
Harris Real Time Express™ (RTXTM):
A New Concept For
Real-Time Control

Real Time Express"', RTX"' .and RTX 2000 ™ are trademarks of Harris Corporation

Contact: Dave Williams
Market Development Manager
(407) 729-4629

mHARRIS

TECHNICAL
BACKGROUNP
INFORMATION
Revised Mtiy 1988

Harris Real T-ime Express (RTX):
A New Concept For
Real-Time Control

PAGE
What are the Requirements for "Real Time" ... 5

High Speed Microcontrollers - A New Alternative to Conventional Microprocessors for Real Time 5

RTX 2000 - Performance Through Simplicity/Parallelism ~ .. 5

Substituting Parallelism for Pipelining Improves Speed While Improving Real Time Responsiveness 6

Stack Based Processors - Optimum for Real Time Structured Programs 6

RTX - Providing Flexible Partitioning Between Hardware and Software 7

RTX vs. Conventional RISC Processors ... 7

RTX - Efficient Operation for Multi-Talking Reentrant Programs 7

FORTH - Well Suited for Real Time Operating Systems ... 8

RTX Compilers for Other Languages ... 8

RTX 2000 - Well Suited for Real Time Artificial Intelligence .. 9

RTX Algorithmic Coprocessors Improve Total System Performance ~ 9

Real Time Software Development is More Complex than Conventional Processing 1 O

Structured Programming Support Reduces Development/Debug Costs for Real Time 1 O

RTX - Maintaining Knowledge of Hardware Operation While Executing a High Level Language 10

RTX Improves Software Productivity for Real Time ... 1 O

· Real Time Debug Demands Special Considerations to Operate at Full Speed 11

RTX - Optimized for Rapid Time to Market .. 11

3

WHAT ARE THE REQUIREMENTS FOR "REAL TIME?"

"How fast is fast enough for real time?" is a complicated
question because of the application specific nature of real
time computing. For example, an acceptable real time
response for a transaction processing system might be a
half-second response to a query. For an avionic control
system, however, a half-second response to an external
event is likely to be too slow. For the former, conventional
data processing type processors are clearly an effective
solution to real time requirements, but in many applications
-- data acquisition, process control, robotics, local area
network controllers, digital signal processing -- the
response within a critical time period is extremely important.
As a result, real time can only be defined within the context
of the end application. It is driven by the processing require­
ments to meet time critical external events.

Many computers need fast instruction execution speeds.
However, for real time applications interrupt latency and
context switch times are important specifications in addition
to the raw instruction execution speed of a processor.
Recent advances in hardware and software have reduced
response times for interrupts and context switches down an
order of magnitude for many processors, to the many tens
of microseconds or many hundreds of microseconds,
respectively. The RTX 2000 brings these response times
down another order magnitude to 400 nanoseconds for
interrupt response time.and two microseconds for context
switch time, while achieving an instruction execution rate
over 1 O MIPS.

A key consideration for real-time processing is
predictability. Most general purpose computers have
features to improve average instruction execution times.
Features such as pipelines, caches, on-chip registers, and
optimizing compilers all contribute to an improvement in
average execution rate. But, they also contribute to more
uncertainty with respect to critical timing predictability. As a
result, external logic, such as OMA controllers or 1/0
processors, must be provided to support all but the most
routine interface requirements with the external world. The
RTX 2000 significantly contributes to moving more
hardware into software as a result of high instruction
execution rate, rapid responses to external events and pre­
dictable timing of instruction execution.

HIGH SPEED MICROCONTROLLERS - A NEW
ALTERNATIVE TO CONVENTIONAL MICRO­
PROCESSORS FOR REAL TIME

Most conventional microprocessors are optimized for an
office automation computer or computer-aided workstation
computing environment. Significant complexity is added to
these machines in order to support the memory manage­
ment and general purpose data processing requirements of
these applications. Microcontrollers, on the other hand, take
advantage of the increased circuit density made possible by
advances in silicon processing to enhance the device for

controller or other specific applications. This has produced
a large variety of devices that are useful for specific applica­
tions as well as microcontrollers for more general purpose
use. However, microcontrollers have traditionally been
much slower than microprocessors and have not been

-optimized to support real time applications.

