
•

•

•

•

Harris Semiconductor

No. 117 March 1989

--- -= -= -
::a. ==

- -- --- -- --

Harris Digital

IMPLEMENTING A SOFTWARE UART ON
THE HARRIS RTX 2000

This application note illustrates how a UART can be imple

mented on the Harris RTX 2000 in software. Implementing a
software UART has many advantages over the typical hard

ware implementation. The most obvious advantage is the
reduction in system chip count. This reduces system cost
and power and increases overall system reliability. The oth

er major advantage of implementing a software UART is the

added flexibility. With a software UART, a software modifi
cation can change signal encoding formats, signal frequen

cy, or error checking techniques. Thus, if a change is made
in the communication protocol after the hardware design is
complete, the change will result in a software update rather

than a hardware redesign. The only disadvantage to imple

menting a UART in software is the reduction of available

processor band width. The software UART in this example

will result in less than a 2% reduction in RTX processing
band width when continually transmitting and receiving

data at 1200 Baud. This small reduction in band width is not
significant when executing on the RTX 2000 which runs at
> 10 MIPS.

The UART implemented in this example is designed to allow

the RTX 2000 to communicate over a serial RS-232 link to
a terminal. This example uses 8 data bits, 1 stop and no

parity. It would be straight forward to make these options

setable via the software. This was not done in this example

in order to focus on the most difficult portion of the problem

which is the basic sending and receiving of data. The soft
ware UART also contains an automatic Baud rate detection
routine which detects the Baud rate by timing the bit period
of the incoming serial data. The software UART incorpo
rates both a sixteen character receive and transmit buffer to
increase efficiency.

Implementing the UART requires a method to output and
input serial data. This example uses one of the RTX 2000
external interrupt lines to input data, and uses the RTX 2000
Boot pin to output data. One of the three RTX 2000 on chip

timers is used to generate the correct Baud rate. The only
external hardware needed to communicate with RS-232
interface is an RS-232 line driver/receiver used to condition
the digital data to the levels required by the RS-232 stand

ard. This can be done with a single IC, and is described in
section titled "HARDWARE NECESSARY FOR SOFT
WARE UART".

Forth Background Information

All the code in this example is written in Forth. This section
contains a brief introduction to some of the concepts of the

programming language Forth. It is intended to help people

who have never used Forth to read through and understand
the code in the examples.

More information on Forth can be obtained from one of the
books on Forth listed in Appendix A. Forth is a high level
language that was originally developed for embedded real

time applications. Forth creates fast compact code which

makes it well suited for embedded real time applications.

Forth is a stack based language and uses postfix notation.

That is, for all operations, the operands come before the
operation. For example the following code would add the
numbers 5 and 10:

510 +

To execute this code Forth first puts the 5 on the stack, fol
lowed by the 10. The+ operation adds the top two values
on the stack, leaving only the result on the stack. Thus, the

above operation would result in a 15 being pushed on to the
stack.

In Forth, procedures or subroutines are called words .

The : operator denotes the start of a new definition for a

word. The ; operator denotes the end of a definition. The
following code defines a word called MINUTES-TO-SEC

ONDS which converts a value from minutes to seconds by
multiplying the number on the top of the stack by 60; the re
sult is left on the stack.

: MINUTES-TO-SECONDS 60 * ;

The following code would execute this word converting 3
minutes to 180 seconds.

3 MINUTES-TO-SECONDS

The above code pushes a 3 on the stack and executes the
word MINUTES-TO-SECONDS, which pushes a 60 on the
stack and then multiplies the top two items on the stack. The
above operation would result in a 180 being pushed on the

stack. Forth uses the stack to pass parameters between
words.

Application Note 117

The operators @ (read fetch) and I (read store) are used by
Forth to access memory. To read data from memory the
address is pushed on the stack and then @ is executed. The
~operation reads the data addressed by the value on the top
of the stack from memory and pushes it on the stack.

100 @ \ Reads memory location 100 and pushes the
\ data on stack.

COUNT @ \ Assuming COUNT is a variable, The word
\ COUNT places the address of COUNT on
\ the stack, and @ reads the data stored in
\ COUNT from memory and pushes it on the
\ stack.

The\ operator is a comment in Forth. Everything after\ on a
line is ignored. Comments can also be enclosed in parenthe
ses; e.g. (comment goes here).

The I (Store operation) has two operands. The first operand is
the data that is to be written to memory, and second operand
is the address where the data is to be stored. For example:

20 100 I \ Writes a 20 to memory location 100.

O COUNT I \ Writes a zero to memory addressed by
\ COUNT.

Since Forth is stack oriented, numerous operations are pro
vided for manipulating the stack. Following are a few exam
ples of stack manipulation operations.

DUP (n -- n n) \ Duplicates the top
\ element on the stack

SWAP (n1 n2 -- n2 n1 \ Swaps top two ele-
\ ments on the stack

DROP (n --) \ Drops top element
\ from the stack

ROT (n1 n2n3--n2n3n1 \ Rotates top 3 items
\ on stack

The comments in parentheses are typically used to show the
effects of an operation on the stack. The data before the -- in
dicates the stack status before the operation. The data after
the -- indicates the stack status after the operation. The top
of stack is always right most in the list. For example, before
the SWAP operation n2 represents the data on the top of the
stack, after the SWAP n1 is on the top of the stack.

Forth also provides an IF statement Due to the postfix nature
of the language, the syntax of the IF THEN ELSE statement is
somewhat different than other languages. The statement has
the following format:

(condition) IF (execute this code if condition is TRUE)

ELSE (execute this code if condition is FALSE)

THEN (continue executing here after if)

In Forth TRUE is any non-zero value and FALSE is a zero
value. The THEN portion of the IF statement is sometimes
confusing to people familiar with other programming lan
guages. In Forth THEN represents the end of the IF statement
rather than the portion that is done when the IF test is TRUE.
There is a mechanism to define a word ENDIF to perform the
same function as THEN. To make the software UART code

2

easier to read for people not familar with Forth, assume that
ENDIF has been defined to do the same thing as THEN. Fol
lowing is an example of an IF statement in Forth.

