
\
'

BINAR ™ Forth Reference

Preliminary - Version 0.0
March 1, 1990

HARRIS SEMICONDUCTOR
PROPRIETARY INFORMATION

© 1990 HARRIS CORPORATION -ALL RIGHTS RESERVED

:; '

Released under Creative Commons CC0 1.0 Universal
by WISC Technologies

copyright assignee from Harris Semiconductor

1.0

2.0

3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

4.0

s.o

6.0
6.1
6.2
6.3

7.0

i
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

CONTENTS

Introduction . .. 1

Philosophy · 2

Quick start•.
Starting the System ..
BINAR Files
Decompiler ..
Locator
Files
Input Line Editor .•.
Words • ••.••••••...
Turnkey Applications.
Dos Shell Interface .••
Optimizing Compiler ..
Memory Dump .•....••.
Vocabularies•..

. . 3
• 3

• •• 4
. 5

• • 6
. . . 6
• • • 6

. . . • . 7
. 7

.8
•• 9
• • 9

. .. 10

Implementation Technical Reference 11

Def ini ti on of Terms 12

Glossary conventions •.
Attributes •.••...••.•••••
Pronunciation .•...
Stack Parameters.

•. 19
•• 19
.• 19

.•• 19

Glossary . .. 21

1
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

1.0 Introduction

This document is preliminary version o.o. This version is the workinq document used by Harris enqineers, and is not necessarily complete and accurate in all respects. If you have any questions or doubts about the technical content of this document, please contact Harris for clarification. A more comprehensive and coherent document to supersede this version is currently in preparation.

Forth began as a solution to the problems facing Charles Moore in the late 1960's, and has grown from a language describing a virtual machine into real machines which can execute Forth very efficiently. The BINAR chip is a stack­based machine, and so ~s very efficient at executing Forth. Therefore, this Forth system has been created to provide an interactive software development environment for the BINAR evaluation board.

This document is not designed to teach Forth, but to give a user already acquainted with Forth directions in which to explore this particular implementation of Forth. Anyone not already familiar with the concepts on which Forth is based should consult Leo Brodie's book, Starting Forth. It should be noted that there are many differences between the Forth described by Brodie and this particular implementation -­please consult the Glossary for the exact definition of any Forth word.

4
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

2.0 Philosophy

This implementation of Forth is tailored to the BINAR
hardware, but is based on the FORTH 83-STANDARD.
Unfortunately, this standard was defined before any hardware implementations of stack machines were built. Consequently, many of its restrictions are arbitrary and far too limiting for a 32-bit stack machine to be forced to exist with, such as the required use of a 16-bit address space, 16-bit stack elements, and floored division. We have therefore modified our Forth where necessary to better fit our architecture while remaining reasonably compatible with the standard. These modifications are based on existing practice of other 32-bit Forth implementations, such as those for the 68020 processor.

The basic paradigm on which Forth is based is that of a stack: Forth uses a stack for virtually all computation and parameter passing. Its computation model closely resembles the Reverse Polish Notation (RPN) calculators built by the Hewlett-Packard Company. There are no explicit registers to use for intermediate storage.

The RTX family of processors by Harris Semiconductor are all
stack~based machines. Each has two stacks; one for return addresses, the other for computation and parameter passing. The similarities between the virtual machine of Forth and the physical implementation of a stack machine result in a computer that can execute Forth (a high-level language) as its opcode set.

This document describes an implementation of Forth for the BINAR, a stack-based machine by Harris Semiconductor.

The BINAR is a stack-based, microcode processor. It has an opcode set consisting of 2048 words of microcode rom and 128 words of user-writable microcode ram. The 200+ opcodes in rom comprise a super set of the opcodes required by the Forth virtual machine -- many are included to support other languages, such as c. There are 16 opcodes mapped into ram, which the user may define and use as needed.

Note also that all 32-bit memory operations will occur on word-aligned memory addresses -- the least significant 2 bits of the address will be ignored and no exception will be generated. Likewise, half-word operations mask the least significant bit of the address~

'

3
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

3.0 Quick start

3.1 starting the System

To begin executing Forth on the BINAR, follow this script
(allowing for customized directory names for any particular
installation):

To compile the BINAR kernel:

ENV -c KERNEL.4

To extend the kernel into a full Forth system:

ENV -i KERNEL.IMG

Note that the initial execution of KERNEL.IMG will
automatically load the files required for the system
extension, save the extended image as FORTH.IMG, and leave the system in the "dumb terminal" mode. To re-enter this
mode after having created the FORTH.IMG file once:

ENV -i FORTH.IMG -t

At this point, the PC will appear to be a very nice, dumb
terminal for the BINAR hardware running Forth.

ENV.EXE has exactly 4 command line switches. They are:

-i Load an image file and begin terminal
mode.

-t Begin terminal mode, assuming BINAR is
already loaded.

-c Compile the specified file for the
BINAR. Truly useful only for the KERNEL.4
file.

-" Parse the string up to but not including
the following double-quote and send the
string to the BINAR just as if typed on the
keyboard.

All of the command line switches and filenames must be
followed by a blank space (just like Forth interpretation).

4
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

The full filename (and path if necessary) must be specified. Multiple commands may be entered on one command line.

Also note that via the command line, input and output may be redirected as per DOS conventions, but the running
application on the BINAR must end with the Forth command BYE in order to return to DOS.

ENV -i FORTH.IMG -" WORDS BYE 11 >GLOSSARY.LST

3.2 BINAR Files

ENV.EXE The host environment utility. Used to communicate
with the BINAR hardware.

FORTH.BAT

KERNEL.BAT

COMPILE.BAT

TERM.BAT

KERNEL.4

A batch file that will load the BINAR
with FORTH.IMG and execute the terminal
program.

A batch file which will recompile all of
the BINAR system extensions, assuming that
KERNEL.IMG and all of the source code to the
extensions exist.

A batch file to recompile the KERNEL.IMG
file from the KERNEL.4 file.

A batch file to re-execute the terminal
program without disturbing the current image
on the BINAR.

Source code for the BINAR Forth kernel.

BUILD.4 Load file for extensions.

CURSOR.4 Cursor control words.
CUSTOM.4 User definable extensions.
DASM.4 Decompiler / disassembler.
DOS.4 Dos interface for BINAR / host. EXCISE.4 Routines to relink words.
EXPECT.4 Command line editing.
EXTEND.4 Basic extensions to the kernel. FLOAT.4 Floating point software extensions.
FORGET.4 Discard definitions.
OPCODREF.4 Opcode reference tables for compiler /

decompiler.
OPTIM~Z.4 The optimizing compiler.

TIMER.4
UASM.4
VIEW.4
:VOCAB.4
WORDS.4
XOPS.4

5
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

Time of day, date, and timer routines.
Micro-code assembler.
Source code location and editing.
Vocabularies.
Dictionary display.
Cross reference for the opcodes.

3.3 Decompiler

Any Forth word may be decompiled interactively. This is very useful f9r debugging programs, or for determining exactly what the optimizing compiler has done. There is one basic decompiler word called UN, which will decompile 20 instructions from an address given on the stack. Its typical use is:

I DECIMAL UN <er>

which will display

1D20
1D24
1D28
1D2C
1D30
1D34

t

OC140602
00001990
06000001
0000014E
00001D14
58454883

t

•••• A NOP
•••• BASE
• • • • ! exit
N ••• + B@ <interrupt>
•••• - 1D14 call
.HEX -EADEO OR

t t

I
best guess

routine or opcode name

ascii display of memory

32 bit hex display of memory

address

UN will decompile starting at any address, even in the middle of a text string or data table, and may produce meaningless results. Typically, UN is used to decompile a particular word in the Forth dictionary, as in the example above. since that syntax is bit cumbersome, the following higher-level word SEE is defined. Its typical use is:

SEE DECIMAL

which has the exact same effect as the previous example.

6
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

All decompilations may be stopped by hitting any key on the keyboard (see the glossary entry for KEY?)

3.4 Locator

During compilation of source code, the Forth compiler keeps a linked list of the files compiled and the line number where each word was defined. The source code locator VIEW takes advantage of this data to allow the interactive automated lookup of any word that was compiled from a loaded file. Its typical use is:

VIEW WORDS

which will invoke the system-defined editor on the file in which WORDS was defined at the proper line. See also FILES, DICTIONARY STRUCTURE.

3.5 Files

Application source code is maintained in normal Ascii files. These files may be edited by any text editor that does not embed special control characters in the edited text. The Forth system already knows about a particular editor, named EDIT, and can call the editor interactively (see VIEW). The editor may be ,invoked by typing:

EDIT MYFILE.XYZ
I Files that contain source code may be loaded by the command LOAD. Its typical use is:

LOAD APPLIC.4
LOAD D:\SOURCES\MYFILE.XYZ

)

Note that the full filename and path (if necessary) must be specified -- the name given at load time is the name that will be "remembered" by the system for later VIEWing.
3.6 Input Line Editor

The interactive Forth interpreter depends heavily on user typing. To make life easier for the user, Forth includes a simple line editor. It allows the retrieval and editing of the last 8 command lines. Keystroke controls for the line editor are:

return terminate the current line

7
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

escape
up-arrow
down-arrow
right-arrow
left-arrow
home
end
insert

cursor
delete

cursor
backspace

e~ase the current line
retrieve the last line for editing
retrieve the oldest line for editing
cursor right
cursor left
cursor to the left margin
cursor to right margin

insert one space under the

delete character under the

delete character to left of cursor

Note that the line editor is always in overstrike mode any inserting is done via the insert-space command and over typing the blanks.