5

Microcontrollers can be broadly classified as either applica­
tion generic or application specific. The generic products,
such as the RTX 2000, provide solutions for a broad variety
of applications. The RTX 2000, however, with its unique
ASIC Bus, provides the capability of optimizing the solution
by simplifying the partitioning between hardware and soft­
ware through the use of external ASIC peripherals. The
obvious extension to this philosophy is to incorporate those
peripherals on the ASIC Bus within the IC. Therefore, appli­
cation specific devices (both standard product or customer
specific) can be developed as a natural extension to the
core processor.

The emergence of high speed 16-bit microcontrollers provi­
des a new opportunity to replace hardware with software. A
major limitation to the ability to replace hardware with soft­
ware has been the performance constraints of software
solutions. The RTX 2000's substantial increase in
performance provides new opportunities to replace random
logic with software providing significant improvements in
flexibility and time to market. For example, because of the
very high speed of the RTX 2000, a full duplex UART can be
emulated in software and requires less than 1 % of the pro­
cessor's bandwidth to perform the functionality of a 1500
gate UART.

RTX 2000 - PERFORMANCE THROUGH SIMPLICITY I
PARALLELISM

The RTX 2000 achieves performance through simplicity.
The chip is designed for simplicity. It has no pipeline; no
microcode sequencer; and no microcode. All instructions
except memory access instructions execute in one cycle
(memory access instructions execute in two). The RTX
2000 minimizes address calculation delays by incorpora­
ting a simplified memory paging mechanism, and eliminates
the complexity of multiple addressing modes and memory
management. The RTX 2000 is a stack machine. Stacks fa­
cilitate the evaluation of expressions and minimize the con­
trol overhead needed to organize data. The stack uses only
a single pointer register to keep track of and access its data.
A stack machine not only uses a stack for temporary data
storage, but executes all operations on data from the stack.
The ALU thus finds all of its data in a pre-defined location,
and can get that data without an address specification. In
addition, no addresses need to be compiled for· stack
access. The RTX 2000 also has a hardware return stack
which handles subroutine return addresses. This stack can
also be used for temporary data storage as well.

The RTX 2000 instruction set is sub-divided into six
instruction classes, with each section controlling a hard­
ware operation. Like horizontally micro coded bit slice
architecture instructions, multiple operations can be
compacted and coded within a single OP code to execute
in parallel. Four separate buses for 1he data stack, return
stack, memory and ASIC Bus and operate in parallel, signifi­
cantly increasing instruction execution efficiency. For
example, the OP code BE68 (8 G@ ;) simultaneously
references all four address spaces. It fetches a 16-bit data
value from the ASIC Bus, pushes it onto the data stack;
forces a subroutine return, which pops a 20-bit return
address from the return stack a.nd fetches the next instruc­
tion all within a single clock cycle.

In a conventional processor, high-level structured
programs are converted from groups of procedures with
stack-oriented local variables to machine code. A
considerable change in the look and feel of the program
takes place as high-level language operations are
transformed into groups of primitive operations. While the
complex machine instructions that may support such stack
operations (such as frame pushes and pops) and even fetch
a variable (given a frame pointer and an offset) the paradigm
switches from variables and frames (in a high-level
language) to registers and memory pointers in machine
code. The means of passing information between many
high-.level language procedures is the stack. The way of
passing information between conventional machine
language instructions is through registers or discrete
memory locations. The fundamental mechanisms are
completely different. Furthermore, conventional machines
do not support efficient subroutine calls. Many clock cycles
are required for managing the internal operations.