HOURS-WORKED @ 40 < \ Test if hours worked less
\ than40

IF
NORMAL-WAGES \ If Hours worked < 40 call

\ word NORMAL-WAGES
ELSE

OVERTIME-WAGES \ else call word
\ OVERTIME-WAGES

ENDIF
CALCULATE-TAX \ When done with IF

\ CALCULATE-TAX

Forth, like other high level languages, provides several struc
tures for looping. An example of one of them is the BEGIN
UNTIL loop.

This is similar to the REPEAT UNTIL loop in PASCAL Follow
ing is the format for the BEGIN UNTIL loop.

BEGIN
(execute this code until condition is true)

(condition) UNTIL

The following loop reads in data (by executing a word
READ-DATA not defined here) and then manipulates the data
in some manner (by executing the word MANIPULATE
DATA also not defined here .) This loop continues until the
word ?END-OF-DATA pushes a TRUE (non-zero) value on
the stack. ?END-OF-DATA is a forth word (again not defined
here) that checks the data for some ending condition and if
found pushes TRUE on the stack, if the end is not found
FALSE is pushed on the stack.

BEGIN \ Beginning of Loop.
READ-DATA \ Execute Word that reads in

\ data
MANIPULATE-DATA \ Execute Word to Manipulate

\ data.

?END-OF-DATA \ Execute Word to detect end
\ of data.

UNTIL \ Go back to BEGIN until ?END-

\ OF-DATA returns TRUE.

Hopefully, the above information has given the reader enough
information to read through the Forth code for the sample
UART. For more information on Forth there are several Forth
books on the market. (See Appendix A for list)

UART Implementation Details
Using the Boot Pin to Transmit Data

The boot pin of the RTX 2000 is a software controlled output
that can be set or cleared with a bit in the Configuration Regi
ster (CR). The boot pin is set to one by the processor after
reset.

The boot pin was intended to be used for memory decoding
of a PROM containing the initialization program for a system.
The initialization program would only be run after a processor

•

•

•

•

•

•

•

•

•

•

Application Note 117

reset. After initialization is complete, the program, could
clear the boot pin to zero causing the address decoding to
disable the reset PROM and enable a different PROM or
RAM for normal system operation.

If this feature is not used, the boot pin can be used as a gen
eral purpose software controlled output bit. This example
uses the Boot pin as the serial output for the RS-232 com
munication. If the Boot pin is used for other purposes, it
would be quite simple to use an address on the memory bus
or ASIC bu~ for se.rial data output.

The Boot pin is controlled by setting or clearing bit 3 of the
Configuration Register (CR). (See Harris RTX 2000 Pro
grammer's Reference Manual and RTX 2000 data sheet for
more information on the Configuration Register.) Following
is the Forth code for a word called XMIT1 that sets the Boot
pin to one.

XMIT1 \ Word to Transmit a 1 on the Boot Pin.

CR@ \ CR Fetch, copies Configuration Register to
\ top of stack.

OBOR \ Set bit 3 of CR stored on stack top to 1.

CR! \ CR Store, copies stack top to CR setting
\ boot pin.

Similarly, the boot pin can be cleared to zero by ANDing the
old configuration register with FFF7 instead of ORing it with
08 as in the above example. The Boot pin is used to transmit
serial data by setting and clearing bit 3 of the configuration
register at the appropriate Baud rate. (The section titled
"Using Internal Timer to Generate Baud Rate" describes
how the Baud rate is generated.) To transmit data, the Boot
pin is connected to the RS-232 line that transmits serial
data to the terminal.

Using an External Interrupt to Receive Data

This example uses one of the RTX 2000 external interrupt
lines to receive the serial data. The start bit of the RS-232
data will interrupt the processor indicating serial data is
starting to be received. The RTX 2000 provides a mecha
nism for polling the external interrupt lines. This feature is
used to read in the serial data at the appropriate Baud rate,
after the start bit has been detected via the external inter
rupt. This example uses external interrupt 3 (El3) for serial
data input.

The following sequence of steps is necessary to poll an
external interrupt line on the RTX 2000.

1) Disable interrupts and save current interrupt mask.

2) Mask all interrupts except external line being polled.

3) Read interrupt vector register (IVR) to see if external line
being polled has an interrupt pending. If so, then a one
was read; if not a zero was read.

4) Restore current interrupt mask and enable interrupts.

3

Following is the Forth code for the word POLL-El3 that im
plements the above sequence for reading external interrupt
3 (El3):

POLL-El3 \ Word to read El3 leaves result on
\ top of stack.

DISABLE-INTERRUPTS
\ Word to disable RTX interrupts.

IMR@ \ IMR fetch, store current interrupt
\ mask register on top of stack.

FBFF IMR! \ Store FBFF in IMR, thus masking
\ all interrupts except El3.

IVR@ \ IVR fetch, reads interrupt vector
\ register.

03FF AND \ Clear upper 5 bits of interrupt vector.

AO= \ Test to see if interrupt pending is El3.
\ Th is will leave a 1 on stack if El3 is 1,
\ or zero otherwise.

SWAP IMR! \ Restore saved IMR.

ENABLE-INTERRUPTS
\ Word to enable RTX interrupts.

For more information on the Interrupt Mask Register, Inter
rupt Vector Register, and Configuration Register see Harris
RTX 2000 Programmer's Reference Manual and data sheet.
Following are the definitions for the words to enable and
disable RTX interrupts.

DISABLE-INTERRUPTS
\ Word to disable RTX interrupts

CR@ \ CR fetch, save current Configura
\ tion Register on Stack

100R

CR!

