Stanford Integer Benchmark series 
(12) and on interrupt response characteristics. The data indicates that, for these benchmarks, the RTX 
stack architecture approaches or exceeds the SPARC machine performance for such measures as total 
execution cycles required, clock cycles per instruction, native MIPS, static code size, and dynamic 
instruction count. The 68020 machine is by far the slowest of the three. When scaled to account for 
disparities in process technology, the RTX 2000 is as fast as (or faster than) the SPARC in actual 
program execution time, and it has a smaller code size. 

Introduction 

Although the Stack Architecture has been criticized as a general purpose computer architecture by some 
researchers (1,2,3), some of the arguments against this approach can be countered by some equally 
compelling arguments (4,5,6,7,8). For real-time applications, especially for interrupt intensive 
applications, the stack machine has some distinctive advantages. This study compares a stack machine, the 
Harris RTX 2000(9}, a RISC m'achine, the Sun 4 /SPARC (10, 11 ), and a CISC machine, the 
Sun3/M68020(14). An attempt is made to compare the generic features of each machine which are 
characteristic of their architectural classes as opposed to being characteristic of the individual machine only. 
The only stack architecture available to us for benchmarking is a 16-bit embedded controller which is not 
suitable for executing Unix or workstation applications. Therefore, we chose to use the Stanford Integer 
benchmarks (13) instead of the more comprehensive, but unsuitable for RTX execution, SPEC benchmarks. 

Stack Computers vs. RISC vs. CISC 

Stack Machines have many RISC characteristics. Of special note are their small instruction set and their 
ability to execute an instruction in a single clock cycle. Features that are uniquely found on stack machines 
include subroutine calls and interrupt context switches which have near zero cost in terms of execution time. 
This extremely low context switching time for servicing interrupts suggests that stack machines will also be 
especially effective for real-time applications, but that issue is addressed in a followup paper (). CISC 
machines are known to have features which are directly supportive of high level languages. The same can be 
said of stack machines in that a low context switch time supports of a high level of modularity in the form of 
"cheap" subprogram calls. In addition, their static code size is extremely small due to their extensive use of 
implied addressing. This study gathers data to compare RISC, CISC, and stack machines based on their ability 
to execute this set of benchmarks. 
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Systems Used 

RTX Original 
The stack processor used is the Harris RTX 2000. It was programmed using the RTXDS, a development system 
provided by Harris for the RTX 2000. It is an IBM PC-based package which provides an interface between the 
host PC and the RTX target monitor. The RTX 2000 is a 16-bit microcontroller which operates at 10 MHz. It 
has on-chip a 256-word parameter stack and a 256-word return stack. The top two elements of the 
parameter stack and the top element of the return stack are stored hi registers .. Three on-chip 16-bit 
internal counters are decremented at each clock cycle. All instructions are executed in a single clock cycle 
except memory access instructions and long literal loads, which take two clock cycles. The RTX does not use 
cache memories, but instead uses system memory that is fast enough to guarantee single-cycle memory access. 
This includes the single-cycle 16-bit on-chip multiply instruction. The instruction set of the RTX 2000 is a 
superset of the primitives used by the Forth programming language. Thus, Forth can be used as an "assembly 
language" for the RTX. In some cases multiple Forth.primitives can be peephole optimized into a single RTX 
instruction by exploiting parallel data paths inside the chip. Parallelism in the architecture allows subroutine 
returns to be executed at the same time as other instructions. 

RTX Improved Compiler: 
The C compiler used for the RTX was a pre-release version which still had some optimization features under 
development at Harris Corporation at the time that this study was initially performed. An analysis of the code 
indicated that a substantial number of inefficient structures were used by this C compiler, and that some of 
these inefficiencies were in critical parts of the code such as in the implementation of conditional loops.· 
Specifically, the loop index was saved to, memory repeatedly instead of being kept on the stack in the CPU. 
Subsequently, additional data was gathered with an improved version of the C compiler, and as will be seen 
from data presented below, the improvement was significant. The optimization level of the RTX compiler. is 
equivalent to that of the Sun 4 Unix C compiler with level 2 optimization as described below. 

RTX Improved Instruction Set: 
The RTX was designed primarily to execute the Forth programming language. Although this language has 
excellent primitives for implementing other languages, it is not optimal for C. Some instruction set changes 
were proposed by the RTX design team and their effects were simulated in order to better evaluate the potential 
of stack architectures as opposed to evaluation of this particular stack architecture. The only proposed change 
of significant consequence was an increment/decrement by N operation for the register used as the C frame 
pointer. 