3.7 Words

The basic unit of Forth programs is the "word". A Forth word is roughly equivalent to a subroutine in other languages, but it is a much broader concept. Every entity in Forth is just a word -- compiler directives, language primitives, application definitions, constants.

Central to Forths use of words is the memory-based
dictionary. This data structure is a linked list of the names (in Ascii) of all the words that Forth knows. All compilation addresses come from the dictionary.

To view the dictionary, a utility called WORDS is provided. It has three modes of operation:

WORDS <er> display all the names in the CONTEXT
vocabulary

WORDS XYZ <er> display all names in all
vocabularies that contain the string
"XYZ" (case ignored)

WORDS *·* <er> display all names in all
vocabularies

3.8 Turnkey Applications

BINAR Forth has the capability to build a turnkey program, that once loaded can execute completely independently of its host.

8
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

On reset and program load, BINAR Forth executes an initialization word, COLD. After performing the system specific initialization, it searches for the name READY in the dictionary and executes it.

To use READY to build a turnkey application, it (or one of its component words) must execute the system call BYE. This forces the host environment to terminate and return to DOS.
To create a very simple turnkey application, try:

(in Forth)

: READY WORDS BYE ;
SAVE-SYSTEM TEST.IMG
BYE

(in dos)

LOAD TEST
turnkey)

(define the application.)
(save an executable image.)

(return to dos)

(load and execute the

READY may also be used to perform a specialized initialization sequence by simply executing a return to COLD which will continue the normal boot process.

3.9 Dos Shell Interfac~

Even though the BINAR is very distinct from a processor that can run MS-DOS, it is implemented as a co-processor card for a DOS machine. It becomes much more user-friendly if, while running a program on the BINAR, DOS services are still available. This is accomplished through a "command processor" built into the host environment.

The simplest DOS interface is \\ • When BINAR Forth encounters the DOS-ESCAPE (double-backslash), it parses the remainder of the input line, formats the entire string as a DOS command, and sends the command to the host. The host then executes the specified DOS command and returns to the BINAR. For example:

(print a director listing)
\\ DIR <er>

(execute an arbitrary utility)
\\ dbase2 \files\myfile <er>

9
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

A full DOS shell may be spawned by typing

SHELL <er>

and this may return to Forth by typing "exit" at any DOS prompt.

There is also a shorthand form of commonly used DOS commands available through a Forth defining word DOS: • Examples of some commands commonly used are:

DOS: DIR.
DOS: COPY
DOS: RENAME

These commands, like the \\ commands, parse the remainder of the input line and pass the entire formatted string for DOS execution. Therefore, one may not mix a "dos" command arid a Forth command on the same line.

3.10 Optimizing compiler

The BINAR processor is capable of executing combinations of opcodes, subroutine calls, and subroutine exits in parallel. This is fully documented in the BINAR TECHNICAL REFERENCE.
The Forth compiler implemented for the BINAR performs as much optimization as possible during compilation. The basic algorithm that it employs is "greedy compilation," i.e. it packs best fit into 2ops format instead of trying to analyze and compile the absolute most optimal sequence based on opcode timing.

A diagram of the compiler's finite state machine may be found in the file OPTIMIZ.4.

3.11 Memory Dump

Memory is organized into bytes and may be displayed on the console in either byte- or word- organized format. The commands for this are:

start #bytes DUMP
start #bytes WDOMP

For example:

HEX 100 80 WDUMP

(for byte dump)
(for word dump)

~ . . \ .

(
10

BINAR FORTH REFERENCE
PRELIMINARY VERSION 0.0

HARRIS SEMICONDUCTOR PROPRIETARY

will display 128 bytes of data,, beginning at address lOOH, formatted into 32-bit units.

3.12 Vocabularies

BINAR Forth supports only a very primitive vocabulary structure. All vocabularies are sealed entities, defined by (for instance):

VOCABULARY SYSTEM

Subsequent execution of the word SYSTEM will cause SYSTEM to become the CONTEXT vocabulary. If DEFINITIONS is executed, SYSTEM will also become the CURRENT vocabulary, and all new definitions will be linked into it.

Vocabularies are searched according to these rules:
1- search the context vocabulary
2- search the Forth vocabulary

Vocabularies are meta-structures: they contain links to each other as well as the normal dictionary links. This allows words like FORGET to trim all of the vocabularies when modifying the dictionary structure. It also permits definition of a word voes, which will display the names of all vocabularies known to the system.

'

11
,. -\ BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

4.0 Implementation Technical Reference

To be supplied.

,.
I

12
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

s.o Definition of Terms

These are the definitions of the terms used within this Document.

address, byte
An unsigned 32-bit number that locates an 8-bit byte in a standard FORTH address space over the range
{0 .. 4,294,967,295}. It may be a native machine address or a representation on a virtual machine, locating the addr-th byte within the virtual byte address space. Addresses are treated as unsigned numbers. See:
"arithmetic, two's complement"

address, compilation
The numerical value compiled for a FORTH word
definition which identifies that definition. The address interpreter uses this value to locate the machine code corresponding to each definition.

address, native machine
The natural address representation of the host computer.

address, parameter field
The address of the first byte of memory associated with a word definition for the storage of compilation addresses (in a colon definition), numeric data, text characters, etc.

arithmetic, two's complement

byte

Arithmetic is performed using two's complement integers within a field of either 32 or 64 bits as indicated by the operation. Addition and subtraction of two's complement integers ignore any overflow condition. This al.lows numbers treated as unsigned to produc.e the same results as if the numbers had been treated as signed.

An assembly of 8 bits. In reference to memory, it is the storage capacity for 8 bits. When read from memory, the value is sign extended to 3~ bits.
--,, character

"
J A 7-bit number the significance of which is given by the ASCII standard. When contained in a larger field,

I i

13
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

the higher order bits are zero. In some contexts this
also refers to an 8-bit value treated as an unsigned integer and zero-extended when read from memory.

compilation
The action of converting text words from the input
stream into an internal form suitable for later
execution. When in the compile state, the compilation addresses of FORTH words are compiled into the
dictionary for later execution by the address
interpreter. Numbers are compiled to be placed on the
data stack when later executed. Numbers are accepted from the input stream unsigned or negatively signed and converted using the value of BASE . See: "number''
"number conversion" "interpreter, text"

defining word
A word that, when executed, creates a new dictionary entry in the compilation vocabulary. The new word name is taken from the input stream. If the input stream is exhausted before the new name is available, an error condition exists. Example of defining words are:
CONSTANT CREATE

definition
See: "word definition"

dictionary
A structure of word definitions in compµter memory
which is extensible and grows toward higher memory
addresses. Entries are organized in vocabularies to aid location by name. See: "search order"

display
The process of sending one or more characters to the current output device. These characters are typically displayed or printed on a terminal. The selection of the current output device is system dependent.

error condition

false

flag

An exceptional condition which requires action by the system which may be other than the expected function.

A zero number represents the false state of a flag.

A number that may have one of two logical states, false or true. See: "false" "true"

'·

14
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

free field format
Numbers are converted using the value of BASE and then
displayed with no leading zeros. A trailing space is
displayed. The number of characters displayed is the
minimum number of characters, at least one, to uniquely
represent the number. See: "number conversion"

glossary
A set of explanations in natural language to describe
the corresponding computer execution of word
definitions.

immediate word
A word which executes when encountered during
compilation or interpretation. Immediate words handle
special cases during compilation. See, for example, IF
LITERAL ." etc.

input stream
A sequence of characters available to the system, for
processing by the text interpreter. The input stream
conventionally may be taken from the current input
device (via the text input buffer). >IN, TIB and #TIB
specify the input stream. Words using or altering >IN ,
TIB and #TIB are responsible for maintaining and
restoring control of the input stream. The input
stream extends from the off set value of >IN to the size
of the input stream.

interpreter, address
The machine code instructions, routine or other
facilities that execute compiled word definitions
containing compilation addresses.

interpreter, text

load

The word definitions(s) that repeatedly accepts a word
name from the input stream, locates the corresponding
compilation address and starts the address interpreter
to execute it. Text from the input stream interpreted
as a number leaves the corresponding value on the data
stack. Numbers are accepted from the input stream
unsigned or negatively signed and converted using the
value of BASE . See: "number" "number conversion"

Redirection of the text interpreter's input stream to
be from mass storage. This is the general method for
compilation of new definitions into the dictionary.

mass storage

15
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

storage which might reside outside FORTH's address
space. Mass storage data is made as standard files on
the host system consisting of a stream of bytes (i.e. , ··
sequential files).

