

TABLE OF CONTENTS

Page 3 - Hard-Wired Forth: Harris's RTX-2000 (Embedded Systems Programming, February 1989).

Page 13 -A New Breed of Microcontroller (Embedded Systems Programming, March 1989).

Page 15 - Three RTX Development Systems (Embedded Systems Programming, August 1989).

m HARRIS

Page 2

Reprinted from Embedded Systems
Programming, · February 1989. Miller
Freeman Publications. All rights
reserved.

C
is fashionable these days,
but for some real-time
tasks Forth could be a
better choice. In fact, ru
mor has it that a number

of programmers actually write C code
during the day and then rewrite the
functions in Forth at night. The manag
ers think the code is in C, but the pro
grammers can get the application work
ing much more easily using Forth.

With the advent of Forth-based mi
crocontrollers, programmers no longer
need to delude management in such a
devious manner. The R TX microcon
troller family, now available in produc
tion quantities from Harris Semicon
ductor, uses a subset of Forth instruc
tions as op codes. Because there's no
intermediate assembly language be
tween the high-level constructs and the
final machine code, the Forth instruc
tions written by the programmer have
direct and predictable machine-code
equivalences.

Not only does this simplify the con
struction of efficient real-time routines,
but once it's decided that the R TX real
ly is the best choice for an application,
the programmer is free to write the ap
plication code in Forth.

The processor itself can be custom
ized in hardware for a wide range of
specific application requirements. Ad
ditional ALUs, multipliers, registers,
and stacks can be added right inside the
microcontroller's main data paths.

Alternatively, on-chip stacks could
be extended or a cache or UART added;
D/ A and A/D interfaces could even be
added on-chip, although the analog cir
cuitry would make the chip somewhat
more difficult to manufacture.

BY ERNEST L. MEYER

EMBEDDED SYSTEMS PROG.RAMMING • FEBRUARY 1989

-

Page 3

•

Page 4

Harris

Semiconductor's
family of RTX

microcontrollars uses
a subset of Forth
instructions as
op codas. There's no
intermediate
assembly language,
so Forth instructions
written by the
programmer have
direct and predictable
machine-coda
equivalences.

EMBEDDED SYSTEMS PROGRAMMING • FEBRUARY 1989

Hard-Wired
Forth
FORTH-BASED HARDWARE
ARCHITECTURE

I
n the abstract, a chip with a subset
of Forth instructions as op codes
has a number of advantages for

real-time embedded applications. For
example, think of the benefits Forth of
fers for real-time tasks. It's fully reen
trant. Direct control of the data and in
struction stacks allows more intimate
contact with branches, conditional
loops, and interrupt functions than oth
er languages usually offer. And reverse
Polish notation, because it more closely
represents the actual activity of the pro
cessor, allows the designer to think more
clearly about what's happening than do
the "easier" code- and data-ordering
mechanisms used by other high-level
languages.

On the other hand, no chip will ever
reach the ideal, however close it man
ages to approach it. A chip that uses
Forth instructions as op codes is bound
to have some drawbacks. Most obvious
ly, it's not the ideal choice for other high
level languages. With a more generic
architecture, it's certainly possible to
use different high-level languages for
different applications and still use the
same chip. Although cross-compilers
will no doubt become available for the
Forth chip at some stage, the chip is un
likely to offer the same level of perfor
mance with other high-level languages
as it does with Forth.

IRRESISTIBLE FEATURES

A
ta pragmatic level, the 16-bit
R TX microprocessor is not
cheap, with a unit cost of $190

in 1,000-piece quantities and a price tag
of $3,000 for the complete development
system (not including the host com
puter). And the clock speed, at . 10
MHz, is comparatively low.

Other manufacturers offer 16-bit
microcontrollers with similar clock
speeds at a substantially lower cost.

Higher-speed microcontrollers are also
available at a debatably lower cost. And
Forth compilers can be used for the
more generic microprocessor hardware.
Even if the compiled Forth code uses
twice as many clock cycles on a generic
25-MHz microcontroller as would the
same application on the 10-MHz RTX
microcontroller, the final system still
works faster with a generic processor
running at a significantly higher clock
speed.

The R TX microcontroller does off er
four advantages over generic microcon
trollers-predictability, code language
uniformity, lower system speed, and po
tential customization-that can offset
the disadvantages.

First, because high-level instructions
with direct machine-code correspon
dences are used, it's much easier for the
code developer to determine how long a
task will take. This is particularly im
portant in real-time applications, where
operations must be completed within
strict time slots.

Second, the developer can use the
same language for critical functions as
for the rest of the code. Since applica
tions tend to use 10% of the code 90% of
the time, the critical sections are usual
ly hand-coded in assembler. If the ma
chine code is simply a subset of the high
level code, however, there's no need to

EMBEDDED SYSTEMS PROGRAMMING • FEBRUARY 1989

The RTX offers
several advantages
over generic
microcontrollers
predictabil ity, code
language uniformity,
lower system
speed, and potential
customization
that can off set
the disadvantages
of high cost and
reduced
performance when
used with other high
level languages.

Page 5

link routines in different languages.
Writing all the code in Forth also sim-
plifies debugging.

Unfortunately, these advantages
mean very little to hardware designers.
Luckily, two other benefits offered by
the RTX methodology should sway
them. First, the use ofa 10-MHz rather
than 25-MHz microcontroller results in
lower system speed, so the other chips in
the system don't need to run at ultra-
high speeds. And since cache memories
aren't necessary at 10 MHz, system
cost is lower.

Lower-speed components also sim-
plify board design. Even CMOS be-
comes difficult to handle at speeds over
20 MHz, when transmission line effects
can ~ause erroneous device triggering
and corners in the wire traces can cause
signal reflections. The hardware de-
signer will therefore prefer a lower-
speed processor from the standpoints of
board design effort and overall system
cost, ev.en if the processor itself is more
expensive.

A second advantage for hardware
designers is that the structure of the
R TX chip permits them to customize
hardware for particular requirements
by adding functional units to the micro-
controller core. The functions can then
be accessed directly by the software as
an integral part of the microcontroller.

Figure 1 is a high-level diagram of
the chip core. The user can hang addi-
tional functional units on the ASIC bus
(visible on the right side of the figure). If
speed isn't a critical issue, functional
units can be hung on the ASIC bus off-

Figure 1
High-level
diagram of RTX
microcontroller
core.

Page 6

:a
Q

~
~
"' ~
c:

i

~

'P

~
~
"'
"' Q
L.J

Cl> ...

IUH Register

lilJLR Register

NEXT Register

255-Word-
Deep Stack Stack Pointer

Scratchpad Register

Interrupt Vector ~ ~
Interrupt Base

Data Page Register

Code Page Register

User Page Register

User Page Register

Index Base Re ister

Instruction Register

Index Register ... II!

.s = ~
255-Word i§~

Return Stack Stack Pointer

... ~
U ~I
-t;~
!tJ ... i

EMBEDDED SYSTEMS PROGRAMMING • FEBRUARY 1989

Hard-Wired
Forth
chip. Up to eight devices can be directly
addressed on the ASIC bus via address
lines AO-A2. A full bidirectional 16-bit
data bus is then available between the
additional functional units on the ASIC
bus and the microcontroller core.

If speed is a paramount issue and
cost isn't a severe limitation, the addi
tional resources can be placed on-chip.
Although this raises chip cost substan
tially, the added peripheral function
ality works about an order of magnitude
faster. System cost may also be lower
due to the higher degree of functional
integration, which decreases the neces
sary PCB real estate for the system and
increases system reliability.

Of course, a similar hardware cus
tomization approach is available from
other vendors. Two examples are the
HPC core from National Semiconduc
tor and the superintegrated products
from Zilog. The register-based struc
ture of Forth nevertheless yields a some
what higher ratio of performance im
provement with RTX customization
than with most other processor archi
tectures, where added functionality on
chip can't be treated as simply an inte
gral part of the processor itself.

WHY IS THE HARDWARE
THE WAY IT IS?

L
et's take a closer look at the
R TX architecture shown in
Figure 1. The chip revolves

around registers and stacks; there's no
cache, and pipelines are minimized.

Instructions that don't go off-chip
are either register-to-stack or stack-to
register. All such on-chip operations,
with the exception of complete multi
plies, take a single clock cycle (100
nsec). Operations that manipulate off
chip data and hardware resources take
two clock cycles.

Virtually all the registers, buses, and
stack words on the chip are a full 16 bits
long. There are two stacks in the chip

If speed is a
paramount issue and
cost is not a severe
limitation, resources
can be placed on
chip. Although this
raises chip cost
substantially, the
added peripheral
functionality works
about an order of
magnitude faster.
System cost may also
be lower due to the
higher degree of
functional
integration.

hardware, both of which are 255 words
deep. The stack limit and stack pointer,
both eight-bit values that indicate stack
status, are available in separate regis
ters. Since the stack limit register is
writable, stack depth can be expanded
beyond 255 words in off-chip memory.
The top two items on.the data stack, TOP
and NEXT, are addressable as registers.
The single top item on the address stack,
INDEX, is also addressable as a register.

The ALU, at the top of the figure,
always stores its results in the TOP regis
ter. When there are consecutive ALU
operations, TOP is pushed into NEXT. After
any ALU operation, TOP can be trans
ferred to any register except the multi
plier. The ALU can perform adds, sub
tracts, shifts, and Boolean operations; a
version of the R TX microcontroller
with an enhanced ALU that supports
additional single-cycle operations, such
as ROT ATE, is in the works.

EMBEDDED SYSTEMS PROGRAMMING • FEBRUARY 1989

Data is always shifted on- and off
chip through the NEXT register. Not
shown in the figure is the SWAP unit,
which can swap the first and second
bytes in the NEXT register at any time
without cycle overhead. As a result, the
chip can be used with both "big endian"
and "little endian" memory architec
tures, permitting compatibility with
both Motorola- and Intel-like memory
addressing schemes.

Multiplies and divides can be per
formed by loading the two multipli
cands sequentially into the multiplier
unit from the NEXT register. The least sig
nificant byte of the 32-bit result is read
able from the MULH register in the next
clock cycle. The upper eight bits of the
result can then be read in the subse
quent clock cycle by pushing the con
tents of MULR into TOP. (The old contents
of TOP, the eight MSBs of the result, are
automatically pushed into NEXT.) Two
scratchpad registers are available for
storing intermediate values in divide
and negative-exponent calculations.

The chip also contains three counters
that can function in various modes. The
counters can be read independently into
TOP and can generate a separate mask
able interrupt. Interrupts from each
counter shift program control to an in
terrupt routine pointed to by separate
interrupt vectors. The vector for the
current interrupt level is readable in the
interrupt vector register; it can be
changed by writing to that register. Be
cause interrupt vectors are offsets from
the address stored in the interrupt base
register, counter interrupts can have
different effects at different program
levels (ensuring a reentrant program). ·

The five page registers expand the
addressable memory space to 1 Mbyte.
Four of the 16 non overlapping pages are
directly addressable at any one time for
code, data, user, and interrupt base ad
dresses. A five-bit index base register
contains the five MSBs of the index reg
ister address, expanding the address
able return stack space to 21 bits.

The instruction address is stored in
the program counter. The instruction is
then loaded into the instruction register,
executed, and decoded. If no branches
or loops intervene, the address is incre
mented and stored in the program
counter. Loop counts and branches can
be stored in the return stack; when a

Page 7

Hard-Wired
Forth
loop is executing, the index register
automatically decrements the remain
ing loop count. Eight-bit stack limit and
stack pointer registers are also available
for the return stack.

MAXIMIZING CODE PERFORMANCE

T
he architecture of the R TX mi
crocontroller is designed to al
low the execution of as many

instructions as possible in one clock cy
cle. Unfortunately, it's not always possi
ble to complete all the instructions with
in the 100-nsec duration of one clock
cycle. In fact, there are three kinds of
long instructions: off-chip reads and
writes, ALU-dependent instructions,
and multiply operations. The chip's in-

Figure 2
Each state bubble
takes 112 clock
cycle to execute.

PageB

Latch instruction
into instruction

register and decode

OFF-CHIP
DATA ACCESS

The architecture of
the RTX
microcontroller is
designed to allow the
execution of as many
instructions as
possible in one clock
cycle. By
understanding how
to use this internal
parallelism, you can
write highly efficient
code.

ternal hardware is organized to permit
parallel instruction execution ii) these
cases. By understanding how to use the
chip's internal parallelism, you can
write highly efficient code.

Figure 2 is a state diagram for the
chip's instruction execution sequence.
Each 100-nsec clock cycle is divided
into two 50-nsec machine cycles sepa
rated by the rising and falling edges of
the clock pulse. Only one off-chip data
access (instruction fetch, data read, or
data write) can take place in each cycle.

Instruction decoding always takes
half a clock cycle, and nothing else can
happen at the same time. At the left of
the state diagram is one instruction de
code operation. If the instruction that's
decoded in the first half of the clock cy
cle doesn't require an off-chip data read
or write operation and isn't a multiply
operation, it can probably be completed
in the second half of the cycle. At the
same time, the next instruction can be
fetched from off-chip and be ready for
decoding in the next clock cycle.

It's clear that the chip does in fact
have a two-stage pipeline for instruction

EMBEDDED SYSTEMS PROGRAMMING • FEBRUARY 1989

Hard-Wired
Forth
prefetch, despite company literature
that claims otherwise. Since the pipe is
no more than a clock cycle in length,
however, the impact of this pipeline isn't
as great as that of the seven-stage pipe
lines found in some of the more complex
CISCcores.

ON- AND OFF-CHIP OPERATIONS

S
ince instructions can be fetched
and executed at the same time,
at least two parallel operations

can be executed in one clock cycle. In
deed, because there are four buses in
side the chip, it's possible to have up to
four instructions working in parallel.
Data can move on all four buses
simultaneously.

As mentioned earlier, on-chip opera
tions are either stack-to-register or reg
ister-to-stack. Because there are two
stacks, a write to one stack can occur in
parallel with a read to the other stack.
Two off-chip data buses-the main
data bus and the ASIC bus-make it
possible to move data to or from the two
stacks and on- or off-chip, all at the
same time.

For example, it's possible to concur
rently fetch a data item from a peripher
al on the ASIC bus, push it onto the data
stack, force a subroutine return (which
pops a return address into the program
counter), and fetch the next instruction.
(These instructions are actually execut
ed in parallel by the Forth word 8 G@ : •)

This leads to the first rule of R TX
programming: try to alternate use of the
two stacks and two data buses to ensure
the highest possible level of task concur
rency. The direct correspondence of
instructions to the actual machine code
used by the R TX microcontroller
makes it relatively easy to improve task
concurrency in the time-critical regions
of an application.