\ Set bit 4 of saved configuration
\ register on stack

\ CR store, Load data from stack into
\ Configuration register

ENABLE-INTERRUPTS
\ Word to enable RTX interrupts

CR@ \ CR fetch, save current Configura
\ tion Register on Stack

CR! \ CR store, load configuration
\ register with value on stack. This
\ can be done since CR bit 4 always
\ reads as a zero so you can read
\ register and write it back to
\ enable interrupts.

To input serial data, the RS-232 line that transmits data
from the terminal is connected to external interrupt 3 of the
RTX 2000. When a start bit is transmitted, the RTX 2000 will
be interrupted. Next external interrupt 3 will be read (using
the word POLL-El3) at the correct Baud rate to input these
rial data .

Application Note 117

Using Internal Timer to Generate Baud Rate

The RTX 2000 has 3 internal timer/counters. This example Following is the Forth code for the word UNMASK-TIMERO .
uses one of those timers to generate the correct Baud rate
to transmit data and one to receive data. Two timers are
used to allow data to be asynchronously transmitted and re
ceived in full duplex easily. This could be done with a single
timer, however, the code would be more complex. Only one
timer would be necessary if half duplex transmission were
used.

The timers are configured to decrement with the internal
time-base {the processor clock speed ICLK) and interrupt
the processor when the are decremented to 0 {after each
serial data bit period). To do this, a value determined from
the Baud rate is loaded into the timer. When the timer decre
ments to zero the processor is interrupted indicating it is

·time to read or transmit the next bit. The following formula is
used to determine the correct count to load in the timer.

Processor Speed (#Cycles/sec) =Timer Count (#Cycles/Bit)
Baud Rate (Bits/sec)

For example, assume the RTX 2000 is running at 10 MHz
(ICLK) and the desired Baud rate is 1200. The value to be
loaded into the Timer/Counter preload register would be
10,000,000/1200 = 8,333 = 208DH. The following Forth
code would configure timer/counter O to interrupt the RTX
2000 after every 208D clock cycles or 1200 times per'sec
ond. (If the automatic Baud rate detection routine is utilized,
the routine will determine the count automatically according
to the bit period of the incoming data.)

INIT-TIMER \ Word to initialize TimerO for
\ 1200Baud

IBC@ \ IBC fetch, Pushes Interrupt
\ Bas'e/Control reg on stack

FCFFAND \ Clear bit 8 and 9 of IBCR to
\ configure timers for Internal
\ time base.

IBCI \ IBC store, Load Interrupt
\ Base/Control reg with timers
\ configured for internal time
\ base.

208DTCO! \ Store 208DH into Timer/
\ counter 0 pre-load register;
\ timer will be loaded on next
\ clock.

UNMASK-TIME RO \ Word to unmask timer inter-
\ rupts.

ENABLE-INTERRUPTS
\ Enable processor interrupts ..

4

UNMASK""TIMERO \ Word to Unmask timerO
\ interrupt

IMR@ \ IMR fetch, Pushes Interrupt
\ mask register on stack top

FF7FAND \ Clear Bit 7 of IMR to unmask
\ timer/counter 0

IMRI \ IMR store, Load Interrupt
\ Mask Register from mo~fified
\ value on stack.

When the timer decrements to zero the processor will exe
cute an interrupt handler (provided that the timer is
initialized, the timer interrupt is unmasked, and RTX inter
rupts are enabled.) The programmer must install the desired
interrupt handler in the interrupt table. The RTX Forth com
piler has a word called !INTERRUPT which performs that
function. The !INTERRUPT word expects two values to be
on the stack, first the address of the word to be executed
when the interrupt occurs, and second the interrupt level.
The interrupt level determines which of the 16 RTX inter
rupts the handler is to be installed for. The interrupt level for
timer 0 interrupt is 7. The RTX 2000 interrupt levels are
listed in the Harris RTX 2000 data sheet and Programmer's
Reference Manual. The following code would cause the
word POLL-El3 to be executed after every timer O interrupt;
Le., whenever timer O decrements to 0.

[') POLL:...El3 ?!INTERRUPT

The['] operator in Forth causes the address of the word fol
lowing the ['] to be pushed on the stack. The above code
pushes the address of the word POLL-El3 followed by a 7
(for the interrupt level) on the stack and then executes the
word !INTERRUPT. The !INTERRUPT word will place a call
instruction to the word POLL-El3 in the interrupt table loca
tion corresponding to timer O interrupt.

Algorithm for Transmitting Data
As mentioned previously, the boot pin on the RTX 2000 will
be used for transmitting data. The UART is setup for send
ing a start bit followed by eight data bits, no parity, and one
stop bit.

The Forth word EMIT is provided to transmit data. EMIT ex
pects a character on the stack, and when executed trans
mits that character;

In order to decrease the time a program waits for output,
the software UART is interrupt driven and has a sixteen
word transmit buffer. When the word EMIT is executed the

•

•
Application Note 117

character is placed in the next available location in the
buffer; thus, the program does not need to wait for the char
acter to be.transmitted. The program will be interrupted by
the timer so the UART can output the next bit of serial data
in the buffer. The word WAIT-FOR-EMIT is provided if it is
necessary for the program to wait for the character to be
transmitted before continuing.

If the transmit portion of the UART is idle when the word
EMIT is executed, the character is placed in the buffer, the
UART is activated and then control is returned to the calling
program. If the UART is busy, but there is space available in
the buffer then the character is placed in the buffer and con
trol is returned to the calling program. If the UART is busy
and the buffer is full then the word EMIT waits until there is
space available in the buffer. When space becomes availa
ble the character is placed in the buffer and control is
returned to the calling program.