number
When values exist within a larger field, the most­
significant bits are zero. 32-bit numbers are
represented in memory by addressing the first of four
bytes at consecutive addresses. Double numbers are
represented on the stack with the most-significant 32
bits (with sign) most accessible. Double numbers are
represented in memory by two consecutive 32-bit
numbers. The address of the least significant 32 bits
is four greater than the address of the most ·
significant 32 bits. See: "arithmetic, two's
complement" "number types"

number conversion
· Numbers .are maintained internally in binary and

represented externally by using graphic characters
within the ASCII character set. Conversion between the
internal and external forms is performed using the
current value of BASE to determine the digits of a
number. A digit has a value ranging from zero to the
value of BASE-1. The. digit with the value.zero is
represented by the ASCII character 11 011 (position 3/0
with the decimal equivalent of 48). This
representation of digits proceeds through the ASCII
character set to the character 11 (11 corresponding to the
decimal value 9. For digits with a value exceeding 9,
the ASCII graphic characters beginning with the
character "A" (position 4/1 with the decimal equivalent
65) corresponding to the decimal value 10 are used.
This sequence then continues up to and including the
digit with the decimal value 71 which is represented by
the ASCII character 1111 (position 7/14 with a decimal
equivalent 126). A negative number may be represented
by preceding the digits with a sirigle leading minus
sign, the character 11 - 11 •

number types
All number types consist of some number of .bits. These
bits are either arbitrary or are weighted. Signed and
unsigned numbers use weighted bits. Weighted bits
within a number have a value of a power of two
beginning with the rightmost (least-significant) bit

; .i
.;

16
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

having the value of two to the zero power. This
weighting continues to the leftmost bit increasing the
power by one for each bit. For an unsigned number this
weighting pattern includes the leftmost bit; thus, for
an unsigned 32-bit number the weight of the leftmost
bit is 2,147,483,648. For a signed number this
weighting pattern includes the leftmost bit but the
weight of the leftmost bit is negated; thus, for a
signed 32-bit number the weight of the leftmost bit is
-2,147,483,648. This weighting pattern for signed
numbers is called two's complement notation.
Unspecified weighted numbers are either unsigned
numbers or signed numbers; program context determines
whether the number is signed or unsigned.

pictured numeric output J
The use of numeric output definitions which convert
numerical values into text strings. These definitions
are used in a sequence which resembles a symbolic
'picture' of the desired text format. Conversion
proceeds from least-significant digit to most­
significant digit, and converted characters are stored
from higher memory addresses to lower.

program
A complete specification of execution to achieve a
specific function (application task) expressed in FORTH
source code form.

receive
The process of obtaining one character from the current
input device. The selection of the current input
device is system dependent.

recursion
The process of self-reference, either directly or
indirectly.

return
The means of indicating the end of text by striking a
key on an input device. The key used is system
dependent. This key is typically called "RETURN",
"CARRIAGE RETURN", or "ENTER".

search order
A specification of the order in which selected
vocabularies in the dictionary are searched. Execution
of a vocabulary makes it the first vocabulary in the
search order. The dictionary is searched whenever a

' ',,

17
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

word is to be located by its name. This order applies
to all dictionary searches unless otherwise noted. The
search order begins with the last vocabulary executed
and ends with FORTH , unless altered in a system
dependent manner.

source definition
Text consisting of word names suitable for compilation
or execution by the text interpreter. Such text is
usually arranged in screens and maintained on a mass
storage device.

stack, data
A last in, first out list consisting of 32-bit binary
values. This stack is primarily used to hold
intermediate values during execution of word
definitions. Stack values may represent numbers,
characters, addresses, boolean values, etc. When the
name •stack' is used alone, it implies the data stack.

stack, return
A last in, first out list which contains the addresses
of word definitions whose execution has not been
completed by the address interpreter. As a word
definition passes control to another definition, the
return point is placed on the return stack. The return
stack may cautiously be used for other values.

string, counted
A sequence of consecutive 8-bit bytes located in memory
by their low memory address. The byte at this address
contains a count {0 .. 255} of the number of bytes
following which are part of the string. The count does
not include the count byte itself. Counted strings
usually contain ASCII characters.

string, text
A sequence of consecutive 8-bit bytes located in memory
by their low memory address and length in bytes.
Strings usually, but not exclusively, contain ASCII
characters. When the term 'string' is used alone or in
conjunction with other words it refers to text strings.

structure, control
A group of FORTH words which when executed alter the
execution sequence. The group starts and terminates
with compiler words. Examples of control structures:
DO ••• LOOP DO •.• +LOOP BEGIN WHILE ... REPEAT
BEGIN . . . UNTIL IF . . • THEN IF • . . ELSE . . . THEN
See: "9.9 Control Structures"

true

18
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

A non-zero value represents the true state of a flag.
Any non-zero value will be accepted by word as •true•;
all opcodes return a 32-bit value with all bits set to
one when returning a •true' flag.

vocabulary
An ordered list of word definitions. Vocabularies are
an advantage in separating different word definitions
that may have the same name. More than one definition
with the same name can exist in one vocabulary. The
latter is called a redefinition. The most recently
created redefinition will be found when the vocabulary
is searched.

vocabulary, compilation

word

The vocabulary into which new word definitions are
appended.

A sequence of characters terminated by one blank or the
end of the input stream. Leading blanks are ignored.
Words are usually obtained via the input stream.

word definition
A named FORTH execution procedure compiled into the
dictionary. Its execution may be defined in terms of
machine code, as a sequence of compilation address, or
other compiled words.

word name
The name of a word definition. Word names are limited
to 31 characters and may not contain an ASCII space.
If two definitions have different word names in the
same vocabulary they must be uniquely findable when
this vocabulary is searched.

' '

19
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

6.0 Glossary conventions

The stack parameters input to and output from a definition are described using the notation:

before -- after

before
after

stack parameters before execution
stack parameters after execution

In this notation, the top of the stack is to the right. Words may also be shown in context when appropriate.

Unless otherwise noted, all stack notation describes exectution time. If it applies at compile time, the line is followed by: (compiling) .

The Forth compiler supports all opcodes described in the BINAR Opcode Reference. Not all of these opcodes are included in this Forth Reference. The operation of the elided opcodes should be obvious from their description in the BINAR Opcode Reference.

6.1 Attributes

Capitalized symbols indicate attributes of the defined words:

I Indicates that the word is IMMEDIATE and will execute during compilation, unless special action is taken.

6.2 Pronunciation

The natural language pronunciation of word names is given in double quotes (") where it differs from English pronunciation.

6.3 stack Parameters

Unless otherwise stated, all references to numbers apply to 32-bit signed integers.

The following are the stack parameter abbreviations and types of numbers used throughout the glossary. These abbreviations may be suffixed with a digit to differentiate multiple parameters of the same type.

Stack
Abbrv.

char
byte
h
n
+n
u
addr
d
+d
ud
flag
true
false
sys

20
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

Number
Type

character
byte
half-word
number (weighted bits}
positive number
unsigned number
address (same as u}
double number
positive double number
unsigned double number
boolean
boolean
boolean
O, 1, or more system
dependent stack entries

Range in Minimum
Decimal # bits

{0 •• 255} 8
{-128 •. 127} 8
{-32768 .. 32767} 16
{-2G .. 2G} 32
{0 .. 2G} 32
{0 •• 4G} 32
{0 •• 4G} 32
{-2**63 .. 2**63} 64
{0 •• 2**63} 64
{0 •• 2**64} 64
O=false, else=true 32
-1 (as a result) 32
0 32

not applicable 32

Any other symbol refers to an arbitrary signed 32-bit
integer unless otherwise noted.

0<

O=

O>

1+

1-

16/

2*

21
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

1.0 Glossary

n flag "zero-less"

flag is true if n is less than zero (i.e. the sign bit is set).

n flag "zero-equals"

flag is true if n is zero.

n flag "zero-greater"

flag is true if n is greater than zero.

nl -- n2 "one-plus"

n2 is the result of adding 1 to nl.

nl -- n2 "one-minus"

n2 is the result of subtracting 1 from nl.

nl -- n2 "sixteen-divide"

n2 is the result of dividing nl by 16. This is true division using a series of 2/ operations, as opposed to arithmetic shift right operations.

nl -- n2 "two-times"

n2 is the result of shifting nl left one bit. A zero is shifted into the lowest order bit position.

2+

2-

2/

4*

4+

4/

8/

22
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

nl -- n2 "two-plus"

n2 is the result of adding 2 to nl.

nl -- n2 "two-minus"

n2 is the result of subtracting 2 from nl.

nl -- n2 "two-divide"

n2 is the result of dividing nl by 2. This is true division, as opposed to an arithmetic shift right. Note
that -1 2/ • produces O whereas -1 ASR . produces -1

nl -- n2 "four-times"

n2 is the result of shifting nl left two bits. Zeros
are shifted into the lowest order bit positions.

nl -- n2 "four-plus"

n2 is the result of adding 4 to nl.

nl -- n2 "four-divide"

n2 is the result of dividing nl by 4. This is true
division using a series of 2/ operations, as opposed to arithmetic shift right operations.

nl -- n2 "eight-divide"

n2 is the result of dividing nl by 8. This is true
division using a series of 2/ operations, as opposed to arithmetic shift right operations.

!

II

#>

23
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

n addr --

n is stored at addr.

-- addr +n
(compiling)

Used in the form: " ccc"

"store"

"quote"

Compile a delimited string into the dictionary. Later
execution will return the address and number of
characters in the string, up to but not including the
delimiting" (close-quote). The blank following" is
not part of the string ccc.