We can see that many internal
instructions are highly "paralleliza ble."
There are, however, limitations to the

There are two rules
in RTX programming:
try to alternate
use of the stacks
and data buses
to ensure the
highest possible
level of task
concurrency,
and only fetch data
when it's going to be
processed
immediately by
the ALU.

EMBEDDED SYSTEMS PROGRAMMING • FEBRUARY 1989

degree of parallelism that can be at
tained. For example, remember how an
instruction fetch and a memory read or
write can't occur in the same clock cy
cle? Because of this, if the instruction
involves a memory read or write, then
the total execution time will be two
clock cycles. However, the next instruc
tion can be fetched during the second
clock cycle, during which the fetched
data can be processed (as shown in Fig
ure 2).

This leads to a second rule: only fetch
data when it's going to be processed im
mediately by the ALU. Just fetching
data and flinging it onto the stack for
future use wastes hardware parallelism.
It's best to keep a static variable out of
the stack until it's needed for some
arithmetical manipulation by the next
immediate instruction. That way, use of
the instruction prefetch pipeline is
maximized.

MULTIPLIES

M
ultiplies are special cases
that don't obey these generic
rules. The company litera

ture states that the chip takes one clock
cycle to perform a multiply. This is true,
but additional clock cycles are needed

Page9

Hard-Wired
Forth
to load the multiplier and read the
results.

To perform a multiply, the program
mer loads the two multiplicands into the
MULH and MULR registers from the NEXT reg
ister. The eight LSBs of the result can
then be transferred into TOP in the next
cycle by the instruction READML. As noted
earlier, the eight LSBs are pushed into
NEXT and the eight MSBs are pushed into
TOP in the following clock cycle. This can
be accomplished using the instruction
READMH.

A full multiply therefore takes four
clock cycles if the multiplicands are al
ready r~sident on-chip. If one multipli
cand is fetched from off-chip, a full
multiply takes five clock cycles. If both
multiplicands are fetched from off
chip, a full multiply takes six clock cy
cles. If one of the multiplicands is al
ready resident in the multiplier reg
isters and the other multiplicand is
resident in a scratch register or stack on
chip, the multiply can be completed in
three clock cycles.

This disparity in multiplier perfor
mance between operations for on-chip
and off-chip data is especially impor
tant when using a data item from main
memory as one multiplicand and on
chip data as the other. It makes sense to
load the on-chip multiplicand into the
multiplier first. The multiply operation
can then be carried out in the next clock
cycle rather than waiting for the next
instruction to load the multiplier with
the on-chip multiplicand (a practice
that degrades on-chip parallelism).

CODE DEVELOPMENT SUPPORT

H
arris supplies a development
system for the R TX called the
RTXDS, which runs on an

XT, AT, or compatible and a develop
ment board. The system has a real-time
symbolic monitor for debugging, a dis
assembler, a DOS file interface utility, a
Forth-83 compiler for the 8086/286,

Page 10

Harris' development
system for the
RTX includes
a real-time
symbolic monitor

for debugging,

a disass~mbler,
a DOS file
interface utility,
a Forth-83
compiler for the
8086/286,and
an RTX
cross-compiler.

and an R TX cross-compiler. Code is
written in the 80xx environment and
cross-compiled onto the R TX board.

Code development is enhanced by
the availability of function libraries.
The development system includes a li
brary of words for basic 1/0 manipula
tion; a library of Forth words for com
plex arithmetic functions, including
transcendentals, should be available by
press time. Harris is also preparing a
library of advanced functions, such as
vector and Fourier transforms, that
should be available over the next year.

Debugging Forth code using the
RTX processor differs from using age
neric processor in that the RTX con
tains no trace or single-step utilities.
However, since all the internal registers
are static, you can stop program execu
tion at any time and examine the con
tents of the registers by setting a break
point with the RTX monitor. During
debugging, the monitor can be used for
examining ~nd changing target mem
ory locations, registers, and 1/0 ports.
Forth names are automatically inserted
by the monitor in place of numeric
memory locations.

The development board features 32
kbytes of high-speed static RAM that
can be used with the chip for real-time
code execution. System control resides
in 16 kbytes of EPROM; there are two
sockets for 16-kbyte EPROMs as well
as a breadboarding area and facilities
for adding 1/0 ports for test purposes.
This permits the addition of physical
memory maps, wait state generation
circuitry, and 1/0 functions that fully
emulate the target hardware.

USING THE RTX MICROCONTROLLER

R
TX microcontrollers are being
used for medical image scan
ning, to control robotic arms in

cannery lines, and in aerospace applica
tions. In fact, they can perform virtually
any high-performance real-time task.
R TX microcontrollers are particularly
effective for tasks that have a high de
gree of context switching and where
pre<;iictability is a foremost issue.

Listing 1 illustrates the use of the
R TX microcontroller for real-time
tasks. The code allows the R TX to func
tion as a UART without any additional
hardware and takes up less than 1 % of
the available microcontroller run time.

EMBEDDED SYSTEMS PROGRAMMING • FEBRUARY 1989

Hard-Wired
Forth
It treats one of the ASIC bus locations
as a UART running at a user-settable
speed. This example illustrates the pow
er of the RTX microcontroller without
added hardware. (Although the code
does use up all the on-chip timer re
sources, it can be restructured to use
only one timer.)

Full UART functionality can also
be achieved by adding a UART onto
the ASIC bus. The hardware UART
can then be run with the minute code
portion shown in Listing 2. As you can
see, the necessary code is minimal.

Listing 1
A UART function can be embedded in
software while using only 1% of the
processor's available time.
\Set timer 1 interrupt interval .

: SETBRG

VALUE TIMER 1 G !

16 VALUE • 1BIT ! '
\UART RECEPTION

\
\Sample incoming data 16 times per bit .

:TIMEILUNT

UART G@

0001 AND IF NODATA ELSE CHECUTARLl!IT

THEN

\ tells us there · s no start bit

:NODATA

0 2NDTIME !

\Wait before interrupting again .

: WAIT1

1BIT TIMER2 G !

: CHECUTARLBIT

2NDTIME @ IF GETCHAR ELSE

\ There · s a start bit-enable interrupt .

\set a flag . and' check 1/2 cycle later

\ to recheck start bit .

FFFF 2NDTIME G !

1BIT 2/TIMER1 G !

THEN

\Fetch character from UART register and

EMBEDDED SYSTEMS PROGRAMMING • FEBRUARY 1989

\shift left : merge data into receive register .

:GETCHAR

UART G@

COUNT @

OF(2•

RXCHAR @ OR RXCHAR !

COUNT @ 1 +

DUP COUNT !

8- IF ENDCHAR

ELSE WAIT2

\Set timer 2 interrupt interval .

:WAIT2

1BIT TIMER2 G@

\Finish up the character .

\Disable interrupt until new character

\is detected .

Page 11

: ENOCHAR

0 COUNT 1

FFDF INTMASK G !
\
\UART TRANSMISSION
\
\Prepare a word for transmission

\by adding stop bi ts . then check CTS bit .

: TRANSWORD

2•1+2•1•+

TWORD !

UART Gtt

0040 ANO IF NOT CLEAR ELSE TRANSMIT

THEN

\Transmit a word from the top of the stack .

: TRANSMIT

0 UART GI

FFFF INTMASK G !

1BIT WAITJ

0 TCOUNT I

\ transmitting individual characters

Page 12

: TRANSMIT-INT

TWORD ~ OUP

UART G!

2 • TWORD !

TCOUNT ~ 1 + 9 .,

IF DISABLE ELSE WAITJ

Listing 2
Running a arscrete UART in on-chip or
on-chip hardware takes far less code.
\ Initialize and clear data port .

: INIT

PARAM1 UCMD G !

PARAM2 UCMO G!

uom G(ll DROP

\Read status port .

:(asmus (--nJ

UCMD G(A

\Poll for and read character .

:RECEIVE (--n)

BEGIN (aSTATUS RRDY AND UNTIL

uom G(a 007F AND

\Transmit when ready .

: TRANSMIT

BEGIN (aSTATUS TXRDY AND UNTIL

UDATA G!

However, since the software-based
UART uses only I% of the processor's
total run time and the code is fully reen
trant, it may be less sensible to embed
the UART in hardware. And the soft
ware UART only uses about 200 bytes
of EPROM space.

Ernest Meyer, an independent techni
cal writer and former editor of VLSI
Systems Design, is also a contributing
editor and columnist for Embedded
Systems Programming.

EMBEDDED SYSTEMS PROGRAMMING • FEBRUARY 1989

I

•WHEN IN ROM

by Ray Duncan
Programming, March 1989. Miller
Freeman Publications. All rights
reserved.

A New Breed of Microcontroller
I f you're one of the lucky program

mers who received the premiere is
sue of Embedded Systems Prrr

gramming, you could hardly have
missed the four-page color advertise
ment by Harris Semiconductor for
something called the Real Time Ex
press family of microcontrollers. This
advertisement made some impressive
claims for speed, interrupt response
times, and power consumption of the
RTX-2000, in particular, but gave few
clues--0ther than the enigmatic phrase
"innovative dual-stack architecture"
as to how such impressive numbers were
achieved or what the RTX-2000's rela
tionship to other, more familiar micro
controllers might be.

The RTX-2000 bears little resem
blance to any processor you're likely to
be familiar with (unless you're grizzled
enough to have worked on Burroughs
mainframes). It's a member of that rare
species: the stack machine. Regardless
of your current affiliation with one pro
cessor school of thought or another
(RISC or CISC, Intel or Motorola, and
so on), the Harris chip is worth a closer
look. It represents a radical divergence
from the conventional wisdom on how
to wring more computing power and
shorter development cycles out of the
hardware/software duo.

Of course, almost any CPU will sup
port a stack these days, but a conven
tional CPU's only real need for a stack is
to save return addresses and register
contents during execution of a subrou
tine or interrupt handler. The stack
typically doesn't participate in arith
metic/logical operations; operands for
such instructions are taken from regis
ters or memory, and the results are re
turned to registers or memory. Al
though some high-level languages, such
as C, also use the stack for parameter
passing, this is only a convention; stack
usage may vary drastically from one
compiler to another.

What's unusual

about the Harris

chip? For starters,

the RTX-2000

is not a classic Von

Newmann machine.

Another novel

aspect is its

use of a sort of

horizontal

microcoding

scheme.

In a true stack machine, the stack is
the center of the action rather than an
auxiliary area of storage. Operands for
arithmetic/logical operations are al
ways taken from the stack, and results
are returned to the stack. (If you've ever
programmed an Intel 80x87 numeric
coprocessor or used an HP calculator,
you're already familiar with this con
cept.) Such machines typically have
few or no registers in the traditional
sense-that is, registers used as accu
mulators or indexes-although special
purpose registers to control I/O and to
point to the base of the stack and the
current instruction are still needed.

The R TX-2000 actually carries the
stack-machine concept a bit further by
supporting two hardware stacks, the pa
rameter and the return. The parameter
stack is used for the operands and re-

EMBEDDED SYSTEMS PROGRAMMING • MARCH 1989

sults of arithmetic/logical operations,
as already described. It's also the source
or destination of any instruction that
accesses main memory. That is, a value
in main memory must be loaded onto
the parameter stack before it can be
manipulated, and a value can only be
written into main memory from the top
of the parameter stack. The return
stack holds loop counters and return ad
dresses during execution of subroutines
and occasionally provides temporary
storage for other data.

What else is unusual about the Har
ris chip? For starters, the RTX-2000 is
not a classic Von Neumann machine. It
has three distinct address spaces: main
memory, which can hold either code or
data, and the two stacks, each of which
is 256 words deep and has its own ad
dress and data buses. The stacks can't
be positioned at arbitrary addresses in
main memory as they can in conven
tional CPUs, and arbitrary stack loca
tions can't be accessed with memory
fetch and store instructions. This idio
syncrasy has interesting implications
that you can appreciate only after you
begin to code for such a CPU and dis
cover that your faithful old program
ming idioms (or cliches) no longer
work!

Another novel aspect of the R TX-
2000, at least in the microcontroller
world, is its use of a sort of horizontal
microcoding scheme. The chip has five
internal buses that carry data between
the tops of the two stacks, the instruc
tion pointer, the ALU, the multiplier,
the shifter, and so on. These buses are
controlled by separate bit fields in the
op codes for arithmetic/logical instruc
tions. Consequently, it's often possible
to merge two operations into the same
instruction and thus into the same ma
chine cycle. For example, you can dupli
cate the number on top of the parameter
stack and then divide the new top of the
stack by two.

Page 13

WHEN IN ROM

This horizontal microcoding also al
lows the Harris chip to have a one-cycle
overhead for invocation of a subroutine.
This might sound like preposterous
marketing hype, but it turns out to be on
the level. The call kJ a subroutine is, of
course, a distinct machine instruction
and requires a complete machine cycle,
but the return from the subroutine
comes for free. How is this possible? All
machine instructions--other than the
call instruction itself--contain a re
served "return" bit field. If the bit is
clear, the instruction pointer is incre
mented during execution of the op code
in the normal manner. If the bit is set,
the return stack is popped into the in
struction pointer in parallel with what
ever else the instruction is supposed to
be doing, at no additional cost in execu
tion time. Thus, the return from any
subroutine can simply be folded into the
last instruction of that subroutine.

By this point, those of you who know
something about Forth are probably
thinking that this description of the
Harris chip has a familiar ring to it.
That's not too surprising, since the lin
eage of the R TX-2000 can be traced
directly to Charles Moore, who invent
ed the Forth programming language in
the late 1960s. Moore was one of the
founders of FORTH Inc., the flagship
software house for Forth development
tools and applications. As Forth ma
tured and stabilized, however, his inter
ests turned to hardware and he became
increasingly dissatisfied with the mis
match between the Forth virtual ma
chine and the architecture of conven
tional CPUs.

In 1980, Moore left FORTH Inc.
and began to devote most of his time to
experimentation with dual-stack ma
chines. His efforts led to the formation
in 1984 of a Silicon Valley start-up
called Novix Inc. (funded by Sysorex

Page 14

The most amazing

part of this whole

history is the open

mindedness of

Harris

Semiconductor

while most of its

competitors rush

headlong into RISC

technology.