The transmit portion of the software UART is a Finite State
Machine (FSM) that exists as the interrupt handler for the
timer O interrupt. The transmit FSM has the following states
IDLE-STATE, START-STATE, DATA-STATE, STOP
STATE, COMPETE-STATE. Following is a brief description
of each of the states. The transition between states occurs
when a timer interrupt occurs. See Figure 1 for a diagram
illustrating the transmit finite state machine. Figure 2 con
tains a more detailed flow chart for the transmit function.
The section titled Forth CODE FOR SOFTWARE UART con
tains a complete source code listing for the UART.

IDLE-STATE in this state there are no characters waiting to
be transmitted. The transmit buffer is empty. In this state the
timer 0 interrupt is masked; i.e. the transmit FSM is not run
ning and therefore there is no loss of processor utilization.
The UART remains in this state until the word EMIT is exe
cuted to transmit a character. When EMIT is executed, the
timer O interrupt is unmasked and the state changes to the
START-STATE thus activating the UART FSM. (If EMIT is
executed when the UART is in any other state, then the
character is placed in the receive buffer since the UART is

not idle.) Immediately upon unmasking the timer interrupt, a
timer interrupt will occur since the timers are free running
and the transmit algorithm guarantees the timer will have
decremented to zero at least once.

START-STATE when the uart is switched to the start state
a start bit is transmitted, the baud rate count is stored into
the timer, and the state is then changed to the DATA
STATE. Control is then returned to the user. The next timer
interrupt will cause the DATA-STATE portion of the FSM to
be executed.

DATA-STATE while the FSM is in the data state it is trans
mitting the eight data bits. Upon entry to the data state a
counter is set to one to output the first bit of serial data. The
data is transmitted; the counter is incremented, and control
is returned to the user. This cycle continues until eight bits
are transmitted at which time the state is changed to the
STOP-STATE.

STOP-STATE when in this state the UART transmits a stop
bit and then the state is changed to the COMPLETE
STATE. The next timer interrupt will cause the processor to
switch to the COMPLETE-STATE.

COMPLETE-STATE when in this state the UART is fin
ished transmitting the stop bit. If there are more characters
in the transmit buffer then the state is changed to the
START-STATE. If the transmit buffer is empty then TIMER 0
interrupt is masked thus changing the state to the IDLE
STATE.

Algorithm for Receiving Data

External Interrupt 3 is used by the software UART to receive
data. The UART expects to receive one start bit, eight data
bits, no parity, and one stop bit.

The Forth word KEY is provided to receive data. When exe
cuted, KEY waits for a character to be received and returns
that character on the stack. The receiver portion is also in
terrupt driven and has a sixteen character input buffer.

TIMER
INTERRUPT

NEXT 7TIMER
INTERRUPTS

EIGHTH TIMER
INTERRUPT

FIGURE 1. TRANSMIT DATA FINITE STATE MACHINE

5

Application Note 117

The buffer allows characters to be read into the buffer while
the pr-ogram is performing other functions. Then, when the
program needs input data, it executes the word KEY. If there
is already data in the buffer, the program will not have to
wait and the data will be returned immediately. If the buffer
is empty, KEY will wait until a character is received.

The receive portion of the UART is also a finite state ma
chine. The UART prepares to receive data by unmasking
External Interrupt 3 (El3). When an El3 interrupt occurs, one
of two things might have occurred. It could either indicate
that a start bit has been detected or it could indicate a glitch
on the receive input. To detect the difference between these
cases, a timer is set to expire after 1/2 the bit period. After
the timer expires, the external interrupt line is polled to see if
the data still represents a start bit. If it is a start bit, then a
valid start bit was detected, if not the interrupt was caused
by a glitch (See Figure 3).

Once a valid start bit has been confirmed the timer is set up
to generate an interrupt after each bit period. Each time the
interrupt occurs, the external interrupt pin is polled to read
in the next bit of data. As the data is read in it is placed in the
RCV-BUFFER.

The Receive portion of the software UART is a Finite State
Machine that exists as the interrupt handler for both the
timer 1 interrupt and external interrupt 3. The receive FSM

START

TRANSMIT START BIT

SET TIMER TO
INTERRUPT AFTER
EACH BIT PERIOD

UART INACTIVE

EXECUTE USER CODE
UNTIL INTERRUPTED

TIMER 0
INTERRUPT

TRANSMIT 1 BIT OF DATA

UART INACTIVE

EXECUTE USER CODE
UNTIL INTERRUPTED

TIMER 0 INTERRUPT

TRANSMIT STOP BIT

UART INACTIVE

EXECUTE USER CODE
UNTIL INTERRUPTED

MASK TIMER 0 INTERRUPT

UART IDLE

FIGURE 2. FLOW CHART FOR TRANSMIT FUNCTION

6

has these states IDLE-STATE, INIT-STATE, START :-STATE,
DATA-STATE. Following is a brief description of each of the

,states. See Figure.4 for a diagram illustrating the transmit
finite state machine. Figure 5 contains a more detailed Flow
chart of the receive portion of the UART. The section titled
Forth CODE FOR SOFTWARE UART contains a complete
source code listing for the UART.

IDLE-STATE in this state there are no characters being
transmitted to the UART. The user has 100% of the proces
sor bandwidth. The UART remains in this state until a start
bit is received. The start bit will cause external interrupt 3
(El3). When this occurs, timer 1 will be set to cause an inter
rupt after 1 /2 the bit period. El3 will be masked so that none
of the data bits will cause an interrupt. The timer interrupt
will be unmasked so that the UART can interrupt the user
program once during each bit period to input the data. The
state is then be changed to the IN IT-STATE and control will
be returned to the user.

INIT-STATE as soon as the timer interrupt is unmasked in
the IDLE-STATE, a timer interrupt will occur switching the
processor to this state. This immediate interrupt is guaran
teed since the RTX timers are free running, and the
algorithm for the UART will ensure that the timer will have
expired at least once. When this timer interrupt occurs, the
UART just changes to the START -STATE and' returns
control to the user until the timer expires causing another in
terrupt. This second timer interrupt will be in the center of
the start bit.