+dl -- +d2 "sharp"

The remainder of +dl divided by the value of BASE is
converted to an ASCII character and prepended to the
output string, moving from high to low memory addresses
using HOLD. +d2 is the quotient and is maintained for
further processing. This word has the effect of
extracting one digit from +dl and transferring it to an
output string. It is typically used between <# and #> .

d -- addr +n "sharp-greater"

Pictured numeric output conversion is ended dropping d.
addr is the address of the resulting output string. +n
is the number of characters in the output string. addr
and +n together are suitable for TYPE .

I·

#S

#TIB

24
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

+d -- 0 0 "sharp-s"

+d is converted, appending each resultant character into
the pictured numeric output string until the quotient
(see: #) is zero. A single zero is added to the output
string if the number was initially zero. #S is
typically used between <# and #> , and has the effect of
transferring all remaining significant digits (one or
more) to the output string.

-- addr "number-t-i-b"

The address of a variable containing the number of bytes
in the text input buffer.

-- addr "tick"

Used in the form: ' <name>

(

addr is the compilation address·of <name>. An error
condition exists if <name> is not found in the currently
active search order.

I
(compiling)

"paren"

Used in the form: (CCC)

The characters ccc, delimited by) (closing parenthesis),
are considered comments. Comments are not otherwise
processed. The blank following (is not part of ccc. (may be freely used while interpreting or compiling. The number
of characters in ccc may be zero to the number of characters
remaining in the input stream up to the closing parenthesis.

\

*

*I

25
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

nl n2 -- n3 "times"

n3 is the least-significant 32 bits of the arithmetic
product of nl times n2.

nl n2 n3 -- n4 "times-divide"

nl is first multiplied by n2 producing an intermediate 64-bit result. n4 is the quotient of the intermediate 64-bit result divided by the divisor n3. The product of nl times n2 is maintained as an intermediate 64-bit
result for greater precision than the otherwise
equivalent sequence: nl n2 * n3 / . An error condition results if the divisor is zero or if the quotient falls
outside of the range {-2,147,483,648 .. 2,147,483,647}.

*/MOD nl n2 n3 -- n4 n5 "times-divide-mod"

+

+!

nl is first multiplied by n2 producing an intermediate
64-bit result. n4 is the remainder and n5 is the
quotient of the intermediate 64-bit result divided by
the divisor n3. A 64-bit intermediate product is used
as for */ . An error condition results if the divisor is zero or if the quotient falls outside of the range {-2,147,483,648 .. 2,147,483,647}.

nl n2 -- n3 "plus"

n3 is the arithmetic sum of nl plus n2.

nl addr -- "plus-store"

nl is added to the value at addr using the convention . for + • This sum replaces the original value at addr.

+LOOP

26
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

n -- "plus-loop"
sys -- (compiling)

n is added to the loop index. If the new index was incremented across the boundary between limit-1 and limit then the loop is terminated and loop control parameters are discarded. When the loop is not terminated, execution continues to just after the corresponding DO • sys is balanced with its
corresponding DO • See: DO

n -- "comma"

ALLOT space for n then store n at HERE 4- .

nl n2 n3 "minus"

n3 is the result of subtracting n2 from nl.

-ROT nl n2 n3 -- n3 nl n2 "dash-rote"

The top three stack entries are reverse rotated, bringing the second stack item to the top, the third item to second, and putting the first item to third.

-TRAILING addrl +nl -- addr2 +n2 "dash-trailing"

The character count +nl of a
addrl is adjusted to exclude
zero, then +n2 is also zero.
consists of spaces, then +n2

n

text string beginning at
trailing spaces. If +nl is
If the entire string

is zero.

"dot"

The value of n is displayed in a free field format with a leading minus sign if n is negative.

II

. (

27
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

"dot-quote"
(compiling)

Used in the form: ." ccc"

Later execution will display the characters ccc up to . but not including the delimiting" (close-quote). The blank following ." is not part of ccc.

I
(compiling)

Used in the form: • (CCC)

"dot-paren"

The characters ccc up to but not including the delimiting) (closing parenthesis) are displayed at compile time. The blank following.(is not part of
CCC.

.FILES "dot-files"

.N

.s

Print the names of all files compiled by the system. These files are maintained in the linked list whose head is in the system variable FLINK •

n +n -- "dot-n"

n is converted using BASE and then displayed right aligned in a field +n characters wide. The display of n is unsigned and padded with leading zeros. If the number of characters required to display n is greater than +n, an error condition exists.

no n1 ••• nn -- "dot-s"

Nondestructively display the contents of the data stack or the message "empty".

.R

I

28
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

n +n -- "dot-r"

n is converted using BASE and then displayed right
aligned in a field +n characters wide. A leading minus
sign is displayed if n is negative. If the number of
characters required to display n is greater than +n, an
error condition exists.

nl n2 -- n3 "divide"

n3 is the quotient of nl divided by the divisor n2. An
error condition results if the divisor is zero or if the
quotient falls outside of the range
{-2,147,483,648 •• 2,147,483,647}.

/MOD nl n2 -- n3 n4 "divide-mod"

n3 is the. remainder and n4 the quotient of nl divided by
the divisor n2. An error condition results if the
divisor is zero or if the quotient falls outside of the
range {-2,147,483,648 •• 2,147,483,647}.

/STRING addrl +nl +n2 -- addr2 +n3 "slash-string"

Truncate the first +n2 characters of the string addrl
with length +nl • addr2 = addrl + n2; n3 = nl - n2 .
Used primarily by WORD •

<

29
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

-- sys "colon"

A defining word executed in the form:

<name> • . • ;

Create a word definition for <name> in the compilation
vocabulary and set compilation state. The search order
is changed so that the first vocabulary in the search
order is replaced by the compilation vocabulary. The
compilation vocabulary is unchanged. The text from the
input stream is subsequently compiled. <name> is called
a "colon definition". The newly created word definition
for <name> cannot be found in the dictionary until the
corresponding ; or ;CODE is successfully processed. An
error condition exists if a word is not found and cannot
be converted to a number or if, during compilation from
mass storage, the input stream is exhausted before
encountering ; . sys is balanced with its corresponding .
I •

sys --
I

(compiling)
"semi-colon"

Stops compilation of a colon definition, allows the
<name> of this colon definition to be found in the
dictionary, sets interpret state and compiles EXIT
system dependent word which performs an equivalent
function). sys is balanced with its corresponding
See: EXIT

nl n2 -- flag "less-than"

flag is true if nl is less than n2.

(or a

. . .

<#

<<

<>

=

>

>IN

30
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

"less-sharp"

Initialize pictured numeric output conversion. The words:

#> #S <# HOLD SIGN

can be used to specify the conversion of a double number into an ASCII text string stored in right-to-left order.

"begin-microcode"

Initialize the micro assembler and set the CONTEXT vocabulary to MICROASM .

nl n2 -- flag "not-equal"

flag is true if nl is not equal to n2.

nl n2 -- flag "equals"

flag is true if nl is equal to n2.

nl n2 -- flag "greater-than"

flag is true if nl is greater than n2.

-- addr "to-in"

The address of a variable which contains the present character offset within the input stream {{O •• the number of characters in the input stream}}. See: WORD

31
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

>link addrl -- addr2 "to-link"

addr2 is the link field address corresponding to the
compilation address addrl.

>name addrl -- addr2 "to-name"

addr2 is the name field address corresponding to the compilation address addrl.

>view addrl -- addr2 "to-name"

>R

?

addr2 is the view field address corresponding to the
compilation address addrl.

n -- "to-r"

Transfers n to the return stack.

addr -- "question"

Print the contents of addr.

?DNEGATE dl n -- d2 "question-d-negate"

?DUP

Apply the sign of n to the 64-bit number dl on the
stack. Equivalent to:

0< IF DNEGATE THEN

n -- n n "question-dupe"
or o -- o

Duplicate n if it is non-zero.

32
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

?EXIT flag -- "question-exit"

Exit the current routine if the flag is zero.
Equivalent to:

O= IF EXIT THEN

?NEGATE nl n -- n2 "question-negate"

@

Apply the sign of n to the 32-bit number on the stack.
Equivalent to:

0< IF NEGATE THEN

addr -- n "fetch"

n is the value at addr.

@EXECUTE addr -- "fetch-execute"

Execute the routine whose address is stored at addr.
Equivalent to: @ EXECUTE •

ABORT" flag -- "abort-quote"
(compiling)

Used in the form: flag ABORT" ccc"

At execution time, if flag is true the characters ccc,
delimited by" (close-quote), are displayed and then a
system dependent error abort sequence, including the
function of ABORT , is performed. If flag is false, the
flag is dropped and execution continues. The blank
following ABORT" is not part of ccc.

33
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

ABORT no •. nn --

ABS

ADC

Clears the data stack and performs the function of QUIT
. No message is displayed.

n -- u "absolute"

u is the absolute value of n. If n is,
-2,147,483,648 then u is the same value.

nl n2 cin -- n3 cout "add-with-carry"

n3 is the result of adding nl to n2 with the carry-in
flag cin. The carry-out flag cout is determined by the
addition.