The RTX 2000 uses simple; and fast hardware to execute
high semantic content instructions that closely reflect the
structure of the. program. Performance is not penalized for
organizing programs into small, compact, understandable
procedures. This results in compact program structures that
are composed of hierarchically arranged solutions to sub­
problems. Thus programs can be simultaneously optimized
for small memory space, fast execution speed, and low
development costs. This allows the hardware/software
environment to deliver cost effective solutions to the users
problems.

SUBSTITUTING PARALLELISM FOR PIPELINING
IMPROVES SPEED WHILE IMPROVING REAL TIME
RESPONSIVENESS

Pipelining is a common architectural strategy to increase
the speed for conventional processors. For example,
portions of a processor concentrate on fetching
instructions, fetching operands, computing values, compu­
ting next addresses, and storing results. This metho.d is a
very efficient mechanism to increase speed for sequentially

6

I

executing programs at a relatively small cost of added hard­
ware complexity. However, pipelining impacts the tirl),ing of
instruction response to subroutine calis, interrupts; and
context switching, and the speed increase~ achieved by
pipelining can be lost for highly structured programs.

The RTX 2000 abandons the use of pipelining as a means
to increase circuit speed, and substitutes. parallelism .. The
parallelism comes from exploiting two fundamental charac­
teristics of the RTX architecture. The dual stack Quad Bus
architecture provides an efficient mechanism to increase
simultaneous operations. Harvard architectures have
become increasingly popular in many applications
because they effectively double the bandwidth of a micro~
computer bus system. However, this is at the expense of
increased interface requirements to separately address and
interface both the data and program memory spaces.

In the case qt the m:x 2090, parallelism is achieved by
having on-chip stack memory for both 'parameters and re­
turn addresses, as well as an interface to main memory and
the ASIC Bus for hardware acceleration. Since the stack
buses are on-chip, 1/0 restrictions are eliminated. Also,
since stacks are implicitly addressable without requiring
address fields in the instruction, the number of 'functions
that can be included in each word is increased. This leads
to a significant improvement in performance due to the
increased amount of work that is done within every
instruction execution.

Another important difference between a conventional RISC
machine and a CISC machine is the large semantic gap
between high-level language source code and its corre­
sponding machine code. This results in creating a large
number of machine instructions for every high-level
language instruction. The RTX 2000 differs dramatically
from that mode of operation by having a single instruction
correspondence tq most FORTH instructions and, in fact,
can pack up to three FORTH instructions in a single word.
This high semantic content in each in.struction greatly
improves the effective operating speed of the processor.

Another limitation of pipelining in a heavily structured. or
asynchronous real time environment is the inefficiency and
uncertainty of emptying and refilling the pipeline when bran­
ches or interrupts occur. The RTX 2000, by eliminating the
pipeline, significantly improves the utilization of a.II available
memory cycles and reduces the timing uncertainty of
instruction execution.

STACK BASED PROCESSORS - OPTIMUM FOR REAL
TIME STRUCTURED PROGRAMS

Conventional computers are optimized for executing
programs made up of streams of serial instructions.
Conversely, modern programming practices stress the ·

importance of non-sequential control flow, and small
procedures. The result of this hardware/software mismatch
in today's general purpose computers is a costly
sub-optimal compromise. In fact, the very philosophy of
conventional RISC architectures is to implement only the
most used instructions by studying software programs
which have been based on existing architectures. This is a
self-perpetuation of the programming style dictated by regi­
ster based Von Neumann machines. The RTX 2000 takes a
radically different approach by optimizing the instructions
set to the requirement of a particular high level language
(FORTH) which is well suited to real time control. However
the architecture is also well suited to other high level
languages. The objective is to promote the use of a highly
structured programming style for real time, without the
usual performance penalties. The RTX 2000 provides an
efficient procedure for subroutine call through the use of the
stack to store the parameters and a highly efficient
subroutine call itself. A subroutine call takes only one clock
cycle and the return can take zero clock cycles (since it can
be implemented within the last instruction of the subroutine
sequence).