START-STATE the UART will enter this state after the start
bit has been detected and 1 /2 of the bit period has expired
(The center of teh start bit, see label 2 of Figure 3). The
UART will read in the input data and ensure that the data
represents a valid start bit. If the data is not a start bit the
UART will be switched to the IDLE-STATE, the timer inter
rupt will be masked and external interrupt 3 will be
unmasked in preparation for a new start bit. If the data is a
start bit then the timer will be set to cause an interrupt after
the next full bit period and the UART will be switched to the
DATA-STATE.

DATA-STATE in this state the UART will be reading data
from El3 into the receive buffer. The UART will stay in this
state for eight timer interrupts (1 for each bit of data). During
each of these interrupts the UAR.Twill sample the input data
bit store the result in the buffer and return to the user. After
receiving the last data bit the UART will update the buffer

(1) START BIT (2) POLL El3 TO

SSOR VALID START
BIT

(3) POLL El3 AT
CENTER OF
EVERY BIT
PERIOD

.-------'

INTERRUP~TS CHECK FOR

0 0 0

fo-fo- ,...

~iii !::
Iii ID

co
!::
ID

Cl. foo
fo-ID
(/)

FIGURE 3. POLLING EIE TO RECEIVE SERIAL DATA

•

•

J

•

•

Application Note 117

IDLE - STATE

START BIT DETECTED VIA
EXTERNAL INTERRUPT 3 INIT - STATE

TIMER
INTERRUPT

VALID START BIT

TIMER INTERRUPT

FIGURE 4. RECEIVE DATA FINITE STATE MACHINE

pointer indicating that there is a character available in the
buffer. The UART will be switched to the IDLE state, the
timer interrupt will be masked, and external interrupt 3 will
be unmasked in preparation for a new start bit

Initializing the UART

A routine called IN IT-UART is provided to initialize the soft
ware UART. The routine installs the interrupt handlers for
timer 0, timer 1, and external interrupt 3. The routine also
initializes the receive and transmit buffers and the receive
and transmit finite state machine. The final step in the

START

UART INACTIVE

EXECUTE USER CODE
UNTIL INTERRUPTED

EXTERNAL
INTERRUPT 3
(E13)
(START BIT)

START BIT DETECTED.
SET TIMER TO INTERRUPT

AFTER 1/ 2 BIT PERIOD.
MASKE13

UNMASK TIMER INTERRUPT

UART INACTIVE

EXECUTE USER CODE
UNTIL INTERRUPTED

SET TIMER TO INTERRUPT
AFTER 1 BIT PERIOD

UART INACTIVE

EXECUTE USER CODE
UNTIL INTERRUPTED

TIMER
INTERRUPT

POLL E13 AND STORE BIT
INTO RECEIVE BUFFER

INCREMENT RECEIVE
BUFFER POINTER.

MASK TIMER COUNTER 0
INTERRUPT. UNMASK

EXTERNAL INTERRUPT 3

FIGURE 5. TRANSMIT DATA FLOW CHART

7

initialization process is detecting the Baud rate. To do this
the software UART waits for the user to press the RETURN
key. When it detects a start bit the UART times the width of
the start bit and uses that value for the bit period. The UART
then continues to read in the character to ensure that it is a
RETURN character. Once the RETURN character has been
read correctly the Baud rate has been detected and the
initialization is complete.

Hardware Used for Software UART

The only hardware necessary for the UART is an RS-232
driver/receiver. The boot pin from the RTX 2000 is
connected to one of the transmitter input pins on the driver.
The output from the driver is connected to the TX pin of the
RS-232 connector.

The external interrupt from the RTX 2000 is connected in a
similar fashion to the receiver portion of the RS-232 driver
receiver, which is in turn connected to the RS-232 RX pin.
The only difference is that the received data must be
inverted before it is connected to the RTX 2000. The RTX
2000 external interrupts are active-high level sensitive, so it
is necessary to invert the serial data to force the start bit to
cause an interrupt. Since the RS-232 line driver receiver
inverts the data, the received data is routed through the
receiver to invert the incoming data. This saves havin!J\ to
add an inverter to the system.

Figure 6 illustrates the schematic for connecting a Maxim
MAX235 RS-232 driver/receiver to the RTX 2000. This is
the only hardware necessary to implement a software UART
that communicates over RS-232 cable to a terminal or other
device.

RTX2000

MAXIM MAX235
RS - 232 DRIVER I

RECIEVER
RS -232

CONNECTOR
1-----,

BOOT1-------1 T1 IN T10UT1---~--11

R1 OUT R1 IN 1---r--<IC

R21N

E13--- R2 OUT

I
GNDI

I

I

I I
, _____ I

FIGURE 6. HARDWARE NECESSARY FOR SOFTWARE UART

Application Note 117

Forth Code for Software UART
This section contains a complete source code listing for the
software UART. Forth programs are typically written by
developing small words and building more complex words
by combining the smaller ones. This results ln a bottom up
method of coding. The source code listing ls presented in
that order. Thus the words EMIT is the last word to be

defined in the TRANSMIT section and KEY is the last words
to be defined in the RECEIVE section. For ease of under
standing, It might be useful to begin reading the transmit
portion of the UART from the Transmit finite state machine
on page 10. The receive portion can be best understood by
beginning with receive finite state machine on page 12.

\
\
\
\
\
\
\

Software UART for the RTX 2000
By Ted Dimbero Applications Engineer Harris Semiconductor

To transmit a character place the character on the stack and execute the word EMIT. To
receive a character execute the word KEY. This leaves the character received on the stack.