Sun4SPARC: 
The only RISC-based machine easily available for this study was the S.UN4/110, which uses a SPARC chip set. 
This machine operates at 14.28 MHz. It has separate integer and floating-point processing units which operate 
concurrently. There are separate 32-bit address and data busses. It has 128 registers divided into eight 
overlapping windows of 24 registers each, for quicker context switching. There are also eight global general­
purpose registers and 32 global floating-point registers. The instruction set consists of 50 instructions. Each 
of the instructions can be executed in a single clock cycle with the exception of loads/stores (the only 
instructions for accessing memory) and floating-point jnstructions. Instructions flow through a pipeline, and 
conditional branches are handled using a one-instruction delayed-branching technique. Unlike the RTX, the 
SPARC has an off-chip cache memory. The Sun 4 UNIX C compiler has three levels of optimization. They are: 

( 1 ) assembly level local optimization, 
( 2) level 1 plus automatic register allocation and loop-invariant code motion, and 
( 3 ) level 2 plus optimization expressions using global variables or indirect memory references. 
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Sun 3 M68020: 
Several CISC machines were available. The SUN3/160, which is also based on Motorola's 68020 was selected 
because of the system similarity to the RISC selection. The 68020 has separate 32-bit address and data 
busses. It has eight 32-bit data and eight 32-bit address registers. There are 110 instructions and 18 modes 
of addressing. Instructions are decoded in a 3-stage pipeline. The most recently accessed instructions are 
stored in an on-chip instruction cache. The cache (256 bytes) holds 64 long words and is accessed by direct 
mapping. The SUN3 operates in 16.67 MHz and uses the MC68881 floating-point coprocessor. The Sun 3 
UNIX C compiler has only one level of optimization, which is equivalent to the SUN 4 level 2 optimization. 

Benchmarks 

Since bigger benchmarks such as SPEC (13) wouldn't fit on the RTX, a 16-bit controller, the Stanford Integer 
benchmarks were chosen for this evaluation. The Stanford Integer benchmarks (12) are a set of short C 
programs, gathered by John Hennessy and modified by Peter Nye. They include no 1/0 and use no floating-point 
numbers, therefore test only the central processor and not the entire system. Although they do not provide a 
reliable indication of a system's performance when running large code, they are useful. Most real-time 
programs for the RTX-class machines tend to have small' inner loc:>ps for control operations, which corresponds 
to the structures of the Stanford benchmarks. The small code size with a large number of calls to subroutines 
is useful in evaluating real-time processors since this is the way many real-time systems are written. Also, 
no acceptable real-time embedded control benchmarks exist, or they would have been used instead. 

The individual programs are described below: 

Bubble.c: 
lntmm.c: 
Perm.c: 
Queen.c: 

. Quick.c: 
Towers.c 

Randomly generates an array of 500 integers which are then sorted using a bubble sort algorithm. 
Multiplies two 40x40 integer matrices. 
Heavily recursive permutation program. 

Solves the 8 queens problem 50 times. 
Randomly generates an array of 5000 integers which are sorted using a quick sort algorithm . 
Solves the 'Towers of Hanoi' problem using 14 disks. 

Test Facilities and Methods 

Pvnamic Instruction Coynt and lnstryctjon Mjx: 
Each C compiler used had an option to produce an assembly code listing of the source. From these, a count was 
made of the number of instructions in each basic b.lock of code for every benchmark. Also tallied were the 
frequency of instructions in the different classes of instructions. These numbers were placed in the C code as 
counter increments. Each time a block of code, either a loop or a straight line segment, was executed, the 
appropriate counters were incremented. This produced a count of the total number of instructions executed for 
all configurations and benchmarks, Table 2 and Figure 3, and the instruction mix for the RTX Original and the 
Sun 4 SPARC, Figure 1. 

Statjc Code Sjze: 
The static code size of each benchmark was obtained for the RTX Original and SPARC, Figure 1. On the two Sun 
systems, the code size was obtained by producing the assembly code, assembling this code, and using the system 
function, size(). This gave an. accurate measure, verified by physically counting assembler instructions in 
several of the programs .. The RTX code size was plotted only for the original eonfiguration, and had to be 
physically counted since its linker included many system library functions which were never called. · 
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Execution Tjme: 
Execution times were obtained in two ways. A theoretical execution time (Table I) was calculated based on 
known information about the execution times for the different instructions. The actual CPU times (Tab!~ I), 
were obtained by using the setitimer() and getitimer() functions on the Suns and the gettimer() and / 
calctime() functions on the RTX. The theoretical time is useful in this study, since it reflects only the 
performance of the CPU, and not any coprocessors or other system-dependent extras. The actual execution 
times give some credibility to the theoretical values and to the cpu time measurement of the system. These 
system measurements will be needed when observing real-time performance. 

In calculating execution times of the SUN4, it was assumed that the only instructions evaluated which required 
more than a single clock cycle to execute were load, store, mul, and div. Based on the results of experiments 
which timed multiple loads and stores to elements which should be in cache, it was determined that the best 
case load is in two clock cycles and best case store is in four cycles. The mul instruction takes 47-51 cycles, 
depending on the signs of the operands. The div instruction was estimated. to take 120 cycles, based on a count 
of the code given in the SPARC Architecture Manual (10). 