RTX - PROVIDING FLEXIBLE PARTITIONING
BETWEEN HARDWARE AND SOFTWARE

While semicustom ICs provide an attractive performance
and integration alternative to standard microprocessors,
they are not amenable to dealing with change. Off the shelf
programmable ICs, with their support hardware and soft·
ware tools, offer far greater flexibility. Consequently, when
designers face requirements for both high performance and
adaptability, some are finding that a mixture of application
specific ICs and standard products is the optimum
approach. The ability to partition the task between hardware
and software is an important element in achieving total
system performance. The RTX 2000 significantly increases
the speed of solving hardware problems in software. In
some applications, however, only hardware is fast enough.
The ability to make an efficient partitioning between what is
implemented in hardware and what is implemented in soft·
ware is a key element in achieving system cost and
performance objectives. The RTX ASIC Bus is a unique
approach to assist developers in partitioning hardware and
software efficiently. Because the memory bus and ASIC
Bus run concurrently and the ASIC Bus can be operated on
directly by RTX instructions, hardware accelerators can
easily be added internally or externally to speed up
processing functions.

RTX vs. CONVENTIONAL RISC PROCESSORS

Traditionally, most embedded control processing functions
have been performed by general 1:mrpose microprocessors
such as the 8086, 80286 or 68000 family. With the
emergence of RISC computers, many manufacturers are
claiming that they are well suited for embedded control

7

applications. RISC processors are generally optimized for
the requirements of 32-bit workstations and super
microcomputers. While they are clearly capable of
providing computing power for embedded applications,
they have many specialized features that relate to
supporting the UNIX environment and the specific
requirements of computer aided engineering. While these
processors have a small simple instruction set to achieve
speed, they are hardly simple devices, most having in
excess of 200,000 transistors, extensive memory
management, and extensive pipelining. In addition, they
require complex compilers to create efficient optimized
code. As a result, the programmer loses visibility into the
actual operations of the machine, thus creating a difficult to
design environment for time critical functions. Since the
machine is dependent on the operation of this optimizing
compiler, programming in assembly language for those
time critical applications is prohibitive.

While on-board memory management is useful for comput- .
er aided engineering functions in a multi-user environment,
most realtime applications run logical to physical, not using
virtual addressing at all. There's usually no need for virtual
addressing in realtime appl_ications. While the protection
features of a memory management unit can be handy
during program development, they are usually not required
once the finished code is running.

Most RISC machines make extensive use of registers. As an
example, the AMO 29000 has 192 general purpose regis·
ters on board. While each task may not use all registers,
swapping out an extensive set of registers during a context
switch creates an excessive latency problem which is often
unacceptable. Allocation of a fixed number of registers to
each task becomes a confining condition for the compiler.

Several characteristics of FORTH facilitate a simple scheme
for context switching. Conventional architectures are not
fast at context switch because they use a large number of
registers. Saving or restoring a FORTH task in an RTX con­
text switch takes little time because FORTH uses as few as
three registers. The RTX 2000 core contains only eight
registers so that a complete context switch to store all of the
registers can be done very quickly.

RTX - EFFICIENT OPERATION FOR MULTI TASKING
REENTRANT PROGRAMS

Although all real time operating systems are multi-tasking,
not all multi-tasking operating systems are real time. Unix,
for example, takes far too long to answer interrupts and
make a context switch to suit real time applications. Its file
structure suits program development, but not online control.
Unix does not use reentrant code. If 16 users invoke an
editor, then Unix loads 16 copies of the editor, thereby
consuming large .amounts of memory. Further, it has only
rudimentary facilities for inter-task communication
synchronization.

Another advantage of a stack oriented machine is the
capability to efficiently support reentrant code. Reentrant
code is useful in real time systems for two reasons: first, it
saves space, because many tasks can use the same
reentrant code simultaneously. The fastest real time
systems must keep all code in memory -- a practice that
puts a premium on compact coding style. Second, reentrant
code exactly suits multi-tasking since you can interrupt the
process using reentrant code at any point iii the code
segment, and later resume the process with no adverse
effects. FORTH produces code that is inherently suitable for
reentrant programs. Other languages require discipline on
the part of the programmer. Making a routine reentrant
simply means that all variables must reside in an area
private to the task using the code, not in the code itself. The
penalty for using reentrant code can be increased overhead
or more CPU cycles for conventional processors, because
read and write operations are indirect rather than
immediate. Because FORTH promotes an object oriented
programming style, reentrant programs are more
manageable and comprehensible, especially in a multi­
tasking environment. Of all the languages commonly used
for real time control, only FORTH offers a straight forward
programming facility for building classes of objects.