AGAIN I
(compiling) sys

Effect an unconditional jump back to the start of a
BEGIN- AGAIN loop. sys is balanced with its
corresponding BEGIN . See: BEGIN

ALIGN

Force the dictionary pointer to a word aligned value
(i.e., a multiple of 4) by adding o, 1, 2, or 3 to the
variable H.

ALLOT n --

Allocates n bytes in the dictionary by adding the value
n to the variable H.

AND

AND!

34
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

nl n2 -- n3

n3 is the bit-by-bit logical 'and' of nl with n2.

nl addr -- "and-store"

nl is ANDed with the value at addr using the convention
for AND . This result replaces the original value at
addr.

ASCII -- char
(compiling)

"as-key"

Used in the form: ASCII ccc

where the delimiter of ccc is a space. char is the
ASCII character value of the first character in ccc. If
interpreting, char is left on the stack. If compiling,
compile char as a literal so that when the colon
definition is later executed, char is left on the stack.

ASIC! nl asic:addr -- "a-sic-store"

Write nl to the asic device whose address is asic:addr.

ASIC@ asic:addr -- nl "a-sic-fetch"

ASR

Read nl from the asic device whose address is asic:addr.

nl -- n2 "a-s-r"

n2 is the result of arithmetically shifting nl right one
bit. The highest order bit of nl is duplicated and
placed in the highest order bit of n2.

35
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

ASRN nl n -- n2 "a-s-r-n"

B@

n2 is the result of arithmetically shifting nl right n
bits. The highest order bit of nl is replicated and
placed in the highest order bits of n2.

addr -- byte "b-fetch"

byte is the sign-extended contents of the byte at addr.

BASE -- addr

The address of a variable containing the current numeric
conversion radix.

BEGIN I
(compiling)

BL

sys

Used in the form: BEGIN ..• flag UNTIL
or BEGIN ... flag WHILE ... REPEAT

BEGIN marks the start of a word sequence for repetitive
execution. A BEGIN-UNTIL loop will be repeated until
flag is true. A BEGIN-WHILE-REPEAT will be repeated
until flag is false. The words after UNTIL or REPEAT
will be executed when either loop is finished. sys is
balanced with its corresponding UNTIL or WHILE .

-- 32 "b-1"

Leave the ASCII character value for space (decimal 32).

BLANK addr u

u bytes of memory beginning at addr are set to the ASCII
character value for space. No action is taken if u is
zero.

BYE

C!

C+!

c,

C@

36
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

Command the Binar host environment to terminate
execution and return to DOS.

n addr -- "c-store"

The least-significant 8 bits of n are stored into the
byte at addr.

n addr -- "c-plus-store"

The lowest 8 bits of n .are added to the byte value at
addr. This sum replaces the original byte value at
addr.

n -- "c-comma"

ALLOT one byte then store the least-significant 8 bits
of n at HERE 1- •

addr -- char "c-fetch"

char is the non-sign-extended contents of the byte at
addr.

CELL -- 4

A system constant returning the number of bytes in one
compilation cell.

CELLS

37
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

nl -- n2

n2 is the number of bytes used by nl cells. In the Binar, n2 is nl times 4. This word is used for transportability to 16 bit systems, where CELLS would multiply by 2 instead of 4.

CMOVE addrl addr2 u -- "c-move"

Move u bytes beginning at address addrl ·to addr2. The byte at addrl is moved first, proceeding toward high memory. If u is zero nothing is moved.

CMOVE> addrl addr2 u -- "c-move-up"

Move the u bytes at address addrl to addr2. The move begins by moving the byte at (addrl plus u minus 1) to (addr2 plus u minus 1) and proceeds to successively lower addresses for u bytes. If u is zero nothing is moved. (Useful for sliding a string towards higher addresses) •

COLD

System routine that is executed on reset. Performs all initialization, evaluates the word READY , and enters the Forth interpreter.

COMPILE

Used in the form: : <name> ... COMPILE <namex> ... ;

When <name> is executed, the compilation address compiled for <namex> is compiled and not executed. <name> is typically immediate and <namex> is typically not immediate. ·

i I ,

I

/

~--'·

CONFIG!

38
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

nl -- "conf ig-store"

Write nl to the Binar configuration register.

CONFIG@ -- nl "config-fetch"

Return the contents of the Binar configuration register
as nl.

CONSTANT n --

A defining word executed in the form:

n CONSTANT <name>

Creates a dictionary entry for <name> so that when
<name> is later executed, n will be left on the stack.

CONTEXT -- addr

Returns the address of a variable which determines the
dictionary search order.

CONVERT +dl addrl -- +d2 addr2

+d2 is the result of converting the characters within
the text beginning at addrl+l into digits, using the
value of BASE , and accumulating each into +dl after
multiplying +dl by the value of BASE . Conversion
continues until an unconvertible character is
encountered. addr2 is the location of the first
unconvertible character.

COUNT addrl -- addr2 +n

addr2 is addrl+l and +n is the length of the counted
string at addrl. The byte at addrl contains the byte
count +n. Range of +n is {0.255}

CR

39
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

"c-r"

Displays a carriage-return and line-feed or equivalent operation.

CREATE

A defining word executed in the form:

CREATE <name>

Creates a dictionary entry for <name>. After <name> is created, the next available dictionary location is the first byte of <name>'s parameter field. When <name> is subsequently executed, the address of the first byte of <name>'s parameter field is left on the stack. CREATE does not allocate space in <name>'s parameter field.

CURRENT -- addr

Returns the address of a variable specifying the vocabulary in which new word definitions are appended.

C OR! nl addr -- "c-or-store"

DO=

D!

The lowest 8 bits of nl are logically ORed with the byte value at addr using the convention for OR . This result replaces the original byte value at addr.

d flag "d-zero-equals"

flag is true if d is zero.

d addr -- "d-store"

d is stored at the double-word beginning at addr.

\.

D+

D-

D.

D>R

D>S

D<

D=

40
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

dl d2 -- d3 "d-plus"

d3 is the arithmetic sum of dl plus d2.

dl d2 d3 "d-minus"

d3 is the result of subtracting d2 from dl.

d -- "d-dot"

The value of d is displayed in a free field format. A leading negative sign is displayed if d is negative.

d -- "d-to-r"

Transfer d from the data stack to the return stack. Equivalent to:

>R >R

d -- n "d-to-s"

Convert the signed double number d into a signed single number n.

dl d2 -- flag "d-less-than"

flag is true if dl is less than d2 according to the operation of < except extended to 64 bits.

dl d2 -- flag

flag is true if dl equals d2.

"d-equal"

D@

DABS

41
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

addr -- d "d-fetch"

d is the value at the double-word starting at addr.

d -- ud "d-absolute"

ud is the absolute value of d. If dis -2,147,4,648
then ud is the same value.

DASR dl -- d2 "d-a-s-r"

d2 is the result of arithmetically shifting dl right one
bit. The highest order bit of dl is duplicated and
placed in the highest order bit of d2.

DBASE! addr -- "d-base-store"

Set the processor's DBASE register to the value addr.

DBASE+! n "d-base-plus-store"

Add n to the value in the DBASE register.

DBASE+ !
store"-

nl n2 -- "d-base-indexed-

Store nl at the address generated by adding n2 to the
contents of the dbase register.

DBASE+ @
fetch"-

nl -- n2 "d-base-indexed-

Retrieve the value nl at the address generated by adding
nl to the contents of the dbase register.

42
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

DBASE@ -- addr "d-base-fetch"

Retrieve the value in the DBASE register.

DCONSTANT d -- "d-constant"

A defining word executed in the form:

d DCONSTANT <name>

Creates a dictionary entry for <name> so that when
<name> is later executed, d will be left on the stack.

DDROP d "d-drop"

d is removed from the stack.

DDUP d -- d d "d-dupe"

Duplicate d.

DECIMAL

Set the input-output numeric conversion base to ten.

DECOMPILER

The vocabulary containing the component words of the
Binar Forth decompiler utility.

DEFINITIONS

The compilation vocabulary CURRENT is changed to be the
same as the CONTEXT vocabulary.

43
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

DEPTH -- +n

+n is the number of 32-bit values contained in the data
stack before +n was placed on the stack.

DISABLE

Disable the processor interrupts.

DLSL dl -- d2 "d-1-s-l"

d2 is the result of the logical shift of dl one bit
left. A zero is shifted into the lowest order bit
position.

DLSR dl -- d2 "d-1-s-r"

DMAX

DMIN

d2 is the result of the logical shift of dl one bit
right. A zero is shifted into the highest order bit position.

dl d2 -- d3 "d-max".

d3 is the greater of dl and d2.

dl d2 d3 "d-min"

d3 is the lesser of dl and d2.

DNEGATE dl -- d2 "d-negate"

d2 is the two's complement of dl.

DO

44
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

nl n2 --
sys

I
(compiling)

Used in the form: DO •.. LOOP
or DO +LOOP

Begins a loop which terminates based on control
parameters. The loop index begins at n2, and terminates
based on the limit nl. See LOOP and +LOOP for details
on how the loop is terminated. The loop is always
executed at least once. For example: n.DUP DO ... LOOP
executes 4,294,967,296 times. sys is balanced with its
corresponding LOOP or +LOOP •

DOES> -- addr
(compiling)

"does"

DOS

Defines the execution-time action of a word created by a
high-level defining word. Used in the form:

: <namex> ••• <create> ••• DOES> ••• ;
and then

<namex> <name>

where <create> is CREATE or any user defined word which
executes CREATE • Marks the termination of the defining
part of the defining word <namex> and then begins the
definition of the execution-time action for words that
will later be defined by <namex>. When <name> is later
executed, the address of <name>'s parameter field is
placed on the stack and then the sequence of words
between DOES> and ; are executed.