International) and the design of a new
processor called the N C4000 by Moore
and Bob Murphy. The first working
NC4000 chips, fabricated by Mostek
using a three-micron HCMOS process
and packaged in a 128-pin grid array,
were delivered to Novix in March 1985.
The chips turned out to be buggy but
usable, which was fortunate since No
vix was undercapitalized and overex
tended almost from the outset and never
revised the NC4000 mask to eliminate
some severe problems with interrupt
handling and step-wise multiplication.
Novix did manage to sell over a thou
sand chips before it faded into obscurity.

By a strange quirk of fate, the Novix
chip caught the attention of some engi
neers in the CAD/ CAM division of
Harris, who hoped to use it as a high
speed number-crunching coprocessor in
graphics applications. After looking
more closely at the chip's capabilities,
Harris decided to license the N C4000
design, fix the bugs, add some new ca
pabilities, and incorporate the CPU

into its standard cell library. Thus, a
modified form of the N ovix CPU, to
gether with some timers, on-board
high-speed stack memory, and a 16-by-
16 multiplier, constitutes the heart of
the Harris R TX-2000 microcontroller
as we know it today. In retrospect, the
most amazing part of this whole history
is the remarkable open-mindedness of
Harris Semiconductor when most of its
competitors are rushing headlong into
RISC technology.

The Forth ancestry of the R TX-
2000 doesn't mean that it can only be
programmed in Forth, however; quite
the contrary. Recursive descent compil
ers for just about any modern, block
structured language generate Forth
like, postfix intermediate code at some
point during translation from source
code to object code, making the chip an
excellent target for such compilers.
Harris is beta testing a C compiler for
the RTX-2000 that should be officially
released by the time you read this; a
PRO LOG compiler is also under devel
opment. In fact, it seems safe to predict
that the only kind of translator you'll
never find offered for the Harris chip is
an assembler. That's because Forth is,
in a sense, the RTX-2000's assembler
language-all of the chip's machine
instructions map directly onto Forth
language elements.

Ray Duncan has written columns for
Dr. Dobb's Journal, Softalk/PC, and
PC Magazine. He's the author of Ad
vanced MS-DOS Programming (Red
mond, Wash.: Microsoft Press, 1986)
and Advanced OS/2 (Microsoft Press,
1989). He owns Laboratory Microsys
tems Inc. (Marina de/ Rey, Calif.), a
software house specializing in Forth in
terpreters and compilers.

EMBEDDED SYSTEMS PROGRAMMING • MARCH 1989

Reprinted from Embedded Systems
Programming, August 1989. Miller
Freeman Publications. All rights
reserved.

•PRODUCT EVALUATION

by Tyler Sperry

Three R TX Development Systems
W hen Harris Semiconductor

launched its "Real-Time Ex
press" campaign last year

and unveiled the R TX 2000 processor,
it was greeted with mixed reactions
from developers. Almost everyone was
intrigued by Harris's claim that it had
the world's fastest 16-bit microcon
troller; an average of 15 MIPS from a
10-MHz clock isn't easily ignored.
Those unfamiliar with the chip's gen
esis, though, were a trifle confused by
the dual-stack architecture and the
chip's "near-RISC" description. Devel
opers in the Forth community, on the
other hand, were much more enthusias
tic, as it was clear the processor had
been specifically designed to run Forth.
But for both groups, the response imme
diately following the introduction was
simple: "Sure it's fast, but what devel
opment tools are available?"

A few months back I asked that
same question and quickly wound up
evaluating three different development
systems for the R TX 2000: the SC/
FOX SBC from Silicon Composers, the
Harris RTXDS, and the Innovative In
tegration FB2000. The review scenario
was the same for all the systems; the
goal was to develop an R TX-based solu
tion to a har~ware design involving real
time constraints. To even things out, all
the systems were to use an IBM PC as
the host and communicate via an RS-
232 serial link. While all three systems
demonstrated admirable hardware per
formance, their design rationales and
software support varied substantially.

THE RTX BASICS
It's no surprise that all these develop
ment systems use the stock R TX 2000
processor. The R TX 2000 has been dis
cussed before in this magazine (see
"Hard-Wired Forth," Feb. 1989, pp.
58-71, and "AN ew Breed of Microcon
troller," When in ROM, Mar. 1989, pp.
15-18), so I won't go into the processor's

Almost everyone

was intrigued by

Harris's claim that

it had the world's

fastest 16-bit

microcontroller.

But then they said,

"Sure it's fast, but

what development

tools are

available?"

design here; suffice to say that the RTX
2000 is a 16-bit RISClike processor de
signed to implement Forth primitives in
its instruction set. Almost all instruc
tions execute in a single cycle, and the
processor doesn't have a cache. All the
systems I examined were available with
a clock rate of either 8 or 10 MHz; all
the processor boards used high-speed
CMOS static RAMs and EPROMs.

One RISClike aspect of the R TX
processor is its lack of microcode: all the
bits of an instruction actually toggle
transistors and perform operations. Un
like most RISC processors, however,
the R TX has several internal buses that
connect the various registers to the two
internal stacks and the outside world.
The multiple-bus arrangement actually
allows the programmer (or, more pre
cisely, the compiler) to overlap several
instructions into one word. All three of
the development systems I examined
support this optimization of code.

EMBEDDED SYSTEMS PROGRAMMING • AUGUST 1989

fflallable From: Silicon Composers Inc.,
21 O California Ave., Ste. K, Palo
Alto, Calif. 94306, (415) 322-8763
Price: $1,495 (includes software de
velopment system)
Support: Free telephone support, 90-
day warranty, contract services
System Requirements: Serial cable, ter
minal, five-volt power supply

FOR INFORMATION CIRCLE #101

SC/FOX SBC
Silicon Composers was a solid support
er of the N ovix Forth processor (the
chip that served as the original model
for the R TX development team), so it's
no surprise that it also supports the Har
ris chip. The company is probably best
known for its coprocessor PC cards, but
it also provides stand-alone develop
ment cards. Third-party Forth pack
ages are available for all the cards from
Forth Inc. (Manhattan Beach, Calif.)
and Laboratory Microsystems Inc.
(Los Angeles, Calif.).

The SBC is a small (100 mm by 160
mm) board that contains the RTX pro
cessor, EPROMs, CMOS static RAM,
expansion connectors, and miscella
neous "glue" parts. The board is avail
able in a number of memory configura
tions ranging from 64 kbytes to 512
kbytes, and the bus connectors give you

Page 15

full access to the ASIC bus for hard
ware expansion. If judged solely on
clean design and hardware functional
ity, this system would be the winner.
Unfortunately, there's a lot more· to a
development system than just the
hardware.

ON THE SOFT SIDE
While the software is adequate for de
veloping applications, it's Spartan in
comparison with the alternatives. It
took up about 240 kbytes on my hard
disk and consisted of the compiler, the
loader, and a few libraries and utilities.
Installing the software was a simple
operation.

The software development cycle on
the SC/FOX SBC was a shock-I was
used to the seductive, interactive nature
of Forth systems running directly on the
target system and using the PC strictly
for I/O. Alas, the SBC has more in
common with traditional C cross-com
piling than with traditional Forth devel
opment. You edit your source files with
your favorite editor; the use of straight
ASCII text files and the C-like exten
sion of #include for library usage was a
nice alternative to the traditional block
files. Once you've edited the source
code, however, you have to compile it
and load it into the target board's
RAM. Does this process sound famil
iar? Does it sound slow? Correct on
both counts.

Some explanation of the SBC philos
ophy came when I contacted Silicon
Composers for help. (I'd been convert
ing some old code and had discovered
that the Forth compiler didn't under
stand words like PICK and CASE .) George
Nicol, the company's president, ex
plained that while Silicon Composers
had a resident Forth working with its
coprocessor boards, the stand-alone
board's compiler was designed more as
an optimizing assembler/ compiler for
the R TX processor than as a Forth de
velopment system.

The debugging assistance is minimal
and not particularly interactive. One of
the library files contains a few tradition
al display words like . s and . wdump,
joined by the more sophisticated . break,
which performs a breakpoint. At least

Page 16

mllablt Fr1•: Harris Corp., P.O. Box
883, Melbourne, Fla. 32902-0883,
(407) 724-7302
PriCI: $2,995
Sup,...t: Free telephone support, 60-
day warranty, bulletin board service,
training courses
Syst111 Raq1lrmnta: IBM PC, DOS
v. 2.1 or later, serial port

FOR INFORMATION CIRCLE *102

it's better than sprinkling print state
ments throughout your code.

A FEW MISSING DETAILS
I found the SBC users manual to be
good, with only a couple of annoying
problems. I discovered the worst of
them indirectly when I tried to use the
parallel printer port. The folks at Sili
con Composers told me I could get an
adapter cable for the board from a local
software/hardware emporium. Unfor
tunately, the salespeople were unaware
of their support role for Silicon Com
posers and didn't have the appropriate
cable in stock. I managed to manufac
ture my own cable without a great deal
of effort--0r a great deal of success.
Another call to Silicon Composers
straightened out the problem (the pin
out diagram reflected only the pins for
the printer end of the cable, not the
header-pin assignments on the SBC)
but left me with a lingering irritation
with companies that don't feel they
need to supply schematics or cables for
their boards.

The SC/FOX is unique among the
systems I tested in two important ways.

First, no schematics are available for
the board, implying (to me, at least)
that the company would like you to de
velop applications and then buy your
hardware from them. This is certainly
no crime, but it also doesn't make the
SC/FOX SBC my first choice as a
development platform where custom
hardware would be involved.

The second unique aspect is that the
SC/FOX SBC was clearly designed for
applications requiring more than the
usual amount of RAM. To the credit of
Dr. Nicol and crew, they've made it
easy for customers to upgrade the board
by either swapping boards or installing
bigger RAM chips. That's good from
the user's perspective, but if I were de
veloping applications that used a lot of
RAM (and had a budget to match) I'd
be tempted to opt for development using
Silicon Composers' coprocessor boards.

HARRIS RTXDS
Anxiety was my initial reaction to the
arrival of the Harris development sys
tem: the shipping box measured 12
inches by 24 inches by six inches and
weighed enough to remind me of the
massive crates of documentation that
came with Microsoft's infamous OS/ 2
SOK. Happily, this package is nothing
like the OS/2 SOK-in almost every
respect, it's a pleasure to work with.

The R TXDS I received consisted of
the RTXDB development board, a
Harris binder filled to overflowing with
documentation, a modified version of
Laboratory Microsystems' PC/Forth,
and a power supply. The RTXDB itself
was clearly devised with the hardware
designer in mind: the roughly nine-by-
14-inch board contains a ZIF socket for
the processor, plenty of space between
components, lots of test points, and two
separate areas for breadboarding (one
area is specifically designed for memory
circuits). There's little doubt that this
board combined with the Harris hard
ware documentation is a great hard
ware development package. As I said
before, though, there's more to a devel
opment system than just hardware.

The software part of the package
worked well, with one noticeable excep
tion: the installation. The PC/ Forth in-

EMBEDDED SYSTEMS PROGRAMMING • AUGUST 1989

stallation process for the R TXDS was
conceptually very simple. All the instal
lation batch file had to do was load a
binary overlay for the appropriate video
display, load the RTXDS overlay, and
save the resulting images to disk.
In practice, the automatic installation
blew up several times. I don't know if
the blame lies with Laboratory Micro
systems or with Harris; I do know that
it's inexcusable for an installation batch
file to be shipped without first being
checked.

I'm not a Forth guru, but I was able
to manually install the system rather
quickly. This is due in no small part to
the excellent PC /Forth documentation;
every time I consulted the manual, I was
able to find the information I needed
quickly and easily.

I'd rate the documentation from
Harris as good. There were a few times
when I wasn't able to find things as easi
ly as I should have, and there were times
when I found contradictory remarks
about the software. Harris has prom
ised to work on the documentation and
produce a separate, bound program
mer's reference in the next revision (due
out sometime this summer).

Once properly installed, the software
worked very well. Like the Silicon Com
posers product, the PC/Forth package
doesn't implement Forth running on the
target system but instead compiles code
on the PC and then loads it into the tar
get's RAM. That's about the extent of
the similarities between the two pack
ages, though. Consider some of the ad
vantages of the PC/Forth RTXDS
package:

• Forth-83 compatibility.
• A dual-window programming en

vironment that emulates (to a degree) a
target-resident Forth system.

• A trueRTXemulatorfordevelop
ing I/0-independent code without us
ing the target system.

• Debugging help that includes a
memory-access monitor for tracing
variable assignments, as well as inter
active disassembly and symbol table
access.

• Sample code including UART
and interrupt handlers.

The combined files of the PC/ Forth

Avallabl• From: Innovative Integration,
4086 Little Hollow Pl., Moorpark,
Calif. 93021, (805) 529-7 570
Price: $995 (or $1,500 for system with
full source code)
Support: Free telephone support for 90
days, one-year warranty on board,
one year free software updates
System Requirements: IBM PC with se
rial port (color graphics adapter
desirable)

FOR INFORMATION CIRCLE #103

RTXDS software package took up 520
kbytes on my hard disk, not a bad bal
ance between size and utility.

INNOVATIVE INTEGRATION FB2000
In many ways the FB2000 is both the
easiest and the hardest development
system to review. If I could do a decent
imitation of Bill Machrone, I'd give it
an Editor's Choice award. As it stands,
I'll have to settle for congratulating Jim
Henderson and the folks at Innovative
Integration for winning our unofficial
Bang-for-the-Buck award. At $1,075
for a developers package that includes a
complete polyFORTH system and an
EPROM programmer, the FB2000 is a
bargain.

For people outside the field of em
bedded systems, there might not be any
thing remarkable in the appearance of
the FB2000. lfyou'vegrown used to de
velopment systems the size of a home
stereo, though, it can come as a pleasant
surprise to pick up a little card (4.2

EMBEDDED SYSTEMS PROGRAMMING • AUGUST 1989

inches square) and consider its power.
The small size of the FB200(}-let alone
the accompanying EPROM burner,
which is even smaller-is a nice hard
ware demonstration of one of Chuck
Moore's guiding principles: small is
beautiful.

Apart from the form factor, though,
there's nothing small about this pack
age. For example, the various source,
documentation, and executable files
take up over 2 Mbytes on my hard disk.
Libraries and routines for such features
as graphics, multitasking, and ftoating
point support are casually included in
the source code as though they're no big
deal. (By way of contrast, Silicon Com
posers sells a four-function IEEE float
ing-point RTX package for a mere
$500.) I hate to be repetitive, but have I
mentioned the word bargain yet?