FORTH - WELL SUITED FOR REAL TIME OPERATING
SYSTEMS

FORTH was originally developed for real time applications,
and from its inception it has. included features designed to
simplify handling multiple concurrent tasks .. Harris plans to
offer several real-time operating system solutions for the
broad variety of application requirements that the RTX 2000
will serve. FORTH, lnc.'s polyFORTH, for example, which
will be offered for the RTX 2000, includes a multitasking,
multiuser real time OS which has 'been widely used in
industrial and aerospace applications. polyFORTH uses a ·
proprietary multitasking algorithm which has been
benchmarked at between four and twenty times faster than
other real time OSs on CPUs of the 68000 and 8086
families (l&CS, October, 1987).

The secret to polyFORTH's speed is a "non-preemptive"
multitasking algorithm. This means that a task relinquishes
control of the CPU under well-defined, predictable circums­
tances, instead of having control taken away unpredictably
when a time interval is up or an external event requires
handling by a higher. priority task.

In systems using preemptive multitasking, a task may be
suspended when it is partially through updating a variable,

. for example. To avoid this, mailboxes or shared variables
may only be accessed through system calls, which resolve
potential conflicts at some cost in overhead. In polyFORTH,
however, such a situation cannot arise, and so a shared
memory region may be used to contain data of interest to
two or more tasks with no OS overhead involved.

8

The polyFORTH multitasker is a simple round robin, and
normally tasks don't have priorities. The hon-preemptive
round robin algorithm ensures optimum performance to all
tasks. A task relinquishes the CPU whenever it performs
any kind of 1/0 operation (including "virtual 1/0" such as
writing into screen memory). When the operation is
complete, the task will wake up on its next turn. In most
real-time applications there is so much 1/0 being
performed that this is sufficient to guarantee rapid
turnaround. There are commands available to "tune" CPU­
intensive operations, if necessary. A real-time clock helps
you to monitor how long tasks have to wait to wake up, and
do whatever tuning is appropriate.

Another way in which polyFORTH ensures that all functions
are performed as fast as necessary is by having no OS
overhead whatever on interrupt ser\ticing. Event response in
polyFORTH is a two-layer process: interrupts are serviced
instantly, with the hardware vector going straight into the
application service routine. This service routine handles the
most time-critical operations (reading a value and storing it
in memory, for example), then notifies the task responsible
for the interrupting device that the event has occurred. The
task will "wake up" on its next pass through the round robin
and handle the more complex aspects of processing.

The combination of low-overhead task management yvith
instantaneous interrupt servicing provides the ability to
handle extremely high data rates and complex real time
applications with ease.

RTX COMPILERS FOR OTHER LANGUAGES

While the RTX 2000 directly executes FORTH, efficient
compilers for other languages can also be developed .. The
architecture for the RTX 2000 is well suited for providing
facilities for the efficient implementation of other languages
such as "C", PROLOG and ADA. "C" compilers also use
stacks to create local variables and to pass ·run time
parameters among functions. "C" breaks tasks up into
functions. A "C" program consists essentially of a series of
functions with one beginning function specified as main ().
It is straight forward to implement a "C" language run time
allocation stack using the RTX 2000's fast access user
memory locations as pseudo-registers. Data can be
accessed by allocating one of the RTX 2000 pseudo-regis­
ters (first 32 words of memory) to create a pointer into the
stack. This stack can be used to file clusters of information
called frames. Offsets into the stack are addressed to fetch
as 2-part addresses. A routine to find data first asks which
frame and then which element in the frame to fetch. A stack
frame is a miniature segmented memory with a 2-part ad­
dress.