A vocabulary which contains the components of the Binar
environment's MS-DOS interface.

DOVER dl d2 -- dl d2 dl "d-over"

Copy dl to the top of the stack.

DR>

DR@

45
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

-- d "d-r-from"

Retrieve d from the return stack. Equivalent to:

R> R>

-- d "d-r-fetch"

Copy d from the return stack. DR@ is designed for
correct operation when used with D>R and DR> .

DROP n

n is removed from the stack.

DROT dl d2 d3 -- d2 d3 dl "d-rote"

DS!

DS@

The top three double numbers on the stack are rotated,
bringing the third double number to the top of the
stack.

n addr -- "d-s-store"

Store n at the given address in the data stack RAM.
Similar to PICK, but the address is not top-of-stack
relative.

addr -- n "d-s-fetch"

Retrieve the value n from the given address in the data
stack ram. Similar to PICK, but the address is not top­
of-stack relative.

DSWAP dl d2 -- d2 dl "d-swap"

The top two double numbers are exchanged.

46
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

DUMP addr u

DUP

List the contents of u bytes starting at addr. Each
line of values is preceded by the address of the first
value.

n -- n n "dupe"

Duplicate n.

DVARIABLE "d-variable"

A defining word executed in the form:

DVARIABLE <name>

A dictionary entry for <name> is created and four bytes
are ALLOTted in.its parameter field. This parameter
field is to be used for contents of the variable. The
application is responsible for initializing the contents
of the variable which it creates. When <name> is later
executed, the address of its parameter field is placed
on the stack. See: VARIABLE

ELSE

EMIT

sysl -- sys2
I

(compiling)

Used in the form: flag IF ••• ELSE ••• THEN

ELSE executes after the true part following IF .
forces execution to continue at just after THEN .
is balanced with its corresponding IF . sys2 is
balanced with its corresponding THEN • See: IF

n --

ELSE
sysl

THEN

The least-significant 7-bits of n are displayed as an
ASCII character.

47
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

EMPTY

Truncate the entire dictionary to the GUARD point. Similar to FORGET, but ~o particular name is needed. See: GUARD FORGET

ENABLE

Enable the processor interrupts.

ERASE addr u --

err

u bytes of memory beginning at addr are set to zero. No action is taken if u is zero.

addr n --

Causes the system to return to the PRESET routine and print the specified error message.

EVALUATE addr +n --

The string from addr of length +n will be evaluated by the Forth interpreter. The program calling EVALUATE is responsible for not mucking around with the state of the system in a non-recoverable manner. EVALUATE preserves its input stream, and restores its values on exit. See: INTERPRET

EXECUTE addr --

The word definition indicated by addr is executed. An error condition exists if addr is not a compilation address (which will probably result in a system crash).

EXIT

48
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

EXIT is used to compile a subroutine return instruction
within a colon definition. An error condition exists if
the top of the return stack does not contain a valid
return point. May not be used within a do-loop.

EXPECT addr +n

Receive characters and store each into memory. The
transfer begins at addr proceeding towards higher
addresses one byte per character until either a "return"
is received or until +n characters have been
transferred. No more than +n characters will be stored.
The "return" is not stored into memory. No characters
are received or transferred if +n is zero. All
characters actually received and stored into memory will
be displayed, with the "return" displaying as a space.
See: SPAN

FALSE -- 0

Returns a constant value of zero.

FILES

A vocabulary containing the names of the files that have
been loaded or compiled by the system. See: .FILES

FILL addr u byte --

u bytes of memory beginning at addr are set to byte. No
action is taken if u is zero.

49
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

FIND addrl -- addr2 n

FOR

addrl is the address of a counted string. The string contains a word name to be located in the currently active search order. If the word is not found, addr2 is the string address addrl, and n is zero. If the word is found, addr2 is the compilation address and n is set to one of two non-zero values. If the word found has the immediate attribute, n is set to one. If the word is non-immediate, n is set to minus one (true).

nl --
sys

Used in the form:

I
(compiling)

FOR ... NEXT

Begins a loop which terminates based on control parameters. The loop index begins at nl, and terminates when it changes from o to -1. See NEXT for details on how the loop is terminated. The loop is always executed at least once. For example: -1 FOR •.. NEXT executes 4,294,967,296 times. sys is balanced with its
corresponding NEXT •

FORGET

Used in the form: FORGET <name>

If <name> is found in the compilation vocabulary, delete <name> from the dictionary and all words added to the dictionary after <name> regardless of their vocabulary. Failure to find <name> is an error condition. An error condition also exists if the compilation vocabulary is deleted.

50
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

FORTH

FP!

FP+!

FP@

The name of the primary vocabulary. Execution replaces
the first vocabulary in the search order with FORTH .
FORTH is initially the compilation vocabulary and the
first vocabulary in the search order. New definitions
become part of the FORTH vocabulary until a different
compilation vocabulary is established. See: VOCABULARY

addr -- "f-p-store"

Set the processor's FP register to the value addr. See:
LOC ! LOC +! LOC_@ etc.

n "f-p-plus-store"

Add n to the value in the FP register. This word is
used as one way to allocate and deallocate memory
resident activation records. See: LOC ! LOC +! LOC_@
etc.

-- addr "f-p-fetch"

Retrieve the value in the FP register. See: LOC
LOC +! LOC_@ etc.

GUARD

Marks the current dictionary state for later EMPTYing.

H! h addr -- "h-store"

Store the 16-bit value n at addr.

H,

H@

51
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

h -- "h-comma"

Allocate 2 bytes for a half-word, then store h at HERE
2- .

addr -- h "h-fetch"

Retrieve the signed 16-bit value from addr.

HALT

HERE

HEX

HOLD

huh?

Stop processor execution. The only ways to leave the
HALT state is by a processor reset.

-- addr

The address of the next available dictionary location.

Set the numeric input-output conversion base to sixteen.

char --

char is inserted into a pictured numeric output string. Typically used between <# and #>.

flag -- "huh"

If the flag is zero, execute err with a message of " ?
" Otherwise return to the calling routine.

\,,

I

I I

IF

w is a
form:

or

52
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

-- w

copy of the loop index. May only be used

DO I LOOP
DO I +LOOP

-- w "i-prime"

in the

Used within a colon definition executed only from within
a do-loop to return the corresponding loop index.

flag --
-- sys

I
(compiling)

Used in the form: flag IF ••. ELSE
or flag IF •.• THEN

THEN

If flag is true, the words following IF are executed and
the words following ELSE until just after THEN are
skipped. The ELSE part is optional. If flag is false,
the words from IF through ELSE , or from IF through THEN
(when no ELSE is used), are skipped. sys is balanced
with its corresponding ELSE or THEN .

IMMEDIATE

IN?

Marks the most recently created dictionary entry as a
word which will be executed when encountered during
compilation rather than compiled.

nl n2 •. nn #n x -- flag "in-set"

Assuming a set of #n data items on the stack {nl n2
nn} and a value x, determine if x is in the set.

/ ' / \

53
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

INTERPRET

J

KEY?

KEY

Begin text interpretation at the character indexed by the contents of >IN relative to the start of TIB.

-- w

w is a copy of the index of the next outer loop. May
only be used within a nested DO-LOOP or DO-+LOOP in the form, for example:

DO •.• DO .•• J ••• LOOP •.• +LOOP

-- flag "key-query"

Flag is true if a character is available for KEY.
Executing KEY? does not consume any pending keystrokes.

-- n

The least-significant 7 bits of n is the next ASCII
character received. All valid ASCII characters can be received. Control characters are not processed by the
system for any editing purpose. Characters received by KEY will not be displayed.

LAST -- addr

A variable containing the address of the beginning of the last dictionary entry made, which may not yet be a complete or valid entry.

LEAVE

54
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

(compiling)

Terminates execution at the next occurance of LOOP or
+LOOP • The loop is terminated and loop control
parameters are discarded. May only be used in the form:

or
DO ••• LEAVE ..• LOOP
DO . • • LEAVE . . • +LOOP

LEAVE may appear within other control structures which
are nested within the do-loop structure. More than one
LEAVE may appear within a do-loop.

link> addrl -- addr2 "from-link"

addr2 is the compilation address corresponding to the
link field address addrl.

LITERAL -- n I
n (compiling)

Used in the form: [n] LITERAL

Compiles a system dependent operation so that when later
executed, n will be left on the stack.

LOAD -- <name>

Used in the form: LOAD EXTENSIONS.4

Load the specified file. The filename is compiled into
the FILES vocabulary. The filename may include a full
path specification. See: FILES .FILES

LOC !

55
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

nl [n2] -- "local-store"

Assuming n2 to be a numeric literal compiled immediately before the LOC ! opcode, store nl into the address
generated by adding n2 to the contents of the FP
register. See: FP! FP+! FP@

Example of use: : ••. 8 LOC ! ;
This example stores the top of stack value at the local
address 8. The "8" must be some literal .value or an
error condition is reported by the compiler.