The SUN3 timing information is supplied by Motorola. Because of the unknown state of the cache and pipeline, 
exact numbers cannot be given. However, a best case (which assumes data is located in the cache and the 
pipeline is full) and a worst case (which assumes a cache miss and the pipeline is empty) can give maximum 
and minimum bounds. 

The RTX timing was the simplest since all operations, including the 16-bit multiply, execute in a single clock 
cycle except memory loads/stores and long literal loads. These exceptions have opcodes whose most significant 
four bits are in the range of OxC - OxE and execute in two cycles. 

Computational Results 

Instruction Count: 
The dynamic instruction count for each CPU system and for each benchmark is shown in Table 2, and the , 
average over all six benchmarks for each CPU system is shown in Figure 3. Although the RTX original system 
executed an average of 197% as many instructions as the SPARC machine, the RTX machine with both an 
improved compiler and an improved instruction set executed an average of only 132% as many instructions as 
the SPARC machine. The RTX was expected to execute more instructions than a RISC machine, because it too has 
a simple single-cycle instruction set, and must execute additional instructions to manipulate stack values since 
it cannot randomly access its stack as a RISC machine can randomly access its register file. It is reasonable to 
expect that further efforts can further improve the performance of stack machines. As expected, the M68020 
machine required fewer instructions than the RISC and Stack systems, although not for every benchmark. The 
difference in dynamic instruction count between this CISC machine and the RISC and stack machines is less than 
would normally be expected, possibly because this set of benchmarks and the compiler does not fully exercise 
the power of the M68020 instruction set. 

Instruction Mjx: 
As shown in Figure 1, the RTX, when compared to the Sun 4 SPARC, performs a significantly larger number of 
loads from memory and register/stack moves, and about the same number of math and logic operations. The 
high number of loads will be discussed later, but it Is attributed to the tack of registers which could hold 
frequently used variables. Instead, all variables must all be stored in memory unless the compiler can manage 
them on the stack. 

/ 
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The differences between the number of reg/stack moves and the math/logic operations may not be as significant 
as they appear on the chart. The RTX can perform FORTH operations in parallel, within a single RTX machine 
language instruction. For example, the RTX instruction 'LIT 01 AND' is classified !=J.S a stack move since it 
pushes 01 onto the top of the parameter stack. However, it also performs a logical AND operation with the 
value originally on top of the stack. This is counted as one reg/stack move instruction and zero 
arithmetic/logic operations, and occurs very frequently. This overlap in the stack moves and the math/logic 
operations categories indicate that the reg/stack moves count as charted is too high, and the arithmetic 
operations count is too low. 

Static Code Size: 
Two counts were made for the SPARC code. One count looked at code which had not been optimized by the 
compiler, while the other count was for code which had been optimized at level 2 by the compiler. The SPARC 
calls to system multiply and divide operations (mul and div) were counted separately since they are not 
performed in one clock cycle. Two counts were also made for the 68020 code, optimized and not optimized. No 
instruction mix was obtained from the 68020, since it was more difficult to break the instructions into well­
defined classes. The RTX 2000 by default does a limited amount of optimizing, combining instructions which 
can be performed in parallel into a single clock cycle. There is no option for further optimization. Therefore, 
only one count was taken for the RTX code. 

A comparison of static code size is somewhat biased, since the RTX 2000 is a 16-bit processor while the others 
are 32-bits. A comparison between the static code size and dynamic instruction count may be useful. The 
static code size of the RTX was 0.9 that of the SPARC system while the dynamic instruction count of the RTX was 
almost twice that of the SPARC. The RTX code used in this comparison was for the original configuration. Data 
for the improved compiler and instruction set have not been plotted. 

Clock Cycles per lnstructjon: 
Figure 6 shows that the RTX requires fewer clock cycles per instruction than the SPARC machine for these 
benchmarks. This can be predicted by observing that the RTX executes all instructions in a single clock cycle 
except memory accesses and long literal loads. Subroutine calls are also especially cheap on the RTX. The 
M68020 machine, as a CISC machine, takes from five to nine clock cycles per instruction for most of the 
benchmarks. 

~ ' 

Although native MIPS yield limited information about performance, it is interesting to see how these machines 
compare when native MIPS are measured. Figure 7 shows that although the SPARC has a much faster clock than 
the RTX, for most benchmarks it does not exceed the native MIPS rate of the RTX by very much. The M68020 
does not look very good when native MIPS are used for comparisons. This measure is especially biased against 
CISC machines. It is Interesting to note that even though the RTX performance improved as the compiler and 
instruction set were improved, the native MIPS rating actually went down. This is yet another indictment of 
native MIPS as a computer system comparison criterion. 