Stack frames store information on entry to functions. They
permit temporary storage of variables and parameters so
that subsequent routines can run without interfering with

other functions, variables and parameters. The RTX instruc­
tion set pseudo-register operations support the capability
to develop an efficient "C" compiler. Since instructions
execute at a high clock speed, the use of pseudo register
enables micro code-like performance of custom "C" run
time stack instruction sequences.

RTX 2000 - WELL SUITED FOR REALTIME ARTIFICIAL
INTELLIGENCE

The recent flurry of activity in commercial expert system
development has all but bypassed the real time computing
community. Although it is desirable to incorporate expert
systems in some real time computing applications, the
amount of computing over symbols (reasoning) required by
an expert system is difficult to implement in real time.
General real time symbolic processing has remained an Al
research problem, however a number of applications have
been implemented which use FORTH. FORTH provides an
integrated environment for both conventional data
processing and Al with a FORTH Prolog compiler. This
technique has been applied in a diesel electric locomotive
repair expert system, an orbiting spacecraft command and
control system, a spacecraft trajectory processing data
error detection system, and a real time polysomographer
sleep disorder diagnosis system. Other applications
include utilization of expert system capabilities for such
applications as radar and sonar processing, image
compression and analysis, etc. A Prolog compiler is being
developed which provides a set of high-level artificial intelli­
gence programming tools (i.e., inference engine,
language parser, etc.) built from FORTH primitives to take
advantage of the high run time execution speed offered by
FORTH. In this implementation, the Prolog interpreter is
imbedded in a FORTH environment. Real time algorithms
stored in the knowledge base through this mechanism can
subsequently be executed on a logic driven basis by the
expert system.

RTX ALGORITHMIC COPROCESSORS IMPROVE
TOTAL SYSTEM PERFORMANCE

Designers of both microprocessors and peripheral
interfaces are struggling to minimize the traffic jam their
own success has created. New techniques in bus
management, heavy use of specialized memories like
caches and FIFO buffers, and a new reliance on distributed
1/0 processing are all strategies being used to resolve
microcomputer 1/0 bottlenecks. As these techniques are
more widely used they are changing the architecture of
silicon components, and they are equally affecting the
practice of microcomputer system design. The RTX 2000
provides a significant capability to attack the 1/0 processor
and coprocessor requirements to improve overall system
performance by distributing the processing. Of significance
is the development of a shared memory to provide an effi­
cient interface between an RTX coprocessor and host. The

9

ability to have a stored program controller as a coprocessor
provides the capability to compute complete algorithms
rather than just a single operation at a time. This provides a
major improvement in the system performance due to
elimination of heavy bus overhead and the inefficiency of
tying up the host processor to service the coprocessor.
Such applications as Local Area Network controllers and
virtual disks, demand that memory pages be swapped over
the network or disks for remote file service, but the
increased frequency with which packets arrive and depart
can cause a workstation to approach its memory bandwidth
limitations. Another example is when a microcomputer
forms the backend of the signal processing system. Data
may be required for the digital signal processing algorithms
at very high rates. Maintaining data flow through the system
may demand that the system microprocessor continue run­
ning at these high speeds until all data is processed.

The push to make individual components run faster soon
runs into complications. The utilization of coprocessing
controllers within the microcomputer environment is a
technique which can significantly increase performance of
the overall system by reducing the amount of bus interface
time for the host processor. A powerful strategy for breaking
up bottlenecks is to move the 1/0 driver code from the CPU
to the peripheral controllers. An obvious example is in serial
concentrators where the processor monitors the number of
serial lines, accumulating data until the entire block has
been received. In a multi-user UNIX system for example,
this function usually requires a serial concentrator to
perform basic UNIX line editing functions since these ope­
rations must occur before the end of line character comes in
from the terminal.