In contrast to the SC /FOX SBC and
the R TXDS, the FB2000 is a resident
Forth package. That is, the PC is used
for terminal and disk I/O via the serial
link and the developer interacts with
a completely functional polyFORTH
system running on the target. While
there's some delay in loading files via
serial link, it's nowhere near as painful
as it is with the Silicon Composers SBC.
That probably has something to do with
the fact that the FB2000 system cranks
up the serial rate to 38 kbps or faster.

Despite all the talk about clock rates
and wait states from the hardware labs,
the measure of our productivity on the
software side most often relies on the
quality and speed of our programming
tools. In that regard, Forth program
mers have traditionally had an advan
tage in embedded systems develop
ment; the small size of most Forth
systems has allowed developers to do
their work quickly and interactively on
the target system instead of wading
through the delays of cross-develop
ment. If ever there were a processor
where that advantage was worth serious
consideration, it would be the RTX
2000.

LOOKING FOR FAULTS
I tried to find some, really I did, but
there weren't that many faults. Perhaps
the worst thing you could say about the

Page 17

FB2000 is that it's the least stable of the
systems mentioned here. (It's ironic
that the system with the most changes
was the system I had the least problems
with.) No sooner did I get a system for
review than Jim Henderson was on the
phone uploading a new READ.ME file
with improvements to the port 1/ 0.

The system I got for review had
a wire-wrapped EPROM program
mer-an improvement added to the de
velopers package because the people at
Innovative Integration didn't think
their customers wanted to shell out
$1,000 for a premium ROM burner
compatible with the speedy Cypress
EPROMs they use. I called Innovative
Integration's offices a month or two lat
er to confirm a few details and it turns
out that, yes, the EPROM burner now
exists as a finished board. By the way,
they're speeding up the disk-file access
by adding in-line compression and
decompression.
The two documentation manuals are

Page 18

among the best I've seen in Forth sys
tems, so there's no problem there (un
less you count all the READ.ME files
from upgrades) .

One potential shortcoming of the
board is the limitation of 64 kbytes of
static RAM, but expansion connectors
(and schematics) would enable an engi
neer friend to add another board if you
had an application that needed the ex
tra memory.

The biggest short-term problem for
developers is the fact that Innovative In
tegration is, like Silicon Composers, a
small company. If you call with a sup
port problem, there's a good chance
you'll have to leave a message and wait a
couple of hours for a reply. As with the
best companies, though, when you get a
response you wind up talking with
someone who knows the product very
well.
THE BUCK STOPS HERE
All these systems have an R TX under
the hood, so to speak, so they're all

screamers compared to the Forth con
trollers most of us have seen before. And
while there were occasional problems,
these are well-engineered ·products. So
how do you choose?

As hinted at in the "Bang-for-the
Buck" comment, the Innovative Inte
gration product is my pick as the best
investment for developers interested in
investigating the RTX processor. You
get excellent performance and value
and huge amounts of source code for
your applications.

If you have friends in hardware who
are seriously considering building their
own boards based on the R TX 2000,
however, I don't see a real alternative to
the Harris RTXDS. The documenta
tion and the board's design alone will
pay for the system in the time they save
the engineering staff. The software
development tools aren't too shabby
either.

EMBEDDED SYSTEMS PROGRAMMING • AUGUST 1989

We're Backing You Up With
Products, Support, And Solutions!

Signal , Processing
• Linear
• Custom Linear
• Data Conversion
• Interface
• Analog Switches
• Multiplexers
• Filters
• DSP
• Telecom

Digital
• CMOS Microprocessors

and Peripherals
• CMOS Microcontrollers
• CMOS Logic
• CMOS Memories

ASICs
• Full-Custom
• Semicustom

· Gate Arrays
· Standard Cell
· Cell Based
- Core Processors

• ASIC Design Software

Power Products
• Power MOSFETs
• IGBTs
• Bipolar Discretes
• Transient Voltage

Suppressors
• Opto Devices
• Power Rectifiers

Intelligent Power
• Power ICs
• Power ASICs
• Hybrid Programmable

Switches
• Full-Custom High

Voltage ICs

Microwave
• Gallium Arsenide FETs
• Standard MMI Cs
• Custom MMICs

Military I Aerospace Products
• Microprocessors and

Periplierals
• Memories
• Analog ICs
• Digital ICs
• Discrete Power

· Bipolar
- MOSFET
- Rad-Hard ICs

Military I Aerospace Programs
• COMSEC Pro~ams
• Strategic and Space Programs
• Military ASIC Programs

SALES OFFICE HEADQUARTERS
United Stales
Harris Semiconductor
1301 Woody Burke Road
Melbourne, Florida 32902
TEL: (407) 724-3739

European
Harris Semiconductor
Mercure Centre
Rue de la Fusse 100
Brussels, Belgium 1130
TEL: (32) 246-2201

South Asia
Harris Semiconductor H.K. Ltd.
13/F Fourseas Building
208-212 Nathan Road
Tsimshatsui, Kowloon
Hong Kong
TEL: (852) 3-723-6339

HARRIS
SEMICONDUCTOR

HARRIS RCA GE INTERS IL

North Asia
Harris K.K.
Shinjuku NS Bldg. Box 6153
2-4-1 Nishi-Shinjuku
Sinjuku-Ku, Tokyo 163 Japan
TEL: 81-3-345-8911

© Harris Corporation 1990

Reorder Number: AR-RTX-002

TABLE OF CONTENTS

Page 3 - Stack-Based Processor Speeds Target Recognition (Design News, September 4, 1989).

Page 5 - High-Speed Microprocessor Makes Star Tracker Functional (Design News, May 22, 1989).

Page 7 - Embedded Controls Improve Exercise For Handicapped (Design News, August 21, 1989).

m HARRIS

Page2

DESIGN IDEAS-From The Regional Editors Reprinted from Design News,
September 4, 1989. Copyright 1989.
Cahners Publishing Company.

Stack-Based Processor
Speeds Target Recognition

All rights reserved.

Chip executes all instructions in a single machine cycle

David J. Bak, East Coast Editor

Melbourne, FL-You 're flying an F-
16. Infrared sensors suddenly lock
onto an object approaching at 1000
mph. Friend or foe? You've got 10,
maybe 20 msecs to extract an edge,
identify, and respond. The almost
instantaneous code execution
needed to perform such a task de
mands a processor that addresses
events with a predetermined, re
peatable, sequence of operations.

Most processors sold today boost
speed at the expense of predictabil
ity. Based on RISC (Reduced In
struction Set Computer) architec
tures, they assign data and instruc
tions to separate on-chip register
banks, i.e., sets of flip-flops clocked
by the processor and used for stor
age. These register banks, in turn,
permit the simultaneous execution
of independent operations using
simple fetch-and-store commands.
Good for straight-line program
code, the architecture presents
problems when used in real-time
control applications.

Their ability to rapidly respond
to internal and external interrupts,
for example, depends on the state
of the individual registers when the
interrupt is acknowledged. Before
servicing the subroutine, the proc
essor must "clean itself out," trans
ferring everything in the registers to
the main memory. This process,
called context saving, slows execu
tion time. Worse yet, because the
processor is never in the same state
when the interrupt occurs, execu
tion times are unpredictable-a

DESIGN NEWS • SEPTEMBER 1989

condition that's often un
acceptable (as seen in the
F-16 scenario).

A new processor, based
on four parallel internal
buses, reflects the most
desirable features of an
ideal RISC processor. Its
internal data paths are di
rectly routable to the
ALU (arithmetic logic
unit) in a single machine
cycle, with no sacrifice in
execution predictability.
And, with the exception
of memory reference in
structions that consume
two machine cycles each,
the processor executes all
of its instructions in a
single clock cycle. Like

Crucial to avionics target-tracking, high-speed embed
ded real-time systems can perform single-target extrac
tion operations in as little as 10 msecs-an amount of
time in which most general purpose processors can
only execute a maximum of around 100 instructions.
(Photo: ©Fred Ward, Black Star.)

RISC, instructions are decoded in
logic, rather than translated into a
sequence of microcoded primitives.
Unlike RISC, context saving is not
necessary. ·The processor does not
discriminate between direct or
branched flow, treating interrupts
as simple subroutine calls.

Built by Harris Corp. , the RTX-
2000 includes a main memory bus,
a high-speed, bidirectional Applica
tion Specific Integrated Circuit
(ASIC) bus, and two on-chip stack
memory buses. The main memory
bus carries the sequence of instruc
tions needed to execute a given
task. Additionally, main memory
holds all data not needed for on
chip storage. The ASIC bus allows
easy interface with application spe
cific ICs to further enhance system
processing throughput.

Two parallel on-chip LIFO
memories-a parameter stack and

a return stack-take care of internal
storage. The parameter stack pro
vides storage for all operands. Ad
dresses of all subroutine returns are
stored in the return stack. Use of
the two-stack system minimizes
overhead associated with proce
dural calls, branches, and jumps. In
addition , this approach reduces
programming complexity.

Due to its high level of parallel
ism, the RTX-2000 can execute up
to five FORTH primitives concur
rently within a single, 16-bit ma
chine instruction cycle. Consider
the sequence of instructions in
volved in the last cycle of an image
processing task, such as edge extrac
tion. The processor can:
• Read a 16-bit data value from the

ASIC bus.
• Perform an ALU operation.
• Store the result on the parameter

stack.

Page3

Page4

• Perform a subroutine return.
• Fetch the first instruction of a

subroutine returned to by the
processor.
Comparatively, such concurrent

execution would equate to three or
four RISC-equivalent instructions.
On most RISC processors, execut
ing that many instructions would
require 6 to 8 bytes of program code
and as many as 16 clock cycles.

Stack controllers, timers, a multi
plier, and an interrupt controller
complete the on-chip package.
Stack controllers internally main
tain the absolute address of the
stack location's current 16-bit
"top" value, onto which the next
datum will be pushed. This value,
stored in the controller's stack
pointer register (SPR), can be read
by the processor at any time, such
as during the process of switching
a task context. The SPR can also
be written into in the process of re
storing the context of a new task.

Implementation of the interrupt
controller allows 14 prioritized in
terrupts. Of these, nine are used by
the processor's internal peripherals.
The remaining five are available as
inputs to the processor. The RTX-

DWIN
DIWASE

2000's on-chip 16- x 16-bit parallel
multiplier functions as the proces
sor's major source of arithmetic
power, while three on-chip, 16-bit
down-counters perform all timing
and event-counting tasks.

As an integral part of the Ball
Aerospace Daylight Star Tracker,
the RTX 2000 processes 900 CCD
pixels in 9.1 msecs. The Tracker,
described on page 132 of the May
22, 1989 issue of Design News
measures the bearing and azimuth
of a star to determine the point on
the earth's surface occupied by the
observer. Other applications, be
sides image processing, avionics
and space guidance systems, in
clude robotic motion/effector con
trol, speech processing, smart muni
tions, and all areas of graphics proc
essing. Embedded expert systems is
another area of potential use.
Additional details ... Contact
David Williams, Harris Corp.,
Semiconductor Products Div., Box
883, Melbourne, FL 32902, 407-
729-4629. D

lnternal, highly parallel busing gives thE;t RTX-2000 extremely high throughput capability.
The only class of two-cycle intructions needed are memory-reference instructions, i.e., one
cycle to fetch an instruction, and one to fetch/store the data.

RTX PROCESSOR

CONTROL .-------
INPUTS CLOCK AND

CONFIGURATION
CONTROL

MEMORY
BUS

MAIN INTERFACE
MEMORY

PARAMETER
STACK

INTERRUPT
INPUTS

RTX
PROCESSOR

STACK
CONTROLLERS

RETURN
STACK

TIMER
INPUTS

OFF-CHIP
PERIPHERALS

DESIGN NEWS • SEPTEMBER 1989

DESIGN IDEAS Reprinted from Design News,
May 22, 1989. Copyright 1989.
Cahners Publishing Company.
All rights reserved.

High-Speed Microprocessor
Makes Star Tracker Functional
Unit processes 900 pixels
in 10 msecs and
consumes just 3.1W·

Lyle H. McCarty, Western Editor

Boulder, CO-Star trackers do
what navigators did in days of
yore-measure the bearing and azi
muth of a star to determine the
point on the earth's surface occu
pied by the observer. That informa
tion is then put to work-correcting
the navigator's dead-reckoning cal
culations in the old days, providing
updated zero references for the in
ertial navigation system today.

Of course, star trackers work
much more quickly than the busiest
of navigators, so fast that the equip
ment shown here was required to
proc~ss signals from 900 Charge
Coupled Device (CCD) pixels in 10
msecs. Conventional multiclock cy-

Star tracker electronics assembly occupies little space, weighs just 14.2 oz, and operates
on 3.1W. Its Harris microprocessor processes 900 CCD pixels in 9.1 msecs.

cle processors can execute only five To solve this problem, Ball Aero
to ten instructions in this time in- space engineer Mike Hubbard
terval, not nearly enough comput- turned to a Harris Corporation mi
ing power for the job. croprocessor known as a Forth en-

MODEL LN-20 STAR TRACKER

1. Time base generator reads
charge coupled device (CCO),
pixel data

STAR ·o·. * ' ANALOG
PROCESSOR 4kX 18bitl --RAM

MEMORY

2. Analog processor loads
forth engine memory with
pixel array

a. Forth engine searches
pilel data for star position

4. Host interface provides
control and status to user

DESIGN NEWS • MAY 1989

TELESCOPE

TIME
BASE

GENERATOR

ELEVATION RELATIVE
ERROR BEARING

ERROR

...___-4 FORTH
---4ENGINE

2CUiz
OSCILLATOR

Page 5

Page 6

gine. This device runs at a clock
speed of 10 MHz and can execute
more than 100 instructions/msec on
each pixel. It is also small-one
inch square by 114-inch high-and
uses just 25 mW /MHz. In addition,
the chip requires only a small
amount of support circuitry to form
a complete computer system.

Tracker electronics are function
ally partitioned into camera and
processing areas. The camera is sub
divided into a CCD focal plane, a
correlated double sampler analog
processor, and a Time Base Genera
tor (TBG). A state machine se
quencer running at 12 MHz, the
TBG provides CCD control signals

to read out the 900 pixels in 10
msecs. This clever circuitry in
cludes three programmable array
logic devices and a 32k x 16 bit
EPROM. The waveform required
to read out the CCD is determined
by the bit patterns that are burned
into the EPROM.