\ Following is the code for the transmit portion of the UART
\
HEX\ Change the default base to hexadecimal for entire prc:>gram.
10 CONSTANT BUFFER-SIZE \ 16 character buffer size.
VARIABLE XMIT-BIT-POSITION \ The next bit of the data word to be transmitted
VARIABLE XMIT-STATE \ The current state of transmit FSM
VARIABLE XMIT-BUFFER BUFFER-SIZE ALLOT \ Transmit Buffer
VARIABLE BAUD-RATE \ Contains# of cycles per bit period
VARIABLE XMIT-IN \ Position to put character in transmit buffer
VARIABLE XMIT-OUT \ Position to take out chars from transmit buffer
VARIABLE ADDR-INIT-UART \ Contains address of IN IT-UART word

0 CONSTANT XSTART-STATE
1 CONSTANT XDATA-STATE
2 CONSTANT XSTOP-STATE
3 CONSTANT XCOMPLETE-STATE
0100 CONSTANT LAST-BIT

ENABLE-INT CR@ CRI ;
DISABLE-INT CR@ 0010 OR CR!;

UNMASK-TIMERO IMR@ FF7F AND IMR!;
MASK-TIMERO IMR@ 0080 OR IMRI;

UNMASK-El3 IMR@ FBFF AND IMR! ;

MASK-El3 IMR@ 0400 OR IMRI;

INC-PTR (buffer-ptr --)
DUP@ 1 + DUP BUFFER-SIZE>
IF DROP 0 SWAP I ELSE SWAP I ENDIF;

?TRANSMIT-IDLE
IMR@OOBOAND

XBUF@
XMIT-OUT@
XMIT-BUFFER + C@

XBUF!(C--)
XMIT-IN@
XMIT-BUFFER + C!
XMIT-IN INC-PTR

\ states for the transmit FSM

\ Enables all RTX interrupts
\ Disables all RTX interrupts

\ Unmask Timer Counter O (TCO) Interrupt
\ Mask TCO interrupt

\ Unmask External Interrupt 3 El3

\ Mask El3 interrupt

\ Increments pointer through circular buffer
\ If buffer pointer> limit set back to zero
\ else just add one to buffer pointer

\ When tlmerO is masked there is no data currently being transmitted.
\ Therefore the Transmit portion of UART is idle

\ Reads next character from the transmit buffer

\ Stores top of stack in next position of the transmit buffer and
\ increments the transmit buffer pointer.

8

•

•

•

•

•

•

/

'.?BUFF-FREE
XMIT-IN @XMIT-OUT@ <>

XMITO CR@ FFF7 AND CR!;
XMIT1 CR@ 0008 OR CR!;

XMIT-BIT (Bit-position --)
XBUF@AND IF

XMIT1
ELSE

XMITO
ENDIF

Application Note 117

\ Leaves O on stack if buffer is full -1 otherwise
\ Buffer is full when in and out index are =

\ Writes a zero to the boot pin
\ Writes a one to the boot pin

\ Transmit next bit of data from transmit buffer.
\ Read data from XMIT buffer AND with current bit position,
\ If result is 1 then transmit a 1

\ Else if result is O then transmit a zero.

\ Transmit next bit of data then update bit position to point
\ to next bit. If this is last bit change state of XMIT FSM

XMIT-DATA-BIT
XMIT-BIT-POSITION @ DUP XMIT-BIT
2* DUP XMIT-BIT-POSITION I
LAST -BIT = IF

XSTOP-STATE XMIT-STATEI
ENDIF

\ Transmit next bit of data.
\
\
\

Update the bit position.
If we have transmitted all 8 data bits
then change to STOP-STATE to transmit stop bit.

\ Set timer and xmitstart bit then change XMIT FSM to DATA-STATE
XMIT-ST ART-BIT (--)
BAUD-RATE @ TCO!
XMITO
1 XMIT-BIT-POSITION !
XDATA-STATE XMIT-STATE I

XMIT-STOP-BIT
XMIT1
XCOMPLETE-STATE XMIT-STATE !

XMIT-COMPLETE
XMIT -OUT INC-PTR
?BUFF-FREE NOT IF

MASK-TIMERO 1 TCO!
ENDIF
XSTART-STATE XMIT-STATE I

\ Set timer according to BAUD rate
\ Transmit start bit
\ Set bit position to transmit bit 1 of data first
\ Change to DATA-STATE to begin transmitting data

\ Xmit stop bit and change XMIT FSM state
\ Transmit Stop bit
\ Change to COMPLETE-STATE

\ Increment buffer pointer since current character has been transmitted.
\ If Buffer is empty then mask timer 0 indicating UART is idle

\ Switch to START-STATE to prepare for next character.

9

\
\
\
\

Application Note 117.

Transmit Finite State Machine.
This routine ls the interrupt handler for timer o.

XMIT
XMIT-STATE @ DUP
XSTART-STATE =IF

DROP XMIT-START-BIT
ELSE DUP XDATA-STATE =IF

DROP XMIT-DATA-BIT
ELSE DUP XSTOP-STATE = IF

DROP XMIT-STOP-BIT
ELSE XCOMPLETE-STATE = IF

XMIT-COMPLETE
ELSE

ADDR-INIT-UART @ EXECUTE
ENDFENDFENDFENDF

EMIT{C--)
?TRANSMIT-IDLE IF

XBUFI
UNMASK-TIM ERO
ELSEBEGIN ·

?BUFF-FREE
UNTIL
XBUFI

ENDIF

WAIT-FOR-EMIT
BEGIN ?TRANSMIT-IDLE UNTIL

\ Fetch the state and determine the current state.

\ Transmit the start bit

\ Transmitthe data bits

\ Transmit the stop bits

\ Transfer complete update buffer and prepare for next character

\ Not a valid stite so initialize the uart.

\ Transri'l it the character on the top of the stack
\ If the UART is idle then
\ Store the character in the transmit buffer
\ and Unmask timer O Interrupt to activate the UART.
\ Else If UART is not idle wait until there is space in
\ the transmit buffer.

\ When space is available store character in the next location.