The strategy of removing the responsibility for device and
housekeeping off the CPU and on to the peripheral
controller dictates that the device controllers become
programmable to pick up many of the tasks formerly
executed by the device driver software in the host. Moving
these tasks to the controller not only removes slow dumb
tasks from the central resource, but also spares the central
processor the hail of interrupts, context switches,
commands and status bytes that are a necessary side effect
of centralized device drivers. This not only maximizes 1/0
speeds, but it also simplifies the user's programming
requirements. The 1/0 controller concept provides a system
design that emphasizes distributed processing with a high
degree of concurrency and parallelism. In addition, this
architecture provides an environment that reduces the data
movement within the system.

Currently, 1/0 processors of this class are based on bit slice·
architectures in order to provide the performance necessary
to manipulate data on the fly. A standard product micropro­
cessor such as the RTX 2000, with a high level program­
ming language, helps users interface standard 1/0 ports to

the host processor. The result is an architecture optimized
for high performance, but with a high degree of modularity
and user programmability, saving developers both time and
expense. The utilization of 1/0 processors also helps avoid
arbitration between devices ·producing input and output
data streams. Since the RTX 2000 has all of the provisions
to support direct memory access management, the
processor has the capability to incorporate smart OMA,
which relieves the host of this burden.

language, because the compiler has dramatically altered
the programming style of the program. The compiler
modifies content by providing optimization including the
unrolling of loops into in-line code, and expanding the
lowest level procedures as macros within the calling
routines.

RTX - MAINTAINING KNOWLEDGE OF HARDWARE
OPERATION WHILE EXECUTING A HIGH LEVEL
LANGUAGE

Since the RTX creates a virtual FORTH machine, the
correlation between the high-level FORTH language and

The characteristics of real time software systems that set it the operations executing in the FORTH engine are closely
apart from conventional data processing applications are coupled. Therefore; the uncertainty with regard to wha'.t the
that real time systems must: compiler is doing to the source language of the real time

REAL TIME SOFTWARE DEVELOPMENT IS MORE
COMPLEX THAN CONVENTIONAL PROCESSING

• Respond to real world stimuli. system is significantly reduced. Also, by providing symbolic
• Within a finite period of time. capabilities within the development system and operating
• By directly manipulating hardware resources. completely within the high-level language, software and
• As a set of concurrent asynchronous processes. hardware debug and integration is significantly simplified.

• With a high degree of reliability. Optimizing compilers obscure the correspondence

The RTX family contains both software development tools between source code and compiled object code. Programs
as well as fast hardware to operate in this environment. It written in a high-level language that need to meet specific
promotes an interactive programming environme@t which response time specifications require the programmer to
has four primary attributes: switch on the compilers optimizer and then debug
• A set of highly integrated tools. optimized code. Among the many techniques optimizing
• Which are low cost and simple to use. compilers employ is register allocation by coloring. Coloring
• Which do not burden the target system with keeps the most commonly used values and registers at all

unnecessary complexity. times. The compiler examines the entire subroutine to
• Which promote use of the underlying structure of the determine which local variables and parameters are used

program as an organizing tool. most often in a routine. It allocates them to registers.

STRUCTURED PROGRAMMING SUPPORT REDUCES
DEVELOPMENT/DEBUG COSTS FOR REAL TIME

Hardware that is fundamentally based on the concept of
modularity and programmer interactiveness will lead to
changes in programming style that will better support
efficient software development. The expense of using a
software programmable microcontroller to solve a problem
consists of not only the money tor hardware, but also the
development costs of creating and debugging the code.

. Previously the cost of solving problems with computers was
.dominated by hardware costs, but as hardware costs have
plunged, software costs have grown by leaps and bounds.
This is nowhere more evident than real time control. Real
time control applications tend to be significantly more
complex than conventional programming and, ironically, ·
offer the least amount of high-level language support. for
those time critical functions. The developer is caught in the

. dilemma of trying to write most of the program in a high­
level language support such as C or ADA, only to have to
merge in assembly language programming for the most
time-critical applications. Worse, during the debug process
there is a poor correlation between what is written in the
high-level language and what appears in the machine

10

Further, the register allocator can use data flow analysis to
find the lifetime of each variable. Using this information it
can increase the number of variables that get stored in
registers by using the same register for several variables in
the same subroutine.