A camera interface, dual D/ A
converters for X and Y analog out
put error signals, and digital input
and output ports comprise the ana
log processor. The unique camera
interface loads pixel data into RAM
with no processor overhead. Major
components of the interface are a
12-bit AID converter, dual-port 4k
x 16 bit RAM, and counter. While

the AID converter converts data
and writes it into RAM, the counter
pro vi des RAM addresses.

The Forth Engine accesses pixel
data on the other RAM port to de
termine star position. The RAM
also provides variable and array
data storage. Constants and the star
tracker program are stored in an 8k
x 16 bit EPROM. A host interface
enables a user to determine system
status and control the star tracker.
Additional details ... Contact
Robert Baker, Ball Aerospace Sys
tems Division, Box 1062, Boulder,
co 80306-1062, 303-939-4917. c

DESIGN NEWS • MAY 1989

DESIGN FEATURE Reprinted from Design News,
August 21, 1989. Copyright 1989.
Cahners Publishing Company.
All rights reserved.

EMBEDDED CONTROLS IMPROVE
EXERCISE FOR HANDICAPPED

Advanced microprocessor triggers
electrical stimulation of paralyzed muscles in real time

L ike many of us who are listen
ing to the advice of our doc
tors, Arthur Schlesinger works

out three times a week. Taking
about 30 minutes, his workout in
volves a complete cardiovascular
program.

But there is one major difference.
Schlesinger is a paraplegic. He is
a volunteer in a program at Wright
State . University Medical School,
Dayton, OH, geared to developing
complete exercise programs for
handicapped people. Though he has
no use of his legs, Schlesinger gets
an aerobic workout by riding a bicy
cle while turning a gear crank.

The key to the workout is a sys- 1

tern that controls electrical stimula
tions which, when applied to Sch
lesinger's legs, produce functional
muscle contractions. The controller
is a new type of microprocessor that
takes on the normal stimulus and
response functions of the nervous
system. Its job is to synchronize the
lower and upper extremities so the
individual gets all the benefits of a
cardiovascular workout.

Called the RTX 2000, this high
speed 16-bit programmable micro
controller may prove to be a major
contender in the microprocessor
market for real-time applications.
Designed by Harris Semiconductor,
Melbourne, FL, the system offers
interrupt response times of 400
nsecs, context switch times of 2
µsecs , and an instruction execution

DESIGN NEWS • AUGUST 1989

Gail M. Robinson, Associate Editor

Page 7

Page 8

rate of over 10 MIPS. And, it fea
tures a new way of dealing with
real-time events. Instead of a simple
interrupt, it can merge responses
from different channels to make up
a unique set of instructions that
handle more than one instruction
at a time.

The RTX 2000 is a sophisticated microcon
troller optimized for real-time applications.

Fitting a need
"Everyone knows that without

activity the muscles go through at
rophy," says Bertram Ezenwa, di
rector of technical development in
the Div. of Research and Develop
ment at Wright State. "Unfortu
nately, people with paralyzed limbs
can't do anything about it. Their
muscles go through complete dete
rioration. Not only are the physical
problems difficult to deal with, but
there are psychological problems as
well."

Ezenwa's goal is to design a sys
tem that gives these people the op
portunity to be able to do a com
plete workout, rather than exercise
only certain parts of the body. "The

control system plays a major role
in this kind of exercise program,"
says Ezenwa. "It must determine
the condition of the lower extremity
musculature, for example, the fa
tigue condition, and the phase and
rate of the arm cranking. It then
applies the necessary current in real
time to specific lower extremity
muscles so they are synchronized
with the arm cranking."

Most conventional microproces
sors are optimized for office com
puters or computer-aided worksta
tion environments. In these cases
a "real-time" response may take a
few seconds, probably making little
difference to the user~

However, these processors are
not designed for applications where
even a 112-sec response time to an
external event is too slow. When
dealing with more than one task, a
conventional microprocessor must
jump back and forth between the
different instruction groups.

For example, in this case one set
of instructions is set for pedaling
the bicycle, while a completely
separate set of instructions deals
with the turning of the crankshaft.
Though both of these tasks must oc
cur simultaneously, a conventional
microprocessor can only process
one set of instructions at a time in
the sequence. It must jump from
one task to another, interrupting
the other task in the process. If the
controller is well-matched to the
job, it can jump back and forth fast
enough to look as though it were
doing both tasks simultarfoously.
But the chance of an overload is
very high.

With the RTX 2000, two differ
ent sets of instructions for each task
are not required. Instead, the mi
crocontroller makes one set of in
structions that deals with the two
different events. Therefore, it deals
with a greater variety of tasks using
the same level of processing power.

Taking a closer look
"There is a growing need for pro

cesssors with higher performance
standards than existing microcon
trollers," says Dave Williams, man
ager of the RTX product marketing
at Harris. "Even RISC processor
technology with its promise of add
ing even more sophisticated prod
ucts to the marketplace may not be
suitable for many embedded con
trol applications."

Though RISC processors are
making strides in real-time process
ing, especially in respect to speed
and performance, Williams notes
that most real-time system environ
ments are driven by asynchronous
external events,· which require fast
interrupt response and predictable
system level timing.

Williams adds that RISC proces
sors rely on pipelining and cache
memory schemes to provide im
provements in the statistical speed
of the processor, so response times
are often unpredictable.

Though the RTX does exhibit
RISC-like behavior in its perform
ance of one instruction per cycle,
there is an important difference in
how the data and control paths are
configured. The microcontroller
does not use pipelines to achieve its
speed, but instead it uses parallel
techniques in the form of a RTX
Quad Bus. This enables several dif
ferent kinds of information transfer
to occur at the same time as part
of one instruction.

The chip also has no microcode

Space Shuttle uses RTX 2000 in solid-state
Star Tracker device.

DESIGN NEWS • AUGUST 1989

EMBEDDED CONTROLS

ARM CRANK/BICYCLE SYSTEM

An exercise profile is programmed into a computer that interfaces with the RTX 2000.
The controller accesses the required muscle contractions and synchronizes the lower and
upper extremities of the body.

sequencer or microcode. All in
structions except memory access in
structions execute in one cycle. The
system minimizes address calcula
tion delays by incorporating a sim
plified memory paging mechanism,
and eliminates the complexity of
multiple addressing modes and
memory arrangement.

The RTX is also a stack machine.
Stacks facilitate the evaluation of
expressions and minimize the con
trol overhead needed to organize
data. A stack machine not only uses
a stack for temporary data storage,
but executes all operations on data
from the stack. Thus, the ALU finds
all of its data in a pre-defined loca
tion, and can get that data without
an address specification.

Besides two 256-word stacks, the

DESIGN NEWS • AUGUST 1989

chip has several other features that
may keep it ahead of the pack, in
cluding the interrupt controller,
three on-chip 16 bit timer/counters,
an ASIC bus for off-chip extension
of t~e architecture, and 1 M byte of
memory address space.

Putting it to work

So far, parts of the real-time data
acquisition and display for the sys
tem have been tested on an Intel
386-based microcomputer. "After
we applied the RTX 2000 real-time
operating system, the data acquisi
tion and display were much faster,"
says Ezenwa.

To initiate the program, an exer
cise model is programmed into the
microcomputer. The controller
then accesses the required muscle

for contraction through surface
electrodes attached to the body.
The model or alogorithm is down
loaded in FORTH from the micro
computer to the RTX chip.

An integral part of the equipment
is a specialized stationary bicycle
designed by Therapeutic Technolo
gies Inc., Dayton, OH. The ERGYS
I is designed to combine functional
electrical stimulation with such ad
vances in microprocessor develop
ment to control the muscle contrac
tions. The system on the market
now is directed towards home reha
bilitation. It features a programma
ble electronic cartridge for indi
vidualized treatment.

For Schlesinger's particular work
out, the system stimulates three dif
ferent muscle groups: the quadri
ceps, the hamstrings and the gluteus
maximus. This enables him to ride
the stationary bicycle as he turns
the arm crank. After 36 sessions,
he undergoes strength, muscle, and
cardiovascular testing.

"The physical results have been
great," says Schlesinger. "My mus
cle mass and strength have in
creased, I have more circulation,
and noticeably less fat. But the psy
chological effects are just as impor
tant. My muscles have tone and
look normal. I can't tell you how
good that makes me feel. I look bet
ter and I feel better about myself."

Researchers are currently devel
oping simulators for selective
stimulation of deep muscles from
surface electrodes. And, Dr.
Ezenwa is also designing a system
for weight lifting. "By applying the
proper amount of electrical current
to the quadricep muscles, the leg
can lift weight against gravity," says
Ezenwa. "But several conditions
must be factored into the control
design, such as applying only the
necessary current intensity for each
phase of contraction, determining
muscle fatigue condition, and keep
ing the weight lifting to predeter
mined safe limits."

Page9

To follow these parameters, Dr.
Ezenwa is developing an automated
stimulator for the adaptive control
of knee extension exercise for spinal
cord individuals. The RTX 2000
development system will carry out
the real-time control algorithms.

Beyond the health field

There are other research applica
tions in need of such systems as
well, including many outside the
medical field. Fred Sias, professor
in the electrical engineering dept.
at Clemson University, Clemson,
SC, is designing wheeled mobile ro
bots for surveillance and radiation

Page 10

environments.
He expects to apply the RTX

2000 "because it offers optimized
control for multitasking and inter
rupts, and it is easy to interface with
the real world."

Ball Aerospace, Boulder, CO, is
using the RTX 2000 in its newest
solid-state Daylight Space Tracker.
The Tracker is an electroptical de
vice used in aircraft and the space
shuttle that analyzes stars through
a scope. The signals it generates
control the body surrounding the
spinning wheels of the gyroscope.
A computer responds to the
Tracker's signals and moves a plat-

form to keep the Tracker aligned.
The system mounts on a guidance

gimbal and uses a CCD sensor and
the RTX 2000 to process a 900
pixel frame in 10 msec. The RTX
scans the field and locates the stars,
and then sends the tracking infor
mation to the computer.

Exceptional instruction speed
was the main reason the company
is using the chip, notes design engi
neer Mike Hubbard. "I doubt if the
job would have been done without
the RTX," he explains. "If so, it
would have had to be custom-made,
which would have been more ex
pensive and taken more time." D

DESIGN NEWS • AUGUST 1989

We're Backing You Up With
Products, Support, And Solutions!

Signal Processing
• Linear
• Custom Linear
• Data Conversion
• Interface
• Analog Switches
• Multiplexers
• Filters
• DSP
• Telecom

Digital
• CMOS Microprocessors

and Pe~ipherals
• CMOS Microcontrollers
• CMOS Logic
• CMOS Memories

AS I Cs
• Full-Custom
• Semicustom

· Gate Arrays
· Standard Cell
- Cell Based
· Core Processors

• ASIC Design Software

Power Products
• Power MOSFETs
• IGBTs
• Bipolar Discretes
• Transient Voltage

Suppressors
• Opto Devices
• Power Rectifiers

Intelligent Power
• Power ICs
• Power ASICs
• Hybrid Programmable

Switches
• Full-Custom High

Voltage ICs

Microwave
• Gallium Arsenide FETs
• Standard MMI Cs
• Custom MMICs

Military I Aerospace Products
• Microprocessors and

Periplierals
• Memories
• Analog ICs
• Digital ICs
• Discrete Power

· Bipolar
- MOSFET
· Rad-Hard ICs

Military I Aerospace Programs
• COMSEC Pro~ams
• Strategic and Space Programs
• Military ASIC Programs

SALES OFFICE .HEADQUARTERS
United States
Harris Semiconductor
1301 Woody Burke Road
Melbourne, Florida 32902
TEL: (407) 724-3739

European
Harris Semiconductor
Mercure Centre
Rue de la Fusse 100
Brussels, Belgium 1130
TEL: (32) 246-2201

South Asia
Harris Semiconductor H.K. Ltd.
13/F Fourseas Building
208-212 Nathan Road
Tsimshatsui, Kowloon
Hong Kong
TEL: (852) 3-723-6339

m HARRIS \A.I SEMICONDUCTOR

HARRIS RCA GE INTERSIL

North Asia
Harris K.K.
Shinjuku NS Bldg. Box 6153
2-4-1 Nishi-Shinjuku
Sinjuku-Ku, Tokyo 163 Japan
TEL: 81-3-345-8911

c Harris Corporation 1990

Reorder Number: AR-RTX-001

FORTH Processor· Core for
Integrated 16-Bit Systems

Peter S. Danile and Christopher W. Malinowski, Harris Corp. Semiconductor Division, Melbourne, FL

The development of a high-performance dedicated 16-
bit process~r u~ing an industry-standard microcon
troller or b1t-shce processor calls not only for an

extensive board-level design effort, but also for a long-term
development program for software and firmware. It has been
difficult to use semicustom techniques for such development
because core processors have been scarce and microcode
development for custom ICs is very difficult.

However, in a growing number of high-performance sys
tems for digital signal processing, control, and arithmetic,
application-specific processors are bringing forth the advan
tages of integration-including high throughput, low power
dissipation, and much higher density than board-level
implementations.

Harris Semiconductor now has a semicustom technofogy,
called the Processor Toolbox, that eases the developme~t of
high-performance 16-bit integrated proc~ssors. Toolbox fea
tures include a very small core-processor cell, a highly
parallel architecture for maximum throughput, easy program
ming and code development, code portability, a full set of
core-compatible peripheral cells that can support processor
clock frequencies as high as 15 MHz, and a set of high-speed
arithmetic and logic cells, such as a 16-bit multiplier, for
further customization.

The processor architecture derives from one conceived by
Charles Moore, inventor of the FORTH language. This RISC
like, highly parallel architecture meets the size and through
put requirements. The combination of the processor's instruc
tion set-a directly executable set of FORTH high-level
primitives-and its reliance on two stacks that reflect a
FORTH virtual machine results in a compact core processor
with less than 2500 gates. This core is called the FORTH
Optimized RISC Computing Engine, or Force.

Because each instruction comprises more than one FORTH
primitive (opcode), data-manipulation throughput can exceed
the processor's clock frequency, often by a factor of three.
Consequently, for instruction sets rich in multiple-opcode
instructions, peak processing throughput can exceed 30 MIPS,
with a steady throughput of 10 to 20 MIPS.