\ Waits until all characters in transmit buffer have been
\ transmitted.

10

0

•
Application Note 777

\
\
\

CODE FOR THE RECEIVE PORTION OF SOFTWARE UART

VARIABLE RCV-BIT _;POSITION
VARIABLE RCV-STATE
VARIABLE RCV-BUFFER BUFFER-SIZE ALLOT
VARIABLE RCV-OUT
VARIABLE RCV-IN

0 CONSTANT DETECT-BAUD
1 CONSTANT RIDLE-BAUD .
2 CONSTANT RINIT-STATE
3 CONSTANT RSTART-STATE
4 CONSTANT RDATA-STATE

UNMASK-TIMER1 IMR@ FEFF AND IMR!;
MASK-TIMER1 IMR@01000R IMRI;

RBUF@ @ RCV-BUFFER + C@ ;
RBUF! @ RCV-BUFFER +Cl ;

POLL-El3 (-- BIT)
DISABLE-INT
IMR@
FBFFIMRI
IVR@
03FF AND OAO =
SWAPIMR!
ENABLE-INT NOT

RCV-BIT (BIT-POSITION -- BIT-POSITION)
POLL-El3
IF

DUP
RCV-IN RBUF@ OR
RCV-IN RBUFI

ENDIF

RCV-DATA-BIT
RCV-BIT-POSITION @
RCV-BIT
2* DUP RCV-BIT-POSITION I
LAST -BIT = IF

MASK-TIMER1
RIDLE-STATE RCV-STATE I
RCV-IN INC-PTR
UNMASK-El3

ENDIF

\ Position in word of next bit to be received
\ Current state of Receive FSM .
\ 16 character receive buffer
\ Next position to read character from receive buffer
\ Next position to write character into buffer

\ Receive FSM states

\ Unmask Timer Counter (TC1) 1 interrupt
\ Mask TC1 interrupt

\ Read a character from RCV .buffer
\ Write a character to RCV buffer

\ Reads Status of external interrupt 3 pin
\ Disable interrupts
\ Save current IMR
\ Mask all interrupts except El3
\ Read Interrupt vector
\ Test if El3 pending
\ Restore IMR value
\ Invert the serial data

\ Read in 1 bit and store in RCV-BUFFER
\. Read in the Bit
\ If bit is zero do nothing if bit is one set bit in RCV-BUFFER
\ Duplicate the bit position
\ Read in word from RCV-BUFFER and set the appropriate bit
\ Store new value in RCV-BUFFER

\ Read in a data bit and update bit position
\ Read current bit position
\ Read next data bit into RCV buffer
\ Update bit position to point to next bit.
\ When 8 bits have been read we are done.
\ When done mask timer 1 interrupt,
\ change UART t.o idle state,
\ Update RCV buffer pointer, and ·
\ Unmask El3 to prepare for new start bit.

\ Receive a bitand see if it is a start bit. If it is lnitializetimerand get ready to receive data.
\ If it ls not then reset the receive portion of UART.

RCV-START-BIT
POLL-El3 IF

MASK-TIMER1.
RIDLE-STATE RCV-STATE !
UNMASK-El3

ELSE
BAUD-RATE @ TC1 !
RDATA-STATE RCV-STATE I

ENDIF

\ If bit is one then invalid start bit
\ So reset receiver to prepare for new start bit.

\ Else if bit is zero then start bit was valid
\ Set timer to interrupt after 1 bit period
\ and change to DATA-STATE to prepare to read data

11

\
\
\
\

Application Note 117

RECEIVE Finite State Machine.
This routine Is the Interrupt handler for timer 1.

RECEIVE
RCV-STATE@
DUP RINIT -STATE = IF

DROP RSTART-STATE RCV-STATE I
ELSE DUP RSTART-STATE = IF

DROP RCV-START-BIT
ELSE RDATA-STATE = IF

RCV-DATA-BIT
ELSE

ADDR-INIT-UART@ EXECUTE
. ENDIF ENDIF ENDIF

\ Read current UART state and decide what to do.
\ First time out interrupt is meaningless so
\ just change to next state

\ Second time out interrupt check for valid start bit

\ Next 8 time out interrupts read in the serial data

\ Not valid state so re-in it uart

?KEY { -- flag) \Returns TRUE if there are any characters in RCV-BUFFER false otherwise.
RCV-IN @ RCV-OUT @ <>

KEY { -- C) \ Receives next character and places it on the stack
BEGIN ?KEY UNTIL ' \ Waitfor a character to be placed in the buffer
RCV-OUT RBUF@ \ When available read the character from the buffer
RCV-OUT INC-PTR \ and update the buffer pointer

READ-DATA
BAUD-'RATE @ 2/TC1 !
RINIT-STATE RCV-STATE !
1 RCV-BIT-POSITION I
0 RCV-IN RBUFI
UNMASK-TIMER1

TIME-BAUD
FFFFTC1!
BEGIN POLL-El3 UNTIL
TC1@
FFFFSWAP
BAUD-RATE!

\ Prepare to Read data after start bit has interrupted the processor via El3
\ Store 1 /2 bit period in counter to check for valid start bit in center of bit
\ Change to !NIT-STATE
\ Set bit position to indicate receiving first bit
\ Set data in receive buffer to zero. Only need to change it when 1 is read.
\ Unmask timer 1 interrupt when interrupt will check for valid start bit.

\ Time the length of the start bit to determine bit period
\ Set max time in timer and
\ wait until the start bit goes away.
\ Save elapsed time
\ Calculate bit period by subtracting value from maximum value
\ Store bit period in BAUD-RATE

\ This routine sets the Bit period based on an input character. It assumes the first
\ data bit is<> start bit. It then ensures the UART is in a correct mode to read
\ the rest of the data.