A software developer must be very familiar with the
operation of the compiler in order to understand the
implications of what is happening in real time software. The
designer cannot be assured of just where program varia­
bles are as when programming in assembler language and
making the variable assignments explicit A key feature of
writing in FORTH and executing in FORTH on the RTX
2000 is the close correlation between the high-level
language and the actual execution of the machine. Real
time programs which must respond in a critical time period
can therefore be more easily designed since the complete
operation of the machine is understood.

RTX IMPROVES SOFTWARE PRODUCTIVITY FOR
REAL TIME

According to the Defense Science Board Task Force on mil­
itary software, most software productivity gain has been
brought about by three factors. First is utilization of a high
level language. The removal of awkwardness of machine

language has been shown to increase software productivity
by a factor of 1 O. While the benefits of a high level language
have been available for low performance functions, many
real time applications heretofore have often been
programmed in assembly language. Even with high level
languages, slow turnaround, edit, compile, link, load, and
debug cycles contribute to a loss of mental continuity in the
development and debugging of software. An integrated,
interactive development environment has been shown to
result in improvement~ in productivity from two to five.
Finally, compatibility of files, formats and interfaces among
the various tools has been demonstrated to increase prod­
uctivity by a factor of two. These are precisely the benefits of
FORTH that have been incorporated into the RTX family
development tools.

REAL TIME DEBUG DEMANDS SPECIAL CONSIDERA­
TIONS TO OPERATE AT FULL SPEED

In a typical software development environment (the host
and target method), programmers use a general purpose
host such as a DEC VAX, a CAE workstation, or an IBM PC
AT to generate application code. After they write the code,
programmers must transport it to the target for final testing.
Unfortunately, for most embedded microprocessor
development the target system does not offer enough
programming and test resources to support the total
development process. In order to debug the hardware, an In
Circuit Emulator (ICE) is the most traditional vehicle for

debugging monitor in the target system and is an excellent
alternative to· ICE. Because the RTX is fully static and
eliminates pipelining, the problem of getting the hardware to
work initially can be solved through single step operations
using low cost logic analyzers and the host development
system. Then the full capabilities of the integrated
hardware/software development system can be used to
provide a cost effective and high performance approach to
achieving hardware/software integration.

RTX - OPTIMIZED FOR RAPID TIME TO MARKET

Time to market is becoming an increasingly important
criteria for the makers of electronic systems. The problem
has been intensifying as product lifetimes have
progressively Shortened. Makers and users of semicustom
chips feel the pressure even more because of the need to
generate prototypes before a system can be debugged and
demonstrated; much less marketed. The RTX 2000
provides a cost effective means of implementing a core
based processor in a semicustom environment. Because it
is a standard product with an ASIC Bus designed to
accommodate application specific peripherals, prototypes
can be rapidly developed with a standard product. This sig­
nificantly lowers the risk of development for a complex
microcontroller based on a core processor. Because the
ASIC Bus can be integrated on-chip, future versions can
incorporate not only the core processor, but the external
peripheral logic and memories all on one chip.

testing programs written for embedded processors. While In almost every project -- military or commercial -- the
an ICE is a powerful tool for software and hardware integra- faster the prototype is up and running the more likely the
tion, its high cost may be difficult to justify for an application system will meet the market window. Shorter prototyping
specific device. Of more importance, the cabling require- time means getting to market faster, with less risk. Realtime
ments and timing constraints for a 10-MIP processor systems tend to have complex relationships with external
provide a significant performance limitation in the@feasibility hardware. A hardware prototyping vehicle is a useful
of debugging the system at full speed for realtime applica- mechanism to validate real time performance and is compli­
tions. The Harris approach provides a real time mentary to the use of simulation.

11