Users of the Toolbox can develop application code in a
high-level FORTH language working with an interactive and
interpretive environment. FORTH is not only portable but also
offers expeditious debugging tools and eitsy target-compila
tion from one environment to another. Therefore, a wealth of
code written for DSP, artificial intelligence, control, number
crunching, and real-time data-processing applications can be

Reprtntedfrom VLSI Systems Design June
1987, Copyright 1987 CM.P. Publtcattons Inc
All rights reserved.

Clock
generator

Program
ROM

FIGURE l. The Force Toolbox contains a FORTH
processor and support peripherals, all
available as cells and packaged parts.

ported to the Harris engine.
The principal advantage to designers of dedicated proces

sors stems from the host of proprietary LSI and VLSI cells
being developed to support the FORTH core processor. The
Toolbox provides designers of Force-based products with a
set of packaged Force Circuits identical to the cells available
in Harris' standard-cell library (Figure 1). The designer can
use these parts to create a breadboard and experiment with
different configurations of the Force processor before moving
to an ASIC. He gains greater confidence in the design's
functionality, because it can be exercised in a real environ
ment in addition to a CAE simulation environment. Moreover,
the designer can use the prototype breadboard to generate a
reliable and accurate set of functional test vectors, a task both
formidable and error-prone otherwise.

Another advantage of creating a breadboard is that the
designer can compile the applications code and run it before
committing it to a ROM pattern. Running the application code
lets the designer make trade-offs between implementing func-

tions in hardware and coding them in software. The core's
execution speed allows many functions-such as memory
swaps, arithmetic and logic functions, shifts, and masking
to be implemented in firmware without sacrificing perfor
mance, shrinking die size considerably. Such trade-offs can
be investigated only if the designer has access to the proces
sor's functional blocks and can exercise alternatives in real
time-that is, on a breadboard.

Finally, the Toolbox approach makes it easier to design a
testable circuit. During breadboarding, the designer can ob
serve the timing of signal paths, such as the processor's data
paths,, which may not be directly accessible in an integrated
system. Identifying buried trouble spots increases the under
standing of the circuit's testability requirements and makes it
easier to implement such testability features as scan paths and
memory-check routines.

The Toolbox version of the core processor (Figure 2)
comes in a 144-pin pin-grid array with all the UO signals
bound to pins. Besides the core, the Force Toolbox also
contains packaged versions of a stack controller with an on
chip 64 x 16-bit stack RAM, an interrupt controller, and a
16 x 16-bit multiplier. By early 1988, Harris also will offer a
hardware-development system and a Force target ~ompiler
that, in combination with a breadboard system, will support
firmware-code development.

Once hardware and firmware are defined, the design is
implemented in a semicustom IC, for which· the designer
customizes the program, data, and stack memories by using
RAM and ROM module compilers. As much as 64K of on-chip
firmware ROM can be integrated in addition to 16K of data
RAM. Because FORTH code is so compact, very extensive
application-specific code can be implemented in firmware
along with the kernel code. To replace the discrete logic on
the breadboard, the designer uses 7400-type SSI and MSI cells
from the Harris standard-cell library.

The Force Core

The Toolbox's Force core processor is a bare control
engine with 123 1/0 lines. These signals include three parallel
16-bit data buses (two for stack memories and one for main
memory), a. 16-bit main-memory address bus, and a dual
purpose 5-bit address-extension bus. In addition, a general
purpose 16-bit bus (G-bus) acts as the processor's primary I/O
signal path.

A principle of RISC philosophy is to bring execution speed
as close as possible to the maximum memory-access speed.
As a corollary, the number of multicycle instructions in the
processor's instruction set is reduced to maximize the proces
sor's data-bus throughput and bandwidth.

The processor's independent buses account for the Force
core's high throughput. Because each instruction executes in
no more than two clock cycles, at least three of the five buses
are active during any clock cycle. The G-bus transfers data at
up to 30 MB/s when the processor operates at 15 MHz; the
main-memory bus transfers data at up· to 30 MB/s when in a
streamed-move mode.

The Force core processor's highly parallel architecture
(Figure 3) reflects the structure of its horizontal instructions.
Its eight main registers provide parallel storage and access to
the parameter stack's top two locations (TOP and NEXT), the
top location of the return stack (I), the instruction register

FIGURE 2. The packaged version of the Force
core processor.

(IR), the program counter (PC), and two arithmetic-instruction
registers (MD and SR). The MD register stores the partial
results of step-multiply and step-divide instructions; the SR
register stores the partial results of hardware-assisted square
root operations.

The minimal overhead to support subroutines also reflects
the nature of the FORTH language, which is heavily oriented
toward the use of subroutines. The core processor is opti
mized for the minimum number of cycles necessary to ex
ecute a subroutine call and return. Through instruction parti
tioning and architectural refinement, the execution of a:
subroutine call requires only a single clock cycle; the return
requires no added clock cycles. All interrupts that are inter
preted as subroutine calls therefore require only one clock
cycle of overhead.

Stack Controller Cell

Because the stack-oriented FORTH instructions employ
stacks in every command, the most critical peripheral used
with the Force core processor is the stack controller. Control
ling the stacks with software routines would degrade the
system's performance. The core directs the stack controller
through the RW and SA signals. The stack controllenesponds
to the SA signal with either a push (data write) or pop (data
read), according to the status of the RW signal.

In the packaged version of the stack controller are 64 words
of memory with an access time of approximately 30 ns, so the
designer can operate the core at 15 MHz without worrying
about the access time of data in the stack. In an ASIC
implementation, the .stack's memory size can be altered and
the access time improves to about 20 ns.

The stack controller operates with the core processor's
parameter stack (through SAS and RWS signals) and the return
stack (SAR and RWR), giving a typical system two stack
controllers (Figure 4). To enhance system flexibility, the
signals OVER and UNDER generate interrupts when the stacks
ate ready to overflow or underflow. UNDER occurs when the

<t~' <t~

FIGURE 3. Parallel architecture lets three of five processor buses be active for all instructions.

stack is pushed more than popped and the stack address lines
reach 00. The assertion should initiate a routine that either
resets the controller (if more returns than routines were
called) or tries to recover from other sources of underflow.
The OVER signal occurs when the number of words pushed
onto the stack exceeds a user-defined maximum. This maxi
mum can be programmed into the ASIC implementation by
writing into an offset register through the G-bus.

To implement multitasking versions of the Force proces
sor, Harris is developing a multitasking stack controller
(MSC). The MSC enables the user to partition the 256-word
stack into eight separate stacks via a 3-bit address size
register. For example, if the system must nm two concurrent
jobs, the size register is programmed to divide the stack RAM
into two 128-word stacks . To switch between tasks, the
processor enables a task-select register through the G-bus .
When this register is written to, the stack pointer of the
current task is saved and the stack pointer for the new task is
restored at the new task's current address.

When the stack controllers and core processor are integrat
ed on a single chip, options for increasing performance are
available. Not only can the access times of the controller and
the data RAMs be reduced merely by integrating, but access
time can also be reduced further by separating the bidirec-

tional data buses into read (POP) and write {PUSH) buses
(Figure 5). In the discrete versions, the data buses are
bidirectional to allow them to connect directly to standard
RAMs with bidirectional data buses. Separating the buses adds
some additional routing area; on the other hand, the time
required to set up the buses for either a read or a write is
eliminated , improving system response time substantially.

Interrupt Controller and Host Interface

The interrupt controller and the host interface help the core
processor interact efficiently with the surrounding system.
First, the interrupt controller contains 15 prioritized interrupt
request inputs and a separate input for nonmaskable interrupts
(NM!). The interrupt priorities are fixed (to decrease response
time) but can be defeated by writing in the interrupt control
ler's mask register (which has a discrete address on the G
bus). The intemipt controller samples the request inputs on
opposite edges of the system clock. When two consecutive
samples confirm that an interrupt is present, the INT line is
asserted. The core processor responds with the INTA signal,
which directs the interrupt controller to generate the appropri
ate vector for the interrupt. This vector comprises a 7-bit user
defined field for the location of the interrupt-vector table and
a 5-bit field that designates the appropriate interrupt.

FEG

SELSTER
SB.Of FR

OQ

A

6

FORC
aw

A
OVEft

SELSTER
SELOFi:R

16 16 ..,..
FEG

OE Sf'
OELSP

16

16

TOP

FIGURE 4. Breadboard design of Force system.

In the packaged version of the interrupt controller, the
interrupt vector for the valid highest-priority interrupt is
presented to the core processor within 40 ns of the INTA pulse.
Thus the controller can operate with the core processor at
system frequencies greater than 15 MHz. Once the system has
entered an interrupt routine, the core's INTE signal inhibits
any new interrupt from generating a new INTA. During INTE
assertion, the system can clear the interrupt source and
rewrite the Force configuration register to re-enable the inter
rupts. The interrupt controller does not automatically nest
interrupts, so the system does not need to modify the interrupt
controller until it must mask or unmask any interrupt line.

To create an interface between the Force core and a host
controller that does not degrade the core' s performance, the
Toolbox includes a host interface cell. The interface allows
another processor to read and write data in the Force core's
memory-address space; it receives as inputs the address and
data lines of the shared memory, the command lines from the
processors, the core's data signals, and a MEMORY _READY
signal that indicates when the data in the shared memory is
valid. It provides a READY signal to the host, to indicate when
it can read or write data, and a clock signal to the core: Figure
6 shows a typical configuration of the interface, the core
processor, and the shared memory.

The host interface suspends the core processor when it
attempts to read invalid data. When the data is not in the

shared memory, the MEMORY _ READY input to the host
interface is de-asserted until the data in the memory becomes
valid. While the signal is low, the interface suspends execu
tion by the core processor; the processor continues when
MEMORY _ READY is re-asserted.

When the host processor wants to write to the shared
memory , the host interface checks the FORCE_ LOCK signal
to determine if the Force processor has priority on the
memory bus. If not, the interface suspends the core processor
and hands control over to the host. If wait states are neces
sary, MEMORY _ READY becomes low and the host interface
stalls the host with the· HOST _READY signal. When HOST_
READY is asserted, the host can relinquish priority on the bus.

Writing host-processor data into the shared memory is
simpler than reading from it. The host writes directly to the
host interface, which holds the data in a buffer. When the
memory bus becomes free, the interface writes the data into
the memory. A HOST_READY signal is set when the buffer is
full to prevent the host from writing over new data.

If the host processor wants to do some house-cleaning in
the shared memory, it requests priority on the memory bus by
asserting the HOST _ LOCK pin . This signal suspends the core
processor so the host can have exclusive access to the mem
ory. In normal operation, the use of LOCK signals should be
minimized so performance is not degraded.

The host interface is designed to work with an asynchro-

EN

OEMSP

FIGURE 5. Integrated configuration of core,
stack controller, and multiplier.

nous host by synchronizing all commands from the host with
the Force clock signal. The core processor can work with
synchronous or asynchronous RAMs , even ifthe host interface
is used in a completely synchronous system. If the interface is
integrated with the core, minor modifications can improve
response time in the host read/write cycle. Also , if the shared
memory is integrated with the other components , the MEM
ORY _ READY line is not necessary because the on-chip com
piled RAM is fast enough to always contain valid data .

Multiplier

Harris has designed a 16 x 16-bit multiplier, using its
proprietary MPS algorithm , for use with the Force core pro
cessor. The peripheral performs full 16 x 16 multiplication,
generating a 32-bit product in as little as two clock cycles
when the peripheral is integrated with the core; a breadboard
system can complete a multiply in five clock cycles .

The multiplier operates either clocked or unclocked and
provides tristate signals at the output control and data (MSP
and LSP) lines. It has data latches at its inputs to allow clocked
operation independent of the core. On-chip results are gener
ated in less than 50 ns from the edge of the clocking signal,
and the two 16-bit words in the product can be read simulta
neously or in sequence.

The designer can incorporate the multiplier into the Force
architecture in several ways. First , he could designate several
G-bus addresses to identify the multiplier , multiplicand, and
the product's most-significant word (MSP) and least-signifi
cant word (LSP) . Using this configuration, the core processor
would write the addresses and read back the results to receive
the result in four clock cycles .

He also could designate one G~bus· address to identify either
the multiplier or the multiplicand. The second operand can
attach directly to the processor's TOP bus. To perform a
multiplication, the multiplier would be written to the G-bus
and the multiplicand placed on the TOP bus . Upon comple-

FlOCK

WEL

HADY Hoel wa. lneldact FORCE
AD COl'9

MO
QJ(

AD
SVSClK

HOATA

FIGURE 6. Configuration of core and shared
memory with host interface.

tion , the processor executes a FETCH_SWAP from the G-bus
to receive either the MSP or LSP of the result (depending on the
multiplier's configuration), placing it in the NEXT register. A
G-bus FETCH then retrieves the remaining product word. This
operation requires only three clock cycl~s to multiply two 16-
bit numbers, and when many numbers need to be scaled by a
constant (the multiplicand), the multiply takes only two clock
cycles once the initial multiplier is written to the· G-bus.

When the multiplier is integrated with the Force processor,
the multiplier and multiplicand can be placed directly on the
TOP and NEXT buses. The multiplier would be configured in
its feedthrough mode, and a 32-bit product would be available
every clock cycle . To execute a multiplication, the processor
needs to read only the appropriate G-bus addresses. D

About the Authors

Peter S. Danile is currently a section head
of semicustom design at Harris Semiconduc
tor. Prior to joining Harris in 1981 , he
worked for both Northern Telecom and Mo
torola Communications . A graduate of the
University of South Florida in 1976, Peter
went on to receive his MSE with honors from
Florida Atlantic University in 1980.

Christopher W. Malinowski is a senior
scientist for Harris ' semiconductor research
and development department, and a program
manager for the Force project. He holds an
MS degree in nuclear electronics and a PhD in
solid-state physics from Warsaw Technical
University.

We're backing you up lVith
products, support, and solutions!

SEMICUSTOM/CUSTOM TECHNOLOGIES LINEAR
• CMOS Programmable Logic • CMOS Digital •Op Amps
• Gate Arrays • CMOS Analog • Comparators
• Standard Cells • Bipolar Analog • Analog Switches
•Full Custom • Dielectric Isolation • Buffers

• Gallium Arsenide
• Radiation Hardened

DATA ACQUISITION TELECOMMUNICATION DIGITAL COMMUNICATION MICROPROCESSOR
• Analog Multiplexers • SLICs • CMOS 1553 Bus Interface •CMOS 80C86-16-Bit
• DIA Converters •PCM and Univ. Active Filters •CMOS UARTs • CMOS 80C88-8/16-Bit
•AID Converters • CVSDs · • CMOS Manchester • CMOS 80C85 RH-8-Bit

.·•Sample-and-Hold • T-1 and ISDN Circuits Encoder/Decoder •CMOS 80C86 RH-16-Blt
Amplifiers • CMOS ARINC Bus Interface • CMOS 8/16-Bit Peripherals

MEMORY GALLIUM ARSENIDE RADIATION HARDENED
•CMOS RAMs • Microwave FETs • SRAMs/PROMs
•CMOS PROMs • Digital ICS • Microprocessors
• CMOS Memory Modules • Microwave Monolithic ICs • Gate Arrays/Standard Cells

Reorder Number. SAR-8019
"'Harris Corp., June 1987
Printed in U.S.A.