LOC +! nl [n2] -- "local-plus-store"

Assuming n2 to be a numeric literal compiled immediately before the LOC_+! opcode, add nl to the value at the
address generated by adding n2 to the contents of the FP register. See: LOC !

LOC_@ [nl] -- "local-fetch"

Assuming nl to be a numeric literal compiled immediately before the LOC @ opcode, retrieve the value at the
address generated by adding nl to the contents of the FP register. See LOC_!

LOC @ !
store"

nl [n2] -- "local-indirect-

Assuming n2 to be a numeric literal compiled immediately before the LOC_@_! opcode, retrieve the address at the
address generated by adding n2 to the contents of the FP
register, then store nl at this indirected address. See LOC !

(\

LOC_@_+

56
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

nl [n2] -- n3 "local-fetch-plus"

Assuming n2 to be a numeric literal compiled immediately
before the LOC @ + opcode, retrieve the value at the
address generated by adding n2 to the contents of the FP
register. Add the value fetched from this address to
nl, returning n3. See LOC !

LOC @ @
fetch"

[nl] -- n2 "local-indirect-

Assuming nl to be a numeric literal compiled immediately
before the LOC @ @ opcode, retrieve the value at the
address generated by adding nl to the contents of the FP
register, then use this value as an address for
retrieving n2. See LOC_!

LOC_B@ [nl] -- byte "local-b-fetch"

Assuming nl to be a numeric literal compiled immediately
before the LOC_B@ opcode, retrieve the sign extended
byte value at the address generated by adding nl to the
contents of the FP register. See LOC_!

LOC_C@ [nl] -- char "local-c-fetch"

Assuming nl to be a numeric literal compiled immediately
before the LOC C@ opcode, retrieve the character value
at the address-generated by adding nl to the contents of
the FP register. See LOC !

i
I

57
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

LOOP I
(compiling) sys

Increments the DO-LOOP index by one. If the new index was incremented across the boundary between limit-1 and limit on the return stack, the loop is terminated and loop control parameters are discarded. When the loop is not terminated, execution continues to just after the corresponding DO . sys is balanced with its corresponding DO . See: DO

LSLN nl n2 -- n3 "l-s-1-n"

LSR

n3 is the result of a logical shift left of nl by n2 bits. The lowest order bits of n3 are filled with zeros.

nl -- n2 "1-s-r"

n2 is the result of a logical shift right of nl by 1 bit. The highest order bit of n2 is filled with a zero.

LSRN nl n2 -- n3 "1-s-r"

M+

MAX

n3 is the resu·1 t of a logical shift right of nl by n2 bits. The highest order bits of n3 are filled with zeros.

nl dl d2 "m-plus"

d2 is the result of sign extending nl to a double precision value and adding it to dl.

nl n2 -- n3

n3 is the greater of nl and n2 according to the operation of > •

'

58
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

MICROASM "micro-a-s-m"

MIN

MOD

MOVE

A vocabulary containing all of the components of the
microcode assembler for the BINAR. See: << >>

nl n2 n3

n3 is the lesser of nl and n2 according to the operation
of < •

nl n2 -- n3

n3 is the remainder after dividing nl by the divisor n2.
An error condition results if the divisor is zero or if
the quotient falls outside of the range
{-2,147,483,648 •• 2,147,483,647}.

addrl addr2 n --

Move n words from addrl to addr2. This is much quicker
than CMOVE, but can move data only on aligned addresses.

MRAM! n addr "m-ram-store"

Store the value n at addr in the micro-code ram.

MRAM@ addr - n "m-ram-fetch"

Retrieve the value from addr in the micro-code ram.

NEGATE nl -- n2

n2 is the two's complement of nl, i.e., the difference
of zero less nl.

59
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

I

NEXT I
(compiling)

NIP

NOT

ONE

sys

Decrements the FOR-NEXT index by one. If the new index
was decremented across the boundary between O and -1 on the return stack, the loop is terminated and loop
control parameter is discarded. When the loop is not
terminated, execution continues to just after the
corresponding FOR . sys is balanced with its
corresponding FOR . See: FOR

nl n2 -- n2

Drop the second item from the stack. Equivalent to:
SWAP DROP .

Stall the processor for 1 or 2 clock cycles (1 clock
cycle for the 20PS instruction format, 2 clock cycles
for the CALL/EXIT/JNEXT instruction formats). Do
nothing.

nl -- n2

n2 is the one's complement of nl.

-- 1

The constant 1 • Defined so access is available to the
opcode, but spelled so that typical access uses the literal form.

OPTIMIZER

The vocabulary containing the components of the
optimizing compiler.

OR

OR!

60
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

nl n2 -- n3

n3 is the bit-by-bit inclusive-or of nl with n2.

nl addr -- "or-store"

nl is logically ORed with the value at addr using the
convention for OR . This result replaces the original value at addr.

ORDER

Display the vocabulary names forming the search order in their present search order sequence. Then show the
vocabulary into which new definitions will be placed.

OVER nl n2 -- nl n2 nl

PAD

Copy the second stack element nl to the top of the
stack.

-- addr

The lower address of a scratch area used to hold data
for intermediate processing. The address or contents of PAD may change and the data lost if the address of the
next available dictionary location is changed.

PICK +n -- n

n is a copy of the +nth stack value, not counting +n
itself. +n is valid for {O •• the number of elements on stack-1}. Extreme care should be used with this word if some stack elements are be spilled out to memory, since it does not check for this condition.

o PICK is equivalent to DUP
1 PICK is equivalent to OVER

61
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

QUERY

Characters are received and transferred into the memory area addressed by TIB . The transfer terminates when
either a "return" is received or the number of
characters transferred reaches the size of the area
addressed by TIB • The value of >IN is set to zero and the value of #TIB is set to the value of SPAN . WORD
may be used to accept text from this buffer. See:
EXPECT

QUIT

R+!

R>

R@

Clears the return stack, sets interpret state, accepts new input from the current input device, and begins text interpretation. No message is displayed. This may be
thought of as a "warm-start" of the kernel.

[n] -- "r-plus-store"

Assuming that the literal N was compiled immediately
before R+! (required for literal field content of the
opcode), add N to the value on top of the return stack. See: >R R@ R>

-- n "r-from"

n is removed from the return stack and transferred to the data stack.

-- n "r-fetch"

n is a copy of the top of the return stack.

READY

The application initialization word. COLD always
executes the most recent version of READY. See: COLD

62
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

REALIGN addrl -- addr2 "re-align"

addr2 is addrl incremented to the next highest multiple
of the processor cell size, (i.e., a multiple of 4) by adding o, 1, 2, or 3 to addrl as appropriate.

RECURSE -- I
(compiling)

Compiie the compilation address of the definition being compiled to cause the definition to later be executed
recursively.

REPEAT
sys -­

Used in the form:

I
(compiling)

BEGIN .•• flag WHILE REPEAT

At execution time, REPEAT continues execution to just after the corresponding BEGIN • sys is balanced with
its corresponding WHILE . See: BEGIN

REPLACED

The vocabulary containing the original definitions of
words that have been replaced. Words only appear here
when they are unneeded for future compilation, but must still be present for static references.

63
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

ROLL +n --

ROT

RP!

RP@

The +nth stack value, not counting +n itself is first
removed and then transferred to the top of the stack,
moving the remaining values into the vacated position.
+n is valid for {O •• the number of elements on the stack-
1}. Extreme care should be used with this word if some
stack elements are be spilled out to memory, since it
does not check for this condition.

2 ROLL is equivalent to ROT
1 ROLL is equivalent to SWAP
o ROLL is a null operation

nl n2 n3 -- n2 n3 nl "rote"

The top three stack entries are rotated, bringing the
deepest to the top.

addr -- "r-p-store"

addr becomes the current return stack pointer.

-- addr "r-p-fetch"

addr is the address value of the return stack pointer.

RPLIM! n -- "r-p-limit-store"

n is written to the return stack limit registers. The
upper 16 bits of n are the upper limit; the lower 16
bits of n are the lower limit. The limit is ignored
unless the interrupts are ENABLEd. See: ENABLE DISABLE
CONFIG@ CONFIG!

64
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

RP LIM@ -- n "r-p-limit-fetch"

n is the current value of the return stack limit register. The upper 16 bits of n are the upper limit~ the lower 16 bits of n are the lower limit. See: RPLIM!

RTI
interrupt"

conf ig -- "return-from-

S>D

config is the configuration register value, pushed on the data stack by the interrupt opcode executed when the interrupt procedure was entered. RTI restores the last state of the conf ig register before returning to the interrupted routine.

n -- d "s-to-d"

d is the sign-extended 32-bit value n.

SAVE-SYSTEM -- <name>

Used in the form: SAVE-SYSTEM FORTH.IMG

The current executable image of the Forth environment is saved as <name>. The preferred name extension is .IMG. This image is re-loadable by the host environment, but is not ROM-able.

SBASE! addr -- "s-base-store"

Set the processor's SBASE register to the value addr.

SBASE+! n "s-base-plus-store"
Add n to the value in the SBASE register.