Execution Time: 
As can be seen from Figure 5, the original RTX system required more than twice as much execution time as the 
SPARC system. When both the improved compiler and the improved instruction set version of the RTX was 
used, execution time was only about sixty percent higher. The Sun3/M68020 required over three times as 
much execution time as the SPARC system. The SPARC, RTX, and M68020 were running at 14.28, 10, and 
16.67 MHz, respectively. 
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-Execution Cycles: _ 
The RTX fabrication process (2.0 micron standard cell) places it at a significant disadvantage compared to both 
the M68020 and SPARC, so it seems r_easonable to at least normalize the RTX performance to equal clock speeds 
of the other machines, and_ therefore use number of clock cycles executed to measure performance. The results 
shown in Table 2 and Figure 5 show that the RTX, especially the improved versions, requires only slightly 
more execution cycles than the SPARC. Specifica.lly, the average number of execution cycles measured over all 
benchmarks required for the RTX with improved compiler and instruction set was 113% as many as were 
required for the SPARC. The M68020 machine required 397% as many execution cycles as the- SPARC. For -
one benchmark, the integer matrix multiply, the RTX executes faster than the SPARC. This is attributed to the 
fast integer multiply which is built into the RTX. Given that the RTX was fabricated using an old process 
technology and speed-inefficient standard-cell design techniques, it. is an open question whether the RTX or the 
SPARC would be faster given comparable levels of design effort and implementation technology. 

Real-Time System Processing 
Additional evaluation of the RTX was also_ performed. The significant results were derived from the observation 
that the RTX requires only four clock cycles to perform a context switch in response to an interrupt, whereas 
the other two machines require up to hundreds of clock cycles. The RTX, and most stack machines, have a near 
zero cost for interrupt switch time, therefore can handle a much higher interrupt rate. A followup report will 
explore these observations. 

Conclusions 

The performance observations which are drawn from the _above information are: 
. 1· 

Clock cycle count, Table 2 and Figure 5, and native MIPS, Figure 7, for the RTX were similar to, but 
not quite as good as, those of the SPARC machine. Figure 5 is a technology-neutral snapshot 
comparison of the architectures. 

Static code size, Figure 2, clock cycles per instruction, Figure 6, a11d especially interrupt context 
switching time were all much better on the RTX than on the SPARC. 

Count of instructions executed, Table 2 and Figure 3, and total execution time, Table 1 and Figure 4, 
were somewhat better for the SPARC than for the RTX. 

- -

The execution speed of the RTX, when normalized for clock speed, was surprisingly close to the SPARC RISC 
chip, and well above the performance range of the CISC machine. Preliminary investigations indicate that the. 
RTX has superior eontext switching times and interrupt response. This leads to a speculation that the RTX may 
be superior to the SPARC for its intended application area of real-time embedded control. A future publication 
will investigate this issue more thoroughly. 
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RTX SPARC M68020 
(10 MHz) (14.28 MHz) (16.7 MHz) 

0 .88/0. 76 0.21/0.22 (0.69 - 1.42)/0.64 
0.47/0.47 0 .25/0 .42 (0.61 - 1.17)/0.94 
0.43/0.44 0.14/0.15 (0.36 0.93)/0.72 
0.29/0.34 0.10/0.12 (0.27 - 0.61 )/0.50 
0.39/0.41 0.16/0 .19 (0.35 - 0.74)/0.56 
0.52/0.52 0.18/0.25 (0.53 - 1.06)/1.00 

1. Theoretical/ Actual Execution Time 
{Sec) 

RTX RTX RTX SPARC 
Original 
Compiler 

Improved 
Instr.Set 

Im prov 

Clock Freq 10 MHz 10 MHz 10 MHz 14.28 MHz 

total instr 
bubble 6373189 4235553 3354824 2011322 
intmm 3448232 2675950 2456426 3040957 
perm 2988694 2663996 2090781 1211872 
queen 2118566 1503708 1438208 864054 
quick 2805376 2608537 2122637 2086459 
towers 3610429 3004180 2415018 1808020 

clock eye 
7600000 6300000 5400000 3141600 bubble 

int mm 4700000 3700000 3500000 5997600 
perm 4400000 3700000 2900000 2142000 
queen 2900000 2300000 2200000 1713600 
ciuick 4100000 3600000 3100000 2713200 
towers 5200000 4500000 3700000 3570000 
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Figure 1. Instruction Mix 

M68020 

16.7 MHz 

2295079 
2127280 
1856092 
1021059 
1191378 
1875104 

10688000 
15698000 
12024000 

8350000 
9352000 

16700000 

Table 2. 8~n~mic lnsSruc~ond ~ount. arw T~al ~lock c es for tan or nteger enc mar s 
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