• Microwave Amplifiers
• Custom/Fabrication Services

Company Headquarters
2401 Palm Bay Road
Palm Bay, FL 32905
(305) 724-7418

International OEM Sales

•Op Amps/Multiplexers
•Full Custom

Europe Headquarters (UK) 44-734-698-787
. Japan (Tokyo) 81-3-345-8911

National Distributors

Anthem Electronics
Falcon Electronics
Hall-Milrk Electronics
Hamilton-Avnet Corporation
RC. Components
Schweber Electronics

In Canada
Hamilton/Avnet Corporation ··
Semad Electronics ..

DESIGN ENTRY

Standard-cell CPU toolkit
crafts potent processors
Todd Jones, Christopher Malinowski, and Stanley Zepp Reprinted with P"7llission from Electronic

Design (Vol 35, No. 12) May 14, 1987,
Copyright 1987. Hayden Publishing Co. Inc.,
a subsidiary of VNU

Harris Semiconductor Sector, P.O. Box 883, Melbourne, FL 32901; (305) 724-7000.

Real-time-system designers demanding the highest
performance are bound by hardware and software

· chains. System throughputs are shackled by the
limitations of standard microprocessors, a poor
match between popular languages and real-time
control applications, and the lack of a powerful,
general-purpose 16-bit microprocessor that' can
share one chip with application-specific logic.

Designers can overcome the speed limitations
with bit-slice processors, which are hard to pro-

A 16-bit, RISC-like
CPU and complex
support functions
help a cell library
called Force set the
ideas of real-time
designers into silicon.

gram; or by coupling
custom logic and bipo
lar microcontrollers,
which are power
hungry. Such solutions
are expensive to develop .
and build, difficult to
document and main
tain, and often cannot
be applied to new
technologies.

Out to break those
chains is a Forth optimized reduced-instruction-set
computing engine (Force) and a standard-cell tool
kit. The CMOS engine is a 16-bit processor in stan
dard-cell form, and the toolbox is a set of complex
cells, among them a stack controller, interrupt con
troller, multiplier, and multiplier-accumulator.
The cells fit into a computer-aided-design package
for developing real-time products.

The architecture of the reduced-instruction-set
processor puts to work in hardware an existing
Forth-language virtual machine (see "Forth: A
Language for Real-Time Control," p. 94). The sili
con version grows out of technology licensed from
Novix Inc., of Cupertino, Calif., and makes the vir
tual machine available as an embedded CfU and
standard all-based product. The low gate count,
however, does not sacrifice performance.

The RISC-like architecture avoids a high gate
count, a problem that blocks other processors from
serving as standard cells. The CPU has only 2500
gates, a very low number that owes to the proces-

sor's simple, directly executable set of Forth words
and to heavy reliance on the two memory stacks.
The CPU's low gate count leaves plenty of chip for
stack memory, external interfaces, and specialized
1/0 to be created with cell-library CAD tools.

Depending on the task, the core processor can
operate at clock rates in excess of 15 MHi, with an
average execution throughput of between 1 and 1.5
clock cycles per instructfon. That corresponds to a
sustained throughput of 10 to 15 million high-level
instructions per second (MIPS). Also, because each
instruction executes the equivalent of several Forth
primitives, peak processing throughput can exceed
30 million Forth primitives per second.

A typical form that the Force machine would
take starts with the core processor and adds three
memories: a main program memory, a return stack
for dealing with subroutine calls, and a parameter
stack for storing data (Fig. 1). Inside the core are
three key registers that keep the operations moving
at high speed. The I register, which is the logical top
of the return stack; and the Top and Next registers,

DESIGN ENTRY • Cover: Standard-cell CPU

which are the two top locations of a parameter stack. mands operate on the Top and Next registers and return
the result to both those units, especially the Top register.
Similarly, if operations must be performed on the return
stac~, the I register comes into play. There is also a fast
1/0 bus that can be accessed in parallel with the memo
ries. For extra speed, arithmetic or logic operations, if
needed, can be performed on read 1/0 data during, rather
than after, the read cycle.

Thanks to the small core size, designs can rely heavily
on on-chip stack memories. For some tasks, data and pro
gram memories could also be included on chip. However,
when large amounts of memory become too costly, fast,
off-chip ROMs, EPROMs, and static RAMs enable de
signers to build systems operating at clock speeds of 10
MHz or greater.

HIGHLY PARALLEL ARCHITECTURE

All instructions execute in one.or two clock cycles, and
all three memory spaces can be accessed simultaneously.
Although the concepts of RISC design apply to the pro
cessor, the architecture differs significantly from other
CPUs of that type. The Force core puts to work a high
level language as its native instructions, giving the pro
grammer a compact set of very powerful commands.

The main memory holds data, instructions, and the
traditional Forth "dictionary" structures. Dual stacks
are formed by two dedicated RAMs, which appear to the
processor as last-in, first-out (LIFO) structures con
trolled by the stack-controller subsections (one for each
stack). The stack controllers generate stack memory ad
dresses under the direction of the processor.

Other RISC processors use a reduced set of low-level
instructions that help the chips optimize throughput. Of
ten, however, programs are big and development time is
long. In contrast, the Force core needs less code for a giv
en application, increasing programmer productivity and
cutting software-development costs.

In Forth, subroutine calls and operations on the' data
stack are most important. For this reason, the architec
ture is geared to these operations. For instance, the sub
routine call takes one clock to do the "top-of-stack" arith
metic or logic operations. In addition, a subroutine return
can occur in the same clock cycle as most other instruc
tions. As a result, the total subroutine call-and-return
overhead is cut to just one clock cycle with no extra time
needed for the return. The processor core executes instructions fetched out of

main memory. These instructions closely mirror the
Forth language primitives. Arithmetic and logic com-

The processor's highly parallel architecture executes
.the equivalent of several Forth language primitives at

Forth: a language for real-time control

Designing today's real-time control
applications requires a high-level lan
guage that interfaces easily with cus
tom hardware. The ideal language
would need little or no dedicated
memory outside that required for the
application; it would present few, if
any, restrictions on application-mem
ory locations. The language must also
lend itself to testing and debugging
the application in its real-time envi
ronment. Finally, compiled applica
tion code should be compact and exe
cute fast.

One language that easily meets all
those conditions is Forth. No ancil
lary libraries or executives take up
valuable memory space, and because
Forth is quite compact, much of the
development can actually take place
on the application hardware. This
ability greatly aids the integration
and testing phase of the program.
Run-time diagnostics are similarly
aided by a small interpreter that does
real-time monitoring and control in
stand-alone tasks.

Forth is an integrated software-de
velopment environment incorporat-

ing an editor, compiler, and debug
ger, as well as a host of other
development utilities that, in other
environments, are usually separate.
Because Forth is interpretive, the pro
grammer can directly compile and ex
ecute code as soon as it is entered.

Being interpretive, the language
speeds prototyping. It lets designers
find out if the basic algorithm is cor
rect before committing much time
and resources to generating code.

Forth is a software environment
that embodies a "virtual machine,"
which is the heart of the development
system. Much of the virtual machine
is the dictionary, which is a linked list
of procedures called words. Stacks
communicate parameters between
procedures and link subroutine calls
during execution; they are the hub of
all machine activity. The parameter
stack maintains the program data,
and the return stack maintains the re
turn addresses during execution.

A typical application is built upon
subroutines, and each word that is de
fined in Forth is treated like a proce
dure call. An application is built up of

words predefined by the program
mer. These words can in turn be used
again to define mote complex words
in the application. As each new word
is defined, it is entered into the dictio
nary, from which it is pulled as need
ed. This process continues until the fi
nal application program exists as a
single word.

The internal structure of a Forth
word consists of a header, containing
the name field and dictionary link,
and the body. The body is a list of sub
routine calls to the words that make
up the definition. During execJtion of
a word, the internal list ofproc~dures
is executed, calling another word of
internal subroutine lists. This i:!rocess
of subroutine calls continues hntil a
low-level primitive is encourltered.
That primitive is then executed, as it
contains low-level machine
instructions.

This process of layered subroutine
calls is often referred to as threaded
code. Because of this form of execu
tion, the virtual machine depends
heavily on modular programrtling
techniques and subroutine calls.

DESIGN ENTRY • Cover: Standard-cell CPU

ments, the cells can be cascaded using their Carry and
Borrow signals. The cells generate the Stack Underflow
and Stack Overflow outputs to indicate an empty and full
status of the stack. Usually, these outputs would inter
rupt the processor.

For math intensive applications, the toolbox includes a
16-by-16-bit fast multiplier that executes a proprietary al
gorithm and operates at cycle times below 50 ns. The mul
tiplier performs a signed-magnitude multiplication with
in one clock cycle of the engine. Also available is a 16-by-
16-bit multiplier-accumulator (MAC) cell for jobs like
digital filtering.

For dedicated tasks calling for parallel external ALU
or concurrent external arithmetic operations, a set of fast
16- and 32~bit arithmetic cells is available. The library
also includes a 32-bit barrel shifter and a leading-zero-de
tector cell for floating-point math operations that need
fast normalization and denormalization.

Giving priority eiicoding of up to 15 asynchronous
maskable interrupts, the interrupt vector-generator
(IVG) cell also delivers a 16th, nonmaskable interrupt
(NMI) directly to the processor's NMI input. The IV G's
mask register has a bit for each of the prioritized interrupt
inputs and is loaded from the processor's T bus. That bus
connects to the top of the parameter stack.

Any true interrupt input that is not masked will set the
INT, informing the processor of the pending interrupt.

At the same time, the IVG produces a vector location cor
responding to the highest-priority unmasked interrupt
ing input. This location establishes the point at which in
terrupt-code execution starts when the interrupt is
acknowledged. The interrupt-vector location is read onto
the core I/0-input (G) bus when the signal INTA ema
nates from the core during an interrupt-acknowledge cy
cle. That vector can also be read by subsequent 1/0 read
instructions.

An asynchronous host-interface cell lets the core com
municate with slower hosts, typically general-purpose
processors, in a master-slave environment. In the inter
face scheme, the host processor can access either part or
all of the chip's data or program RAM, which would ap
pear to the host as a block of its own memory space. The
interface cell's arbitration logic allows the host only one
access at a time, interleaved with one or more core-pro
cessor accesses. This limfr, however, may pe bypassed
with lock options by either processor. Those options
grant temporary exclusive access to the interface by one
processor or the other.

PUTIING THE PIECES TOGETHER

To see how all the macrocells come together, examine
their work in a high-performance processor aimed at
closed-loop control and other math-intensive tasks. Such
jobs include robotics, instrumentation, flight control, sig-

Return stack input
Main memory
address bus

1/0 registers Main memory Parameter stack

Stack

16

Decrementer

16
Write
Data

Instruction
decode

16

110 input
bus

Instruction
register

Y bus

Output

16

Configuration
register

input Next stack

16 bus output bus
16

Byte swap

Multiply-divide
register

Top bus

Square-root
register

2. A simple processor, the 16-bit Force core contains three key registers, the Top, Next, and I, that hold the
most time-critical information. Other registers in the core take care of status-handling operations. Special
registers and logic help multiply, divide, and find square roots.

DESIGN ENTRY • Cover: Standard-cell CPU

once. In only two cycles, one such multifunction instruc
tion performs the Forth equivalent of over swap-which
exchanges, duplicates, and subtracts the values in two
registers. It is executed just like classic executed Forth
code.

The complex macrocells in the Force toolbox are based
on an advanced cell library and computer-aided-design
capability developed by Harris and SDA Systems Inc., of
Santa Clara, Calif. The tools define cells and macrocells
and efficiently place and route completed designs. They
route designs incorporating fixed blocks of logic or mem
ory, macrocells, and standard cells. Also included are
tools to verify and simulate completed designs. The SDA
software can compile RAMs and ROMs with variable
size, configuration, and layout shape.

Besides the specially develop_ed Force toolbox macro
cells, the SDA design environment also contains a num
ber of microprocessor-support peripherals, such as indus
try-standard and proprietary serial asynchronous
transmitter-receivers, baud-rate generators, clock gener
ators, programmable interval timers, and Manchester en
coder-decoders. Not only that, the toolbox ties directly
into Harris's already available standard-cell library. As a
result, the designer can glue the complex blocks together
or develop added' logic functions using the 7 400-series
logic elements.

For breadboarding of systems, Harris has developed a
144-lead version of the Force core only. The core is in
cluded in a demonstration board from Logical Devices
Inc., of Ft. Lauderdale. With this board, designers can ac
cess all of the processor's 1/0, making it possible to
breadboard a full system. It can interface to any CRT ter
minal or serial-communication port, and contains ROM
and RAM space for the application code. Extra space is
available should a particular task require more memory.

A development system configured as an IBM PC plug-

I

L

Stack
pointer

controller

Clock
generator

Data
RAM

I
I

J

Return
stack RAM

Force
core

..
Parameter
stack RAM

Host interface

"User-configurable for depth

in board and aimed at a PC-integrated development envi
ronment is now in final development by Silicon Compos
ers Inc. of Palo Alto, Calif. Moreover, a Forth target
compiler is now hosted on the IBM PC family. This target
compiler makes possible the development of software in
the PC environment, generating executable code for the
Force processor and for use as a development tool for
software vendors.

A CLOSE LOOK AT THE MACROCELLS

The Force processor core is the key element of the tool
box. That simple, yet powerful control engine is tied to
other circuits by means of parallel, 16-bit data paths to
the parameter stack, return stack, main memory, and the
general-purpose 1/0 bus. There is also a 16-bit main
memory address bus and a 5-bit address extension, which
also functions as an 1/0 address bus. Inside the processor
core are eight registers; four of which are independently
accessible in parallel (Fig. 2).