65
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

SBASE+ !
store"-

nl n2 -- "s-base-indexed-

Store nl at the address generated by adding n2 to the
contents of the SBase register.

SBASE+ @
fetch"-

nl -- n2 "s-base-indexed-

Retrieve the value nl at the address generated by adding
nl to the contents of the SBase register.

SBASE@ -- addr "s-base-fetch"

SEE

Retrieve the value in the SBASE register.

Used in the form: SEE <name>

where <name> is a word in the dictionary. Decompile the
given name.

SHELL

SIGN

Invoke a DOS shell. All available memory is returned to
DOS prior to the invocation. Return to the Binar
environment by typing EXIT.

n --

If n is negative, an ASCII "-" (minus sign) is appended
to the pictured numeric output string. Typically used
between <# and #> .

SP!

SP@

66
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

addr -- "s-p-store"

addr becomes the current data stack pointer.

-- addr "s-p-fetch"

addr is the address value of the data stack pointer SP@
was executed.

SPLIM! n -- "s-p-limit-store"

n is written to the data stack limit registers. The
upper 16-bits of n are the upper limit; the lower 16-
bits of n are the lower limit. The limit is ignored
unless the interrupts are ENABLEd. See: ENABLE DISABLE
CONFIG@ CONFIG!

SPLIM@ -- n "s-p-limit-fetch"

n is the current value of the data stack limit register.
The upper 16-bits of n are the upper limit; the lower
16-bits of n are the lower limit. See: SPLIM!

SPACE

Displays an ASCII space.

SPACES +n --

Displays +n ASCII spaces. Nothing is displayed if +n is zero.

SPAN

67
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

-- addr

The address of a variable containing the count of
characters actually received and stored by the last
execution of EXPECT • See: EXPECT

STATE -- addr

The ,address of a variable containing the compilation
state. A non-zero content indicates compilation is
occurring, but the value itself is system dependent~ A
Standard Program may not modify this variable.

STRING char --

Used in the form: ASCII \ STRING THIS IS A TEST\

Compile ascii text as a counted string. The delimiter
is not included. r

·SWAP nl n2 -- n2 nl

The top two stack entries are exchanged.

SYSTEM

The vocabulary containing a large number of extra pieces
of the Binar Forth system. These pieces are necessary
for the operation of the system, but are not typically
used in application programs. They are in this
vocabulary to unclutter the main Forth vocabulary.

I I

68
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

THEN I
(compiling)

TIB

TRUE

sys --

Used in the form: flag IF •.• ELSE ..• THEN
or flag IF . • . THEN)

THEN is the point where execution continues after ELSE , or IF when no ELSE is present. sys is balanced with its corresponding IF or ELSE . See: IF ELSE

-- addr "t-i-b"

The address of the t~xt input buffer. This buffer is
used to hold characters when the input stream is coming from the current input device.

-- -1

A constant composed of all ones.

TUCK nl n2 n2 nl n2

Insert a copy of n2 under nl on the data stack.
Equivalent to: SWAP OVER •

TYPE addr +n --

u.

+n characters are displayed from memory beginning with
the character at addr and continuing through consecutive addresses. Nothing is displayed if +n is zero.

u -- "u-dot"

u is displayed as an unsigned number in a free-field
format.

I

U.R

U<

U<=

U>

UM*

69
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

u +n -- "u-dot-r"

u is converted using the value of BASE and then displayed as an unsigned number right aligned in a field +n characters wide. If the number of characters required to display u is greater than +n, an error condition exists.

ul u2 -- flag "u-less-than"

flag is true if ul is less than u2.

ul u2 -- flag "u-less-or-equal"

flag is true if ul is less than or equal to u2.

ul u2 -- flag "u-greater-than"
-flag is true if ul is greater than u2.

ul u2 -- ud "u-m-times"

ud is the unsigned product of ul times u2. All values and arithmetic are unsigned.

UM/MOD ud ul -- u2 u3 "u-m-divide-mod"

u2 is the remainder and u3 is the quotient after dividing ud by the divisor ul. All values and arithmetic are unsigned. An error condition results if the divisor is zero or if the quotient lies outside the range {O •• 4,294,967,295}.

' '

UN

70
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

addr -- "uncompile"

addr is the start of a disassembly of a Binar program.
Dis-assembly continues for 20 opcodes or until a key is
hit.

UNTIL flag -­
sys --

I
(compiling)

VAL,

VAL?

Used in the form: BEGIN •.• flag UNTIL

Marks the end of a BEGIN-UNTIL loop which will terminate
based, on flag. If flag is true, the loop is terminated.
If flag is false, execution continues to just after the
corresponding BEGIN . sys is balanced with its
corresponding BEGIN . See: BEGIN

•. n3 n2 nl #n -- "val-comma"

Compile #n words from the stack into the dictionary as a
series of literals. The words are placed into the
dictionary in reverse order, so that at run time the
words will be on the stack in the same order as at
compile time.

or
addr
addr
addr

0
n 1
d 2

"val-query"

Convert the count and character string at addr to a
binary number using the value of BASE . If numeric
conversion is not possible, return a false flag. If
conversion is successful, return the value as a sequence
of 32-bit stack items (most-significant part highest)
and the number of 32-bit stack items required for the
number. The string may contain a preceding minus sign.

71
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

VARIABLE

A defining word executed in the form:

VARIABLE <name>

A dictionary entry for <name> is created and four bytes are ALLOTted in its parameter field. This parameter field is to be used for contents of the variable. The application is responsible for initializing the contents of the variable which it creates. When <name> is later executed, the address of its parameter field is placed on the stack.

VOCABULARY

voes

A defining word executed in the form:

VOCABULARY <name>

A dictionary entry for <name> is created which specifies a new ordered list of word definitions. Subsequent execution of <name> replaces the first vocabulary in the search order with <name>. When <name> becomes the compilation vocabulary new definitions will be appended to <name>'s list. See: DEFINITIONS

Display the names of all vocabularies known to the system.

WDUMP addr n "word-dump"

List the contents of u addresses starting at addr. Each line of values is preceded by the address of the first value. The display is organized into 32-bit units.

72
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

WHILE flag --

WORD

sysl -- sys2 (compiling)

Used in the form: BEGIN ... flag WHILE ... REPEAT

Selects conditional execution based on flag. When flag
is true, execution continues to just after the WHILE
through to the REPEAT which then continues execution
back to just after the BEGIN • When flag is false,
execution continues to just after the REPEAT , exiting
the control structure. sysl is balanced with its
corresponding BEGIN . sys2 is balanced with its
corresponding REPEAT • See: BEGIN

char -- addr

Generates a counted string by non-destructively
accepting characters from the input stream until the
delimiting character char is encountered or the input
stream is exhausted. Leading delimiters are ignored.
The entire character string is stored in memory
beginning at addr as a sequence of bytes. The string is
followed by a blank which is not included in the count.
The first byte of the string is the number of characters
{0 •• 255}. If the string is longer than 255 characters,
the count is unspecified. If the input stream is
already exhausted as WORD is called, then a zero length
character string will result. If the delimiter is not
found, the value of >IN is the size of the input stream.
If the delimiter is found >IN is adjusted to indicate
the offset to the character following the delimiter.
#TIB is unmodified. The counted string returned by WORD
may reside in the "free" dictionary area at HERE or
above. Note that the text interpreter may also use this
area.

r
I

73
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

WORDS

XOR

[

[I]

Used in the form: WORDS
or WORDS XYZ
or WORDS *·*

If WORDS is not followed on its command line by any
text, list the word names in the first vocabulary of the currently active search order. Otherwise the text
following is used as a pattern. WORDS will then display all dictionary entries, regardless of vocabulary, that contain the pattern string. A special string is *·* , which causes WORDS to display all words in all
vocabularies.

nl n2 -- n3 "x-or"

n3 is the bit-by-bit exclusive-or of nl with n2.

I
(compiling)

"left-bracket"

Sets interpret state. The text from the input stream is subsequently interpreted. For typical usage see LITERAL See:]

-- addr
(compiling)

Used in the form:

"bracket-tick"

['] <name>

Compiles the compilation address addr of <name> as a
literal. When the colon definition is later executed addr is left on the stack. An error condition exists if <name> is not found in the currently active search order. See: LITERAL

'

74
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

(COMPILE] I
(compiling)

"bracket-compile"

]

\

Used in the form: [COMPILE] <name>

Forces compilation of the following word <name>. This allows compilation of an immediate word when it would otherwise have been executed.

"right-bracket"

Sets compilation state. The text from the input stream is subsequently compiled. For typical usage see LITERAL • See: [

I "back-slash"

Comment to end of line. A space must be used after the \ for correct operation.

\OPT "break-optimization"

\\

{

Causes the optimizing compiler's finite state machine to be reset, disallowing opcode, literal, call, and exit compression.

"double-back-slash"

Used in the form: \\ dir c:\xyz*.dat
\\<any valid dos command line>

Used to execute a single dos command line without
shelling out to dos.

"begin-set"

Mark the beginning of a set of data to be evaluated by IN? .

}

75
BINAR FORTH REFERENCE

PRELIMINARY VERSION 0.0
HARRIS SEMICONDUCTOR PROPRIETARY

-- # "end-set"

Terminate the set, leaving the count of the number of items in the set for IN? .