SET-BAUD
TIME-BAUD
BAUD-RATE@ 2/TC1 !
BEGIN TC1@ 10 <UNTIL
1 RCV-BIT -POSITION !
0 RCV-IN RBUF!
RDATA-STATE RCV-STATE !
BAUD-RATE @ TC1 !
UNMASK-TIMER1

\ Determine the width of start bit in clock cycles
\ Set timer to 1 /2 bit period and
\ wait for it to expire.
\ Now we should be in center of first data bit. So we initialize software
\ UART to the state that will allow it to read in the data word.

12

•

(~
/

•

•

\
\
\
\
\
\
\
\
\
\

\

START-BIT-DETECT
MASK-El3

Application Note 117

This is the El3 Interrupt handler. A seriai data start bit will cause
this interrupt to be activated.

If the UART Is being initialized It will determine the bit period by
calling SET-BAUD.

For normal UART operation It will prepare the UART to read
In the serial data by calling READ-DATA.

RCV-STATE @ DETECT-BAUD =IF
SET-BAUD

\ Mask El3 so remaining data bits will not cause this interrupt
\ If UART is being initialized then
\ Call SET-BAUD to determine bit period

ELSE
READ-DATA

ENDIF

WAIT-FOR-RETURN
BEGIN

DETECT-BAUD RCV-STATE I
UNMASK-El3
KEYOD=

UNTIL

\ Else prepare UART to read in the data bits

\ This routine is called during initialization it expects the user to press
\ the RETURN key
\ Indicate that UART is trying to determine bit period
\ Unmask El3 to wait for a start bit
\ Loop until we have successfully read in a RETURN key.

\ Following word is provided to initialize the UART to a known state after a processor RESET
\

INIT-UART
MASK-TIMERO MASK-TIMER 1 MASK-El3
ENABLE-INT
1TCO!1 TC11

['] XMIT 7 llNTERRUPT
[']START-BIT-DETECT OA !INTERRUPT
[')RECEIVE 8 llNTERRUPT
[') INIT-UART ADDR-INIT-UART I
XIDLE-STATE XMIT-STATE I
0 XMIT-IN I 0 XMIT-OUT I
XMIT1
0 RCV-OUT I 0 RCV-IN I
WAIT-FOR-RETURN

\ Mask all interrupts associated with UART
\ Enable RTX interrupts.
\ Store small count in timers to ensure an interrupt
\ when they are unmasked
\ Store address of transmit timer O interrupt handler
\ Store address of START-BIT-DETECT as El3 interrupt handler
\ Store address of RECEIVE as timer 1 interrupt handler
\ Store address of this routine in variable ADDR-INIT-UART
\ Initialize transmit FSM to idle state
\ Initialize transmit buffer pointers
\ Make sure we are transmitting a stop bit.
\ Initialize receive buffer pointers.
\ Wait for user to enter a return.

13

Application Note 117

Overhead Associated With Software
UART
The software UART in this example takes approximately 45
clock cycles to transmit a bit and 51 clock cycles to receive
a bit. Using a Baud rate of 1200 bits per second and an RTX
2000 running at 10 MHz, the number of clock cycles be
tween bits is 8,333 (See section titled "Using Internal Timer
to Generate Baud Rate" to calculate this number). There
fore, if data is continually being transmitted and received the
software UART will cause a loss of 1.15 % processor band
width (1.15 = (45 + 51) I 8,333). The goal of the transmit
and receive software is to explain the functionality of the
software UART in a straight forward manner, and therefore,
no significant effort was made to optimize the code. If this
performance penalty is not acceptable then some effort will
be necessary to optimize the code to reduce the overhead.

Appendix A

14

Books Available for Learning Forth

FORTH: A TEXT AND REFERENCE by Mahlon G. Kelly &
Nicholas Spies

A textbook approach to Forth with comprehensive refer
ences to MMS-FORTH and the 79 and 83 Forth Standards.

FORTH ENCYCLOPEDIA by Mitch Derick & Linda Baker

A detailed look at all fig-Forth Instructions.

MASTERING FORTH by Anita Anderson & Martin Tracy

A step-by-step tutorial including each of the commands of
the Forth-83 International Standard; with utilities, exten
sions and numerous examples.

STARTING FORTH, 2nd Edition by Leo Brodie

The most popular and complete introduction to Forth, ex
amples use the new Forth-83 standard.

THINKING FORTH by Leo Brodie

The sequel to "Starting Forth". An intermediate text on style
and form.

All of the Books listed can be purchased in most book
stores or through mail order from:

FORTH INTEREST GROUP
P.O.Box 8231
San Jose, CA 95155
(408) 277-0668

•

•

Application Note 117

Notes

•

•

•

•
15

Sales Offices

U.S. HEADQUARTERS
Harris Semicqnductor
1301 Woody Burke Road
Melbourne, Florida 32902
TEL: (407) 724-3739

DISTRIBUTORS IN U.S.A.
Almac Electronics
Anthem Electronics

Application Note 117

EUROPEAN HEADQUARTERS
Harris Semiconductor
Mercure Centre
Rue de la Fusse 100
Brussels, Belgium 1130
TEL: (32) 246-2201

SOUTH ASIA
Harris Semiconductor H.K. Ltd
13/F Fourseas Building
208-212 Nathan Road
Tsimshatsui, Kowloon
Hong Kong
TEL: (852) 3-723-6339

Electronics Marketing Corporation
Falcon Electronics

Gerber Electronics
Hall-Mark Electronics
Hamilton/Avnet Corporation

Newark Electronics
Schweber Electronics
Wyle Laboratories

;J)HARRIS

16

NORTH ASIA
Harris K.K.
Shinjuku NS Bldg. Box 6153
2-4-1 Nishi-Shinjuku
Shinjuku-Ku, Tokyo 163 Japan
TEL: 81-3-345-8911

DISTRIBUTORS IN CANADA
Hamilton/Avnet Corporation
ITT Multicomponents

•

•

•

•