The Top, Next, I, and Instruction Registers are all sep
arately accessible so that multiple operations can be done
simultaneously. The other four are the program counter,
square-root, configuration, and multiply-divide registers.
With its byte-swap logic on the main memory buses, the
processor can rapidly reorder or perform byte reads or
writes.

The core's two main work areas, the parameter-stack
and return-stack memories, are addressed through iden
tical stack-controller cells (Fig. 3), which generate ad
dress pointers within 5 ns from the time that the core's.
stack, read, and write signals become valid. The ability to
quickly generate the stack addresses is critical to maxi
mizing throughput.

The stack-controller cells can also be externally pre
loaded from the processor's data bus with a predeter
mined stack address. For deep stack-memory require-

Stack
pointer

controller

r----1

I

L

16x16-bit
multiplier

Interrupt
logic

Program
ROM

I
J

1. Harris Semiconductor's Forth-optimized, reduced-instruction-set computing
engine (Force) core can be surrounded by the stacks and various support
functions and memories to build a complete system on just one chip.

DESIGN ENTRY • Cover: Standard-cell CPU

nal processing, graphics, and image processing, (That
processor is, in fact, the first planned product to be built
with the toolbox.)

The control processor takes advantage of the Force en
gine, the high-performance proprietary multiplier, and
the normalize-shift macrocells (Fig. 4). It can function as
a stand-alone processor but because it includes a host in
terface, it can share external main memory with any host
processor. Provisions are also made to handle interrupts
to and from the host processor.

Highly integrated, the chip includes two 128-word
stack memories and controllers, one for the parameter

Read/
Write

Address increment/
decrement logic

Stack address register

Stack address steering
logic

Write

Read

Underflow/
overflow-

Stack
address

Underflow

detection logic t---'---O

Top-of-stack
limiting register

Overflow

3. One of the key support cells in the Force toolbox
is the stack controller, which turns ordinary RAMs
into last-in, first-out stacks for the processor. Two ver
sions of the stack controller address 64 or 256
words of memory. Multiple controllers can be cas
caded to handle larger memory spaces.

I= interrupt
input

stack and onefor the return stack. The address registers
of each of these macrocells can be loaded and read as I/0
devices. On top of that, the overflow and underflow out
put lines from each of these macrocells drive interrupt in
puts on the IVG.

Arithmetic hardware sits on-chip to speed computa
tions. That hardware includes a 16-by-16-bit multiplier
and the normalize-denormalize-shift macrocell. The lat
ter simplifies software development by delivering all the
normalization that modern control systems typically de
mand for fast floating-point operations.

For control tasks, three 16-bit timer-counters on the
chip supply a programmable time base, internal timing,
or event-counting functions. These timers are clocked by
a prescaled internal clock or by external inputs. A 16-in
put IVG rrpcrocell obtains a fast response to internal or
external events. The internal events flagged include over
flow or underflow conditions for the four stacks and the
three timeouts for the timers.

Provisions are also made for nine external interrupts
including a host interrupt, a nonmaskable interrupt, and
seven maskable interrupts. The interrupt mask register in
the IVG cell can enable or disable any of these interrupts
except the nonmaskable one.

The general-purpose coprocessor has the ability to ad
dress up to 16 Mbytes of external memory for code and
data, all of which is external. Such a large range matches
the addressing capability of most general-purpose host
processors and supplies the space needed for software de
velopment, graphics, and image-processing jobs. It also
makes possible complete flexibility with respect to memo
ry configuration.

Because the core processor itself can produce only a 16-
bit address (capable of addressing 64 kbytes of code or
data memory), it is supplemented by memory-address-

generators 12. 14 l2-l9 r (nonmaskable t I interrupt),

t l lw-110 II I

Memoiy, I I t
data,address, Data Data control stack stack

Interrupt Multiplier Timer I User drivers I l (128 words) control
control

I
Gbu

Host Force Bidirectional -interface - core buffers

s

1 l I
1. Return Return Current

Normalize/
Address Configuration Host

Host control stack - stack· task
shift

extension register r--- interrupt
and address (128 words) control register logic

Data ~ enable
13, 15

4. A general-purpose coprocessor, with on-chip resources to handle fast integer multiplication and floating
point math, is easily assembled from the cells in the Force toolbox. Both the parameter and return stacks, as
well as three timer-counters and an interrupt controller, are on the chip.

DESIGN ENTRY • Cover: Standard-cell CPU

PRICE AND AVAILABILITY

The Force library is a part of standard product designs.
The first such design is the coprocessor described in this
article, which will be released in the fourth quarter.
Prices for the coprocessor will be set then. It is also an
ticipated that the Force library will be released for semi
custom design, but no date for that has yet been set.

CIRCLE501

extension logic to achieve the 16-Mbyte range. Thanks to
two 8-bit memory-extension registers within the address
extension logic, independent address extension is sup
plied for code and data to generate 24-bit addresses (16
Mbytes). Because the address extension for code and data
is independent, maximum memory flexibility is gained.

An external processor works with a host-interface ma
crocell to gain access to the entire co-processor memory
(16 Mbytes, ifneeded). This interface looks like a block of
memory to the host, making it very easy to interface to
any processor. The host interrupt to the Force processor
. is put into effect by a host write to a particular memory
address. For stand-alone tasks, the host interface need
not be used. Also included on the chip is a clock oscillator
and clock generator, which supplies timing signals to the

Force core, 1/0 devices, stack RAMs, and to the rest of
the appliction system.

The core processor's 1/0 bus is brought off-chip to
connect to specialized 1/0 deviCes required by the job.
These 1/0 devices can also be built with the Harris
SDA standard cell gate-array design systems. For tasks
that cio not need all the internal 1/0 deyices, an internal
configuration register selectively disables timers, math
hardware, or address extension hardware, making their
1/0 addresses available to external devices.D

Todd Jones is a senior engineer at Harris, responsible for

Force software planning and development. He has a BS de
gree in computer science from the University of Idaho and
an MS in computer science from the Florida Institute of
Technology.

Christopher Malinowski is a senior scientist for Harris's
semiconductor research and development department,
and program manager for the Force project. He holds an
MS degree in nuclear electronics and a Ph.D. in solid-state
physicsfrom Warsaw Technical University.

Stanley Zepp, a senior scientist, is Harris's manager of
business development for the microprocessor product line.
He holds a BEE degree from the University of Florida and
an MEE from New York University.

We're backing you up lVith
products, support, and solutions!

SEMICUSTOM/CUSTOM TECHNOLOGIES LINEAR
• CMOS Programmable Logic • CMOS Digital •Op Amps
• Gate Arrays • CMOS Analog • Comparators
• Standard Cells • Bipolar Analog • Analog Switches
•Full Custom • Dielectric Isolation • Buffers

• Gallium Arsenide
• Radiation Hardened

DATA ACQUISITION TELECOMMUNICATION DIGITAL COMMUNICATION MICROPROCESSOR
• Analog Multiplexers •sues • CMOS 1553 Bus Interface •CMOS 80C86-16-Bit
• DIA Converters •PCM and Univ. Active Filters •CMOS UARTs •CMOS 80C88-8/16-Bit
• AID Converters • CVSDs • CMOS Manchester • CMOS 80C85 RH-8-Bit
• Sample-and-Hold • T-1 and ISDN Circuits Encoder/Decoder • CMOS 80C86 RH-16-Bit

Amplifiers •CMOS ARING Bus Interface • CMOS 8/16-Bit Peripherals

MEMORY GALLIUM ARSENIDE RADIATION HARDENED
•CMOS RAMs • Microwave FETs • SRAMs/PROMs
•CMOS PROMs • Digital ICs • Microprocessors
• CMOS Memory Modules • Microwave Monolithic ICs •Gate Arrays/Standard Cells

Reorder Number: 6AR-8018
®Harris Corp., June 1987
Printed in U.S.A

• Microwave Amplifiers
• Custom/Fabrication Services

Company Headquarters
2401 Palm Bay Road
Palm Bay, FL 32905
(305) 724-7418

International OEM Sales

•Op Amps/Multiplexers
•Full Custom

Europe Headquarters (UK) 44-734-698-787
Japan (Tokyo) 81-3-345-8911

National Distributors

Anthem Electronics
Falcon Electronics
Hall-Mark Electronics
Hamilton-Avnet Corporation
RC. Components
Schweber Electronics

In Canada
Hamilton/ Avnet Corporation
Semad Electronics

0

0

0

Sftj;1ndard C@ll
September 1987

Features
• 1.5 Micron Effective Channel Length, 2-Layer

Metal CMOS

• 1.2ns Typical Gate Delay Through 2-lnput NANO

• Up to 1 OOMHz Fllp·Flop Toggle Rate

• Over 200 Primitive and Macrocell Functions

• Complex Function Megacells

• Customer Definable RAM and ROM

• Supported on Multiple CAE Platforms

Description
The HSC 250 STANDARD CELL LIBRARY is a proven, high
performance dual-level metal library. The library offers a
broad range of predesigned and fully characterized cells,

Die Photo

Copyright © Harris Corporation 1987

This information is current as of August 1987. Updates are issued semiannually.

HSC 250 CMOS Cell Library

• CMOSmL Compatible I/O's
• Commercial-Industrial-Military Temperature Ranges
• Proven Rellable and Manufacturable Process
• Extensive Range of Packaging Options
• Minimum 4kV ESD Protection
• Screening and Qualification to Mil·Std-883 Method

5004/5005, Class B
• Fully Compatible with the HSC200-RH Rad-Hard

Library

macros, complex megacells and compilable RAM and ROM
for developing reliable, cost effective customer specific IC's.

HSC250 CMOS Standard Cell Library

Complex Function Megacells
To enhance the level of system integration, and reduce the
design cycle time Harris has developed a series of complex
function megacells. These functions consist of a family of

-• Microprocessor Peripherals

highly integrated microprocessor peripherals, communica
tion elements, high performance multipliers, and bit slice ele
ments. A list of the available megacells follows:

82C37 A DMA Controller

82C50A Asynchronous Communication Element

82C50B . Asynchronous Communication Element

82C52 . UART/BAG

82C54 . Programmable Interval Timer

82C55A ... , . Programmable Peripheral Interface

82C59A . Priority Interrupt Controller

82C84A . Clock Generator

82C88 , . Bus Controller

• Communication Elements

HD4702 Programmable Bit Rate Generator

HD6402 UART

HD6406 . UART/BAG/Modem Control

HD6408 . ASMA

HD6409 Manchester Encoder/Decoder

HD15530 Manchester Encoder/Decoder

HD15531 Programmable Manchester Encoder/Decoder

•Other Functions

H2901 . 4-Bit Slice ALU

*HMU16, HMU17, HMU18. l6 x 16 Multipliers

**HMU1010 . 16 x 16 Multipliers/Accumulator

Compilable Cells
Harris has further expanded user definability by providing
high performance, module compilation. This capability allows

the customer to quickly generate design specific RAM and
ROM cells.

RAM Compilable to 16K

ROM . Compilable to 64K

*Contact Factory for availability
**Available 01, CY'88

0

0

0

0

0

HSC250 CMOS Standard Cell Library

Absolute Maximum Ratings

Supply Voltage ,, : ... -0.5Vto 7.0V
lnpuVOutput Voltage .. VSS -0.5V

VCC +0.5V
Input Diode Current ... 10mA

VI < 0 or VI > VCC
Output Diode Current . 10mA

VO<OorVO>VCC
Power Dissipation ... 1000mW
Continuous Supply Pin Current
VCC or GND .. 100mA
Storage Temperature
Plastic . -4QOC to + 125oc
Ceramic .. -650Cto+1500C
Continuous Current per Output ... 1 OmA

CAUTION: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and func
tional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to
absolute maximum rated conditions for extended periods may effect device reliability.

NOTE: All applied voltages are with reference to GND (VSS).

Recommended Operating Conditions
D.C. Electrical Specifications VCC = 5V ± 10% TA = Operating Temperature Range

SYMBOL PARAMETER MIN MAX UNIT CONDITIONS

vcc Operating Supply Voltage 4.5 5.5 v

TA Operating Temperature
Commercial 0 70 oc
Industrial -40 85 oc
Military -55 125 oc

VIH Input High Voltage TTL 2.2 .v VCC=5.5V
CMOS 70%VCC

VIL Input Low Voltage TTL 0.8 v VCC=4.5V
CMOS 30%VCC

II Input Current
Standard -1.0 +1.0 µA VIN = VSS = O.OV
Pull Up -500 +10 VIN = VCC = 5.5V
Pull Down -10 +500

Pull Up* -50 µA Vl=2.2V VCC=5.5V
Pull Down* +50 µA Vl=0.8V

IOH Output~ c. ,/~ 6.0 mA VOH = 2.4V; VCC = 4.5V

IOL Output~· ~ ~A)f--- -6.0 mA VOL= 0.4V; VCC = 4.SV - -
IOZ Output Leakage -10.0 +10.0 µA VSS = VOL = O.OV;

VCC = VOH = 5.5V

ICCSB Stand-By Supply *** µA 11=0;10=0

Cl** Input Capacitance 10.0Typical pF VI =VCCorVSS;f= 1MHz

CO** Output Capacitance 10.0 Typical pF VO =VCCorVSS;f= 1MHz

CIO** lnpuVOutput Capacitance 15.0 Typical pF VO =VCCorVSS;f= 1MHz

* Maximum input current for which specified VI will be maintained.
** Characterized at initial design and after any major design or process changes. Maximum values may vary by package type.
*** Customer design dependent.

Sales Offices
U.S. HEADQUARTERS
Harris Semiconductor
2401 Palm Bay Road
Palm Bay, Florida 32905
TEL: (305) 724-7418

DISTRIBUTORS IN U.S.A.
Anthem Electronics
Falcon Electronics
Hall-:Mark Electronics

HSC250 CMOS Standard Cell Library

EUROPEAN HEADQUARTERS
Harris/System Limited
Semiconductor Sector
Eskdale Road
Winnersh Triangle
Wokingham RG11 STA
Berkshire
United Kingdom
TEL:0734-698787

Hamilton/Avnet Corporation
Schweber Electronics

m HARRIS

SEMICONDUCTOR PRODUCTS DIVISION

· FAR EAST HEADQUARTERS
Harris K.K.
Shinjuku NS Bldg. Box 6153
2-4-1 Nishi-Shinjuku
Shinjuku-Ku, Tokyo 163 Japan
TEL: 81-3-345-8911

DISTRIBUTORS IN CANADA
Hamilton/Avnet Corporation
Semad Electronics

Reorder Num.ber: 708-0097

0

0